Now showing 1 - 10 of 1878
  • Publication
    Verbesserung der Übertragbarkeit eines künstlichen neuronalen Netzes zur Qualitätsvorhersage beim Widerstandspunktschweißen von hochfesten Stählen
    Eine typische Automobilkarosserie kann bis zu 5000 Widerstandspunktschweißverbindungen aufweisen, welche hohen Qualitätsanforderungen genügen müssen. Daher ist eine durchgehende Prozessüberwachung unerlässlich. Die Transformation zur E-Mobilität in der Automobilindustrie und die damit einhergehende Reichweitenproblematik treiben die Entwicklung und Einführung neuer hochfester Stähle an. Dies resultiert in einem gesteigerten Fertigungsaufwand hinsichtlich einer stabilen Prozess-führung in der Fügetechnik. Um diesen Anstieg an Komplexität zu bewältigen, sind die Methoden der künstlichen Intelligenz ein geeignetes Mittel. Mit Ihnen kann, durch Auswertung der Prozessparameter und -signale, die individuelle Schweißpunktqualität sichergesellt werden. Die Vorhersagegenauigkeit von neuen Daten, also das extrapolieren, stellt für die meisten Algorithmen eine große Herausforderung dar. In dieser Arbeit wird ein künstliches neuronales Netz zur Vorhersage des Punktdurchmessers von Widerstandspunktschweißungen anhand von Prozessparametern implementiert. Die Vorhersagegenauigkeit und Extrapolationsfähigkeit des Modells wird durch die Auswertung des dynamischen Widerstandssignals verbessert. Um die Extrapolationsfähigkeit zu untersuchen, wird die Vorhersagegenauigkeit des Modells mit Daten getestet, die sich in Bezug auf den Werkstoff und der Beschichtungszusammensetzung deutlich von den Trainingsdaten unterscheiden. Dazu wurden mehrere Schweißexperimente mit Werkstoffen verschiedener Hersteller durchgeführt und nur ein Teil der Daten in das Training einbezogen. Die Ergebnisse dieser Arbeit verdeutlichen den positiven Einfluss der Prozesssignale auf die Robustheit des Modells und die Skalierbarkeit der Algorithmen künstlicher neuronaler Netze auf Daten außerhalb des Trainingsraums.
  • Publication
    Laserstrahlauftragschweißen - Einfluss von Schutzgasgemischen auf die Bauteilqualität
    ( 2023-09)
    Kampffmeyer, Dirk
    ;
    Wolters, Michael
    ;
    Raute, Julius
    ;
    ; ;
    Im Additive Manufacturing Verfahren Directed Energy Deposition (DED) wird bei der Verarbeitung von Werkzeugstahl in der Regel reines Argon als Schutzgas verwendet. Dabei kann die Verwendung von speziellen Schutzgasgemischen, auch bei geringen Anteilen zugemischter Gase, durchaus die Bauteilqualität positiv beeinflussen. In Vorarbeiten der Messer SE & Co. KGaA zeigte ein gewisser Sauerstoffanteil im Schutzgas die Tendenz, den Flankenwinkel von Schweißspuren beim DED zu verbessern. In der vorliegenden Studie wurde daher detailliert untersucht in wie weit unterschiedliche Schutzgasgemische einen Einfluss auf die Qualität sowie die geometrischen Eigenschaften der additiv gefertigten Strukturen des Werkzeugstahls 1.2709 beim Laser-DED ausüben. Es erfolgten zunächst Testschweißungen in Form von Einzelspuren mit unterschiedlichen Gemischen aus dem Basisschutzgas Argon mit geringen Anteilen verschiedener Gase. Dabei wurde der Einfluss der Zusätze auf die Spurgeometrie und Aufbauqualität untersucht. Auf Basis dieser Vorversuche wurde eine Auswahl vielversprechender Gasgemische getroffen und Detailuntersuchungen in Form von Spuren, Flächen und Quadern unter Zugabe verschiedener Mengen an Zusätzen durchgeführt. Zur Bewertung des Einflusses der Schutzgasbeimengungen wurden der Flankenwinkel, die Porosität und das Gefüge der Proben anhand metallografischer Schliffe untersucht. Es zeigte sich, dass eine Zugabe von geringen Anteilen an Zusätzen zunächst zu einer Vergrößerung des Flankenwinkels im Vergleich zu reinem Argon führt. Mit steigendem Anteil der Gase nimmt dieser Winkel jedoch ab. So kann je nach Menge des zugesetzten Gases eine individuelle Benetzung des aufgetragenen Materials an der Oberfläche erreicht werden. Auch die Porosität ließ sich durch Schutzgasgemische beeinflussen und zeigt ein abweichendes Verhalten im Vergleich zu reinem Argon.
