Now showing 1 - 7 of 7
  • Publication
    3-Achs-Portalfräsmaschine als Demonstrator für ein modulares Werkzeugmaschinengestell
    ( 2019)
    Uhlmann, E.
    ;
    Polte, M.
    ;
    Blumberg, J.
    ;
    Peukert, B.
  • Publication
    Mikrofräsbearbeitung von MMC-Werkstoffschichten unter Einsatz von binderlosem PKD. Analyse des Einflusses der Prozessparameter auf den Mikrofräsprozess
    ( 2019)
    Hein, C.
    ;
    Uhlmann, E.
    ;
    Polte, J.
    ;
    Wiesner, H.M.
    ;
    Jahnke, C.
    ;
    Polte, M.
    Micro-injection moulding is a key technology for the cost-effective production of plastic parts. The commonly used moulds are made of hardened steel and machined by micro-milling with coated cemented carbide tools. Today, these tools suffer from random tool breakage and excessive wear. One solution of this problem is to produce injection moulds made of non-ferrous metals and enhance them by applying a tungsten carbide matrix on the surface. Thus, this investigation addresses the micro-milling process of the resulting Metal-Matrix-Composites. Furthermore, the feasibility of binderless polycrystalline diamond as an innovative cutting material could be shown for this purpose
  • Publication
    Mikrofräswerkzeuge mit Schneiden aus cBN
    ( 2018)
    Uhlmann, E.
    ;
    Polte, J.
    ;
    Polte, M.
    ;
    Kuche, Y.
    ;
    Wiesner, H.
    Die Mikrozerspanung ist eine Kerntechnologie bei der Fertigung von Mikrospritzgussformen. Die hohen Ansprüche an die geometrische Genauigkeit und Oberflächenrauheit erfordern den Einsatz hochfester Werkstoffe. Jedoch unterliegen aktuelle Fräswerkzeuge bei der Mikrozerspanung einem hohen Verschleiß. Einen Lösungsansatz bietet der erfolgreich in der Makrozerspanung eingesetzte Schneidstoff kubisch-kristallinesBornitrid(cBN). Ziel der Untersuchungen war es daher, detaillierte Informationen zur Bearbeitung von gehärtetem Stahl mit cBN-Mikrofräswerkzeugen bereitstellen zu können.
  • Publication
    Entwicklung einer Herstellungstechnologie für PKD-Mikrofräswerkzeuge
    ( 2015)
    Uhlmann, E.
    ;
    Oberschmidt, D.
    ;
    Polte, M.
    ;
    Börnstein, J.
    Beim Mikrofräsen mit Werkzeugen aus Hartmetall kommt es häufig nach kurzen Schnittwegen lc zu übermäßigem Werkzeugverschleiß. Dies beeinflusst das Bearbeitungsergebnis, die Prozesssicherheit und die Wirtschaftlichkeit negativ. Ziel ist durch den Einsatz eines superharten Schneidstoffs aus polykristallinem Diamanten (PKD) den Verschleiß beim Mikrofräsen zu reduzieren. Daher ist eine Herstellungstechnologie zu entwickeln, um Mikrofräswerkzeuge mit Schneiden aus PKD effizient herstellen zu können. Beschrieben wird eine grundlegende statistische Prozessanalyse der Einstellparameter für die Mikro-Drahterosion mit den Zielgrößen Schneidkantenrundung rv und maximale Schartigkeit Rs,max. Im vorliegenden Artikel wird der Bedarf für die Weiterentwicklung von Mikrofräswerkzeugen am Beispiel der Fertigung von Mikrospritzgusswerkzeugen für den Werkzeug- und Formenbau erläutert. Speziell in der Vor- und Nullserie besteht aufgrund der Notwendigkeit von aufwendigen iterativen Anpassungen der Formgeometrien ein erhöhter Bedarf für Formen aus NE-Metallen. Die aktuell eingesetzten Mikrofräswerkzeuge aus Hartmetall zeigen einen frühzeitigen Werkzeugverschleiß, der die Genauigkeit in den Werkzeugformen reduziert. Um den Werkzeugverschleiß zu mindern, werden die Schneidenmakro- sowie die Schneidenmikrogeometrie von herkömmlichen Mikrofräswerkzeugen aus Hartmetall gezielt optimiert. Ziel der vorliegenden Forschungsarbeit ist es, Mikrofräswerkzeuge mit Schneiden aus PKD herzustellen, um den Verschleiß beim Mikrofräsen weiter zu reduzieren. Dafür ist es notwendig, eine Technologie zur Herstellung von Mikrofräswerkzeugen mit Schneiden aus PKD hinsichtlich der charakteristischen Schneidkantenkenngrößen zu analysieren. Zur Herstellung der Mikrofräswerkzeuge wurde hierbei die Technologie der Mikro-Drahterosion eingesetzt. Minimale erreichte Schneidkantenrundungen betragen rv = 2,0 µm für den Schneidstoff PKD 0020 und rv = 4,9 µm für den Schneidstoff PKD 0005. Die erreichten maximalen Schartigkeiten weisen Rs,max = 1,9 µm für den Schneidstoff PKD 0020 und Rs,max = 1,5 µm für den Schneidstoff PKD 0005 auf. Die erzielten Schneidenmikrogeometrien entsprechen dabei den zum Stand der Technik durch Schleifen und Polieren herstellbaren Schneidkantenkenngrößen bei der Herstellung von PKD-Werkzeugen. Abschließend wurde die Technologie des Tauchgleitläppens erfolgreich zur Entfernung der durch die Mikro-Drahterosion entstandenen thermisch beeinflussten Randzone genutzt. Zukünftig werden die in dem andauernden Forschungsprojekt hergestellten Mikrofräswerkzeuge mit Schneiden aus PKD grundlegenden Zerspanunter - suchungen unterzogen.
