Now showing 1 - 10 of 27
  • Publication
    Implementing human-robot collaboration in highly dynamic environments: Assessment, planning and development
    ( 2024) ;
    Jaya, T.
    ;
    Thiele, Gregor
    ;
    Human-robot collaboration (HRC) applications have been slowly making their path in the industry. Although the required hardware and the methods for the planning and development of collaborative robotic applications are mostly already developed, some industrial branches still struggle to implement HRC. This is the case in motorcycle production, where, unlike car production, the assembly line has been optimized for manual work. Based on the use case described above, this paper identifies new requirements of HRC for automated screwing assembly operations in flexible production environments. In order to compensate deviations in the position of the tool relative to the workpiece, a screwing strategy based on force control is proposed. Parameter sensitivity is considered and supported experimentally with a screwing task performed by a cobot, where a method for contact detection between the nutrunner and the screw head is analyzed. This paper brings a guideline for experts from the manufacturing system engineering to implement HRC in highly dynamic assembly environments.
  • Publication
    A Practical Approach to Realize a Closed Loop Energy Demand Optimization of Milling Machine Tools in Series Production
    ( 2023)
    Can, Alperen
    ;
    Schulz, Hendrik
    ;
    El-Rahhal, Ali
    ;
    Thiele, Gregor
    ;
    Energy efficiency is becoming increasingly important for industry. Many approaches for energy efficiency improvements lead to the purchase of new hardware, which could neglect the sustainability. Therefore, optimizing the energy demand of existing machine tools (MT) is a promising approach. Nowadays energy demand optimization of MT in series production is mainly done manually by the operators, based on implicit knowledge gained by experience. This involves manual checks to ensure that production targets like product quality or cycle time are met. With data analytics it is possible to check these production targets autonomously, which allows optimizing production systems data driven. This paper presents the approach and evaluation of a closed loop energy demand optimization of auxiliary units for milling MT during series production. The approach includes, inter alia, a concept for machine connectivity using edge devices and a concept for validating production targets
  • Publication
    Signal conditioning of a novel ultrasonic transducer with integrated temperature and amplitude sensors
    ( 2023)
    Karbouj, Bsher
    ;
    Vibration amplitude of ultrasonic transducer has an impact on the overall process quality, process speed and ultrasonic transducer lifetime in industrial applications. A new ultrasonic transducer design has been developed with integrated sensor disks that have different electrical and mechanical properties. The combination of sensor has been designed for amplitude measurements and is also able to measure the transducer temperature in the real time. This paper deals with the analog signal processing that combines the different "raw" signals from the sensor disks to extract the information such as amplitude and temperature. For this goal, a chain of different signal filters and adjustment elements was used. Reliable amplitude and temperature measurements during real-time operation were obtained by the applied signal processing. The obtained results were validated with an external temperature sensor and a laser vibrometer.
  • Publication
    Contact Information Flow and Design of Compliance
    ( 2022) ;
    Radke, Marcel
    ;
    Hartisch, Richard
    ;
    Identifying changes in contact during contact-rich manipulation can detect task state or errors, enabling improved robustness and autonomy. The ability to detect contact is affected by the mechatronic design of the robot, especially its physical compliance. Established methods can design physical compliance for many aspects of contact performance (e.g. peak contact force, motion/force control bandwidth), but are based on time-invariant dynamic models. A change in contact mode is a discrete change in coupled robot-environment dynamics, not easily considered in existing design methods.Towards designing robots which can robustly detect changes in contact mode online, this paper investigates how mechatronic design can improve contact estimation, with a focus on the impact of the location and degree of compliance. A design metric of information gain is proposed which measures how much position/force measurements reduce uncertainty in the contact mode estimate. This information gain is developed for fully- and partially-observed systems, as partial observability can arise from joint flexibility in the robot or environmental inertia. Hardware experiments with various compliant setups validate that information gain predicts the speed and certainty with which contact is detected in (i) monitoring of contact-rich assembly and (ii) collision detection.
  • Publication
    Inertial Measurement Unit based Human Action Recognition Dataset for Cyclic Overhead Car Assembly and Disassembly
    ( 2022) ;
    Filaretov, Hristo
    ;
    Motion datasets in industrial environments are essential for the research on human-robot interaction and new exoskeleton control. Currently, a lot of Activities of Daily Living (ADL) datasets are available for researchers, but only a few target an industrial context. This paper presents a dataset for a semi-industrial Overhead Car Assembly (OCA) task consisting of synchronized video and 9-Degrees of Freedom (DOF) Inertial Measurement Unit (IMU) data. The dataset was recorded with a soft-robotic exoskeleton equipped with 4 IMUs covering the upper body. It has a minimum sampling rate of 20 Hz, lasts approximately 360 minutes and comprises of 282 cycles of a realistic industrial assembly task. The annotations consist of 6 mid-level actions and an additional Null class. Five different test subjects performed the task without specific instructions on how to assemble the used car shielding. In this paper, we describe the dataset, set guidelines for using the data in supervised learning approaches, and analyze the labeling error caused by the labeler onto the dataset. We also compare different state-of-the-art neural networks to set the first benchmark and achieve a weighted F1 score of 0.717.
