Now showing 1 - 4 of 4
  • Publication
    Fundamental study on embedded displacement sensor arrays for ultrasonic-assisted ultraprecision machining
    ( 2022) ; ;
    Bulla, Benjamin
    ;
    Dambon, Olaf
    ;
    Dicke, Clemens
    ;
    Hocke, T.
    ;
    Thißen, Kai
    ;
    Heper, M.
    Ultraprecision machining is a key technology for manufacturing complex steel moulds with dimensional accuracies in sub-micrometer range for mass production of optical components using micro-injection moulding. According to the state of the art, during the machining of carbide-forming metals, such as steel alloys, used single crystal diamond tools suffer from excessive tool wear. In order to overcome this technological und economical limitation, ultrasonic-assisted ultraprecision machining is applied successfully in a broad range of industrial and scientifically applications. Based on the reduction of the contact time between the tool and the workpiece excessive chemical and related tribological tool wear can be avoided. Nevertheless, the cutting speed is strictly limited to deceed critical contact times. Therefore, the monitoring of the tool vibration characteristic and thus the process control is a major challenge and of current industrial and scientifically interest. To overcome these challenges a method for in-situ measurement of the ultrasonic vibration is currently being developed and first results are shown. Using the sophisticated ultrasonic system, developed by SON-X GMBH, Aachen, Germany, up to a frequency fUS= 100 kHz the application of a dedicated eddy current sensor enabled the determination of the real path lines and the exact position of the cutting edge during the whole process with a displacement amplitude AD= 1 µm. The results were subsequently verified by laser vibrometer measurements. As a result of the investigation, an elliptical path movement of the cutting edge in the longitude direction AD,y= ± 1.0 µm and in z-direction AD,z= ± 0.34 µm could be determined using a frequency fUS= 100 kHz. Based on this new measurement method, the vibration characteristic can be specifically varied and adapted to the application. In addition, a comprehensive scientifical knowledge of the process can be gained and used to improve tool wear models.
  • Publication
    Micro-texture dependent temperature distribution of CVD diamond thick film cutting tools during turning of Ti-6Al-4V
    ( 2022) ;
    Schröter, D.
    ;
    Machining titanium alloys such as Ti-6Al-4V results in a high thermomechanical load on cutting tools and consequently short tool lifes. With respect to a necessary reduction of the resulting cutting tool temperatures, ultrashort pulse (USP) laser fabricated micro-textured rake faces offer direct supply of cooling lubricant into the cutting zone and lead to a reduced heat induction. As a result, micro-textured CVD diamond thick film cutting tools are also capable of machining high-performance materials due to reduced contact temperatures. In the scope of the research, the resulting temperature distribution for micro-textured rake faces will be compared under both dry and wet process conditions. Measurements show a reduction of the resulting cutting tool temperatures of Δϑt = 27.9 % using micro-textured cutting tools compared to non-textured cutting tools. A validated simulation provides valuable information about the contact temperatures enabling a specific development of the micro-texture geometry. As a result, a reduction of the contact temperature between chip and rake face by ΔϑT = 24.7 % was possible.
  • Publication
    Residual stress assessment during cutting tool lifetime of CVD-diamond coated indexable inserts
    ( 2022)
    Uhlmann, E.
    ;
    Hinzmann, Daniel
    Insufficient coating adhesion limits reproducibility regarding tool lifetime as well as workpiece quality during the application of CVD-diamond coated cutting tools. Depending on the combination of tungsten carbide substrate material, coating thickness as well as coating morphology, individual residual stress conditions exist within CVD-diamond coated cutting tool specifications. The application of these tools is accompanied by coating delamination as primary cutting tool failure. The tool lifetime of the respective cutting tool composition depends on the corresponding residual stress condition until crack development within the CVD-diamond coating initiates tool failure. During external cylindrical turning of hypereutectic aluminium silicon alloy AlSi17Cu4Mg-T6 the residual stress condition of a CVD-diamond coated cutting tool is assessed along the cutting edge, the rake face as well as flank face throughout the respective tool lifetime. Consequently, the progression of the residual stress condition until cutting tool failure regarding coating delamination is observed. During the tool lifetime of the investigated CVD-diamond cutting tools, compressive residual stress ∆σR,c shifts to tensile residual stress ∆σR,t underneath the cutting edge corner. The approximated residual stress difference of ∆σR ≈ 5 GPa indicates stress peak relaxation processes, such as crack initiation, within the CVD-diamond coating.
  • Publication
    Prediction of temperature distribution in diamond cutting tools during machining Ti-6Al-4V
    ( 2021) ;
    Schröter, D.
    ;
    Wohlfahrt, V. H.
    The high thermal conductivity and wear resistance of CVD diamond provide potential for the machining of Ti-6Al-4V. By predicting thermomechanical loads, simulations can provide information about the usability of these cutting materials. However, the occurring shear chip formation within the cutting process leads to unsteady contact conditions. Therefore, a computationally intensive long-term transient simulation is necessary for precise prediction of tool temperatures. In this respect, a user-subroutine has been developed, allowing a high-resolution long-term simulation with acceptable computing time. By experimental investigations and validation of simulated results, a modelling of temperature distribution within the cutting tool is possible, providing valuable information regarding the contact temperatures.