  • Publication
    Schneidkantenpräparation von VHM-Mikrofräsern
    ( 2015)
    Uhlmann, E.
    ;
    Oberschmidt, D.
    ;
    Löwenstein, A.
    ;
    Polte, M.
    ;
    Winker, I.
    Die Prozesssicherheit beim Mikrofräsen lässt sich mit einer gezielten Schneidkantenverrundung erheblich steigern. Dabei werden durch verschiedene Präparationstechnologien unterschiedliche Geometrien und Einflüsse auf den Fräsprozess erzeugt. Der Fachbeitrag behandelt den Einsatz präparierter Mikrowerkzeuge in Zerspanversuchen, in denen auf die Zerspankräfte, den Verschleiß sowie die Oberflächengüten eingegangen wird. Die mit den Feinbearbeitungsverfahren Bürstspanen und Strahlspanen präparierten Werkzeuge erzeugen im Mittel eine um 16 % geringere gemittelte Rautiefe Rz und weniger Grat als die Feinbearbeitungsverfahren Magnetfinishen und Tauchgleitläppen, jedoch sind der relative Verschleiß FZ im Mittel um 13 % sowie die Zerspankräfte Fz erhöht. Die bei Fz mit Bürstspanen präparierten Werkzeugen auftretenden Zerspankräfte Fz sind um 5 % höher als jene bei Fz mit Magnet finishen präparierten Werkzeugen beziehungsweise 13 % höher als jene bei Fz mit Tauchgleitläppen präparierten Werkzeugen. Die bei mit Strahlspanen präparierten Werkzeugen auftretenden Zerspankräfte Fz sind sogar um 20 % höher als jene bei mit Tauchgleitläppen präparierten Werkzeugen. Die Feinbearbeitungsverfahren Magnetfinishen und Tauchgleitläppen können eine Schneidkantenmikrogeometrie her stellen, deren Profilquerschnitt einem Kreissegment sehr nahe kommt und die einen quantifizierbaren Schneidkanten radius rv aufweist. Dies vermindert den Verschleiß sowie die Prozesskräfte. Die Schneidkantenradien rv sollten in einem Bereich von 3 µm < rv < 7 µm liegen, um eine Dominanz der Ploughing-Vorgänge zu vermeiden. Der Zahnvorschub fz sollte in einem Bereich von 3 µm < fz < 5 µm liegen, da höhere Zahnvorschübe fz eine zu hohe Belastung der Schneide bedeuten und über mäßigen Verschleiß in Form von Kantenausbrüchen fördern. Innerhalb der genannten Bereiche für den Schneidkantenradius rv und den Zahnvorschub fz ist nach der Gleichung hmin = 0,293 rv die Mindestspandicke hmin auch im ungünstigsten Fall des größten Schneidkantenradius rv = 7 µm in Kombination mit dem kleinsten Zahnvorschub fz = 3 µm gewährleistet und wird während des Zahneingriffs erreicht.
  • Publication
    Zellaufschluss für die Biotechnologie
    ( 2013)
    Uhlmann, E.
    ;
    Oberschmidt, D.
    ;
    Spielvogel, A.
    ;
    Polte, M.
    ;
    Polte, J.
    ;
    Herms, K.
    Die in der Industrie und Forschung angewandten Zellaufschlusstechnologien sind vielfältig und untergliedern sich in biologische, chemische und physikalische Technologien. Der vorliegende Beitrag beschreibt einen am Fraunhofer-Institut für Produktionsanlagen und Konstruktionstechnik entwickelten Lösungsansatz zum kontinuierlichen Zellaufschluss mit definierten Aufschlussraten und Einstellparametern. Anschließend werden die sich durch den Einsatz im Produktionsmaßstab ergebenden Potenziale und Einsatzmöglichkeiten des entwickelten Aufbaus erläutert.