  • Publication
    Conception and Requirements Identification of Gaia-X-Based Service Offerings
    ( 2023-08-10) ; ;
    Kondak, Konstantin
    ;
    Gaia-X is an initiative to develop the next generation of a secure and federated European data infrastructure to promote digital sovereignty for data exchange to fuel innovations. This paper introduces the basics of Gaia-X, in particular the mobility domain, followed by the federated system and its standards. In addition, a research methodology is presented to help conceptualize and derive requirements for service offerings on a Gaia-X-based data space. This is elaborated with a use case from the project "GAIA-X4 AMS" (Gaia-X4-Advanced Mobility Services), which reflects implementation in Gaia-X ecosystems and its added value.
  • Publication
    Ontology Based Skill Matchmaking Between Contributors and Projects in Open Source Hardware
    Open source hardware (OSH) projects are dynamic with respect to those actively participating in them. In addition, often-stated challenges in OSH projects are the difficulty to find suitable collaborators and to motivate them to stay for the longer run. This paper addresses these challenges to balance the workload between the project core team and the community. For this purpose, an ontology-based demonstrator for skill-based matching in OSH communities was developed and evaluated. A sample project and user data from a collaborative online OSH development platform was enriched with skills and connected with a semantic network consisting of two ontologies. On one hand, the demonstrator enables finding users with particular capabilities to match certain project requirements. On the other hand, users of the development platform can be matched to projects based on their skill interests. A use case scenario was evaluated using the demonstrator. The results show that an integration of a semantic network with a collaborative OSH development platform is realisable and presents potentials for further utilization.
  • Publication
    Digital Twin for Circular Economy
    ( 2023-05)
    Mügge, Janine
    ;
    ;
    Digital twins offer a promising approach to sustainable value creation by providing a specific data base for the monitoring and execution of circular economy strategies. By analyzing product, component and material as well as process data, it is possible to create transparency throughout a products lifecycle and address current challenges such as climate change and resource scarcity. The concept of a digital twin for circular economy enables to build a data-driven ecosystem and supports new business and value creation models from SMEs to large enterprises. This paper identifies application scenarios, their technological readiness level and challenges of digital twins for circular economy in the manufacturing industry based on a systematic literature review. As a second result, a generic concept of a digital twin for circular economy is presented.
  • Publication
    Signal conditioning of a novel ultrasonic transducer with integrated temperature and amplitude sensors
    ( 2023)
    Karbouj, Bsher
    ;
    Vibration amplitude of ultrasonic transducer has an impact on the overall process quality, process speed and ultrasonic transducer lifetime in industrial applications. A new ultrasonic transducer design has been developed with integrated sensor disks that have different electrical and mechanical properties. The combination of sensor has been designed for amplitude measurements and is also able to measure the transducer temperature in the real time. This paper deals with the analog signal processing that combines the different "raw" signals from the sensor disks to extract the information such as amplitude and temperature. For this goal, a chain of different signal filters and adjustment elements was used. Reliable amplitude and temperature measurements during real-time operation were obtained by the applied signal processing. The obtained results were validated with an external temperature sensor and a laser vibrometer.
  • Publication
    Taxonomy for Biological Transformation Principles in the Manufacturing Industry
    ( 2023)
    Berkhahn, Magda
    ;
    Kremer, Gerald
    ;
    ; ;
    Stark, Rainer
    Industry and research are seeking answers to current demands in industrial value creation, like resilience of production, sufficient product quality and sustainability of products and processes. A novel line of thought, seeking the accomplishment of those is the Biological Transformation (BT). BT describes the interweaving of biological modes of action, materials and organisms with engineering and information sciences. The conflation of disciplines from natural, technical and social sciences yields in a heterogeneous field of activities with ambiguous technical terms. An ascertainment of principles of BT is required to classify yet undifferentiated patterns in nature-based production, facilitating their systematic implementation in aiming for sustained solutions on current challenges. With increasing research in biomimetic, attempts arise to capture nature‑based activities in manufacturing through schematic classifications. Yet, basic semantics representing the effective principles of BT in the manufacturing industry is lacking. The goal of this publication is to introduce a taxonomy of Biological Transformation in manufacturing based on its core principles Bio Inspiration, Bio Integration and Bio Interaction. Within the research project BioFusion 4.0, the taxonomy was developed and applied to classify technology innovations. The paper presents the taxonomy, its development and application in use cases.
  • Publication
    Validation of virtual reality tools for unique aircraft interiors
    ( 2023)
    Konkol, Kathrin
    ;
    Reusing, Hannah
    A Virtual Reality (VR) application has been developed which supports engineers during product creation processes of unique aerospace interior. Ten trained engineers participated in a user study, which explored the differences in efficiency and user experience of two use cases within VR and conventional working methods. The study represented real day-to-day challenges and included two tasks: detecting the visibility of components for design reviews and cable routing for assembly processes. Five experts per task had to complete their assignment in both VR and their conventional working tools. In the visibility task participants had to decide whether the component of interest is visible or not in three different scenarios. For the cable task the experts were asked to route a specific cable for components in order to plan the amount of material that was needed in the final assembly. They had to estimate the cable length for four different cable routings and the outcome was compared to the optimal cable length for each given task. In both tasks the time until a decision has been measured. The results show that engineering processes can be supported by VR applications, which can help saving time in visibility testing and cable routing, as well as potentially saving resources by improving the accuracy of calculation for an ideal cable length. There are further potential benefits for users, as VR strains the workload less than conventional working methods. Furthermore, the study has shown that participants who were less experienced with VR technologies did significantly better with the VR application compared to conventional working methods during the visibility check.
  • Publication
    A Practical Approach to Realize a Closed Loop Energy Demand Optimization of Milling Machine Tools in Series Production
    ( 2023)
    Can, Alperen
    ;
    Schulz, Hendrik
    ;
    El-Rahhal, Ali
    ;
    Thiele, Gregor
    ;
    Energy efficiency is becoming increasingly important for industry. Many approaches for energy efficiency improvements lead to the purchase of new hardware, which could neglect the sustainability. Therefore, optimizing the energy demand of existing machine tools (MT) is a promising approach. Nowadays energy demand optimization of MT in series production is mainly done manually by the operators, based on implicit knowledge gained by experience. This involves manual checks to ensure that production targets like product quality or cycle time are met. With data analytics it is possible to check these production targets autonomously, which allows optimizing production systems data driven. This paper presents the approach and evaluation of a closed loop energy demand optimization of auxiliary units for milling MT during series production. The approach includes, inter alia, a concept for machine connectivity using edge devices and a concept for validating production targets
  • Publication
    Considering LCA in System Architectures of Smart-Circular PSS
    ( 2023)
    Kruschke, Thomas
    ;
    ;
    The realization of smart-circular Product-Service Systems has theoretically promising advantages compared to traditional products. Nevertheless, the sustainability improvement, especially for the ecological dimension is not yet satisfactorily proved. In this paper, the authors examined the current state of research within a systematic literature review with a specific focus on the overlap of the topics: Life Cycle Assessment, Model-Based Systems Engineering, Product-Service Systems, and Circular Economy. The aim is to analyze the potential of a proactive quantification of the ecological impact in an early stage during the development of smart-circular PSS - the system architecture definition. As a result of the systematic review, 27 relevant papers were identified and analyzed and the findings are presented in a structured way. The main finding is that the current state of the art in this research field still is in the conceptualization stage. In addition, a proactive approach is rare and circularity is not considered to its fullest. Quantified use cases do not draw the system boundaries Cradle-to-Cradle and not every of the 9R-strategies is considered. Furthermore, the potentials and challenges of the revealed research gap are summarized.