  • Publication
    Redundancy Concepts for Real-Time Cloud- and Edge-based Control of Autonomous Mobile Robots
    ( 2022)
    Nouruzi-Pur, Jan
    ;
    Lambrecht, Jens
    ;
    Nguyen, The Duy
    ;
    ;
    Deploying navigation algorithms on an edge or cloud server according to the Software-as-a-Service paradigm has many advantages for autonomous mobile robots in indus-trial environments, e.g. cooperative planning and less onboard energy consumption. However, outsourcing corresponding real-time critical control functions requires a high level of reliability, which cannot be guaranteed either by modern wireless networks nor by the outsourced computing infrastructure. This work introduces redundancy concepts, which enable real-time capability within these uncertain infrastructures by providing redundant computation nodes, as well as robot-controlled switching between them. Redundancies can vary regarding their physical location, robot behavior during the switchover process and degree of activeness while quality of service concerning the primary controller is sufficient. In the case that fallback redun-dancies are not continuously active, when a disturbance occurs an initial state estimation of the robot pose has to be provided and an activation time has to be anticipated. To gain some insights on expected behavior, redundant computation nodes are deployed locally on the robot and on an outsourced computation node and consequently evaluated empirically. Quantitative and qualitative results in simulation and a real environment show that redun-dancies help to significantly improve the robot-trajectory within an unreliable network. Moreover, resource-saving redundancies, which are not continuously active, can robustly take over control by using an estimated state.
  • Publication
    Low-Cost Embedded Vision for Industrial Robots: A Modular End-of-Arm Concept
    ( 2020)
    Kroeger, Ole
    ;
    Wollschläger, Felix
    ;
    In this work we present our first prototype of a modular, low-cost end-of-arm concept for industrial robot applications. The goal is a faster, more flexible and cost-effective alternative compared to current industrial solutions. We use an embedded single-board computer and three cameras as a sensor base for the new system. The scope of robot application is supposed to as wide as possible (e.g. object detection, bin picking, assembly tasks and quality control tasks). We discuss some industry and low-cost-hardware solutions, introduce our system and deliver a proof of concept. Furthermore we use the system to accomplish a vision based pick and place task.
  • Publication
    PowerGrasp - Design and evaluation of a modular soft-robotic arm exosuit for industrial applications
    ( 2020) ; ;
    Thiele, Gregor
    ;
    Schmidt, H.
    ;
    ;
    Hackbart, R.
    ;
    Kostelnik, J.
    ;
    Liebach, J.
    ;
    Wolschke, M.
    Absence from work caused by overloading the musculoskeletal system lowers the life quality of the worker and gains unnecessary costs for both the employer and the health system. Classical (rigid link) body-worn exoskeletons can help to reduce critical loading but show many disadvantages, preventing exoskeletons from extensive use in industrial environment. The presented PowerGrasp system is a very robust modular softrobotic arm exosuit sting of robust fabric with embedded rubber tubes as pressure chambers and soft-electronics and who's design is capable to overcome the critical limiting factors of classical exoskeletons. By inflating the tubes via pressure-control valves, it is possible to vary the stiffness of the chambers, which can be effectively used to generate assisting forces and moments at human joints. By using a joint based pressure control, it is possible to decrease the physical demand of overhead working for the wearer. Although the system is designed for i ndustrial overhead assembly, it can also be used in rehabilitation, craftsmanship and construction due to its portable and stand-alone concept. For assessing the impact of the PowerGrasp system, the raise of about 50 percent was shown. Finally, an evaluation study of the overall system has been conducted, showing very high user acceptance and usability.
  • Publication
    System identification of a hysteresis-controlled pump system using SINDy
    ( 2020)
    Thiele, Gregor
    ;
    Fey, Arne
    ;
    Sommer, David
    ;
    Hysteresis-controlled devices are widely used in industrial applications. For example, cooling devices usually contain a two-point controller, resulting in a nonlinear hybrid system with two discrete states. Dynamic models of systems are essential for optimizing such industrial supply technology. However, conventional system identification approaches can hardly handle hysteresis-controlled devices. Thus, the new identification method Sparse Identification of Nonlinear Dynamics (SINDy) is extended to consider hybrid systems. SINDy composes models from basis functions out of a customized library in a data-driven manner. For modeling systems that behave dependent on their own past as in the case of natural hysteresis, Ferenc Preisach introduced the relay hysteron as an elementary mathematical description. In this new method (SINDyHybrid), tailored basis functions in form of relay hysterons are added to the library which is used by SINDy. Experiments with a hysteresis controlled water basin show that this approach correctly identifies state transitions of hybrid systems and also succeeds in modeling the dynamics of the discrete system states. A novel proximity hysteron achieves the robustness of this method. The impacts of the sampling rate and the signal noise ratio of the measurement data are examined accordingly.
  • Publication
    Networked Visual Servoing as Use-Case for Cloud-based Industrial Robot Control
    ( 2020) ;
    Krause, Christian
    ;
    Nowadays production industry and smart factory is dealing with methods of optimal resource load balancing and new types of flexible service-oriented strategies. It is seen crucial to adapt quickly to changes in manufacturing processes and new products or even integrate new hardware faster than the competition. Flexibility and Scalability can be improved by exchanging only a certain part of hardware and software without the need of touching all the other components. In this paper we present a methodical approach towards a typical use case in modern industrial robotic systems. The system consists of hardware components from different manufacturers which can be controlled and monitored separately by remote services. Those services can be combined to complex applications and integrate value added services. We show the independence and capability of exchangeable added value services running either centralized, decentralized, locally or remote. The experiments demonstrate how a process is improve by simply adding another service according to the Plug-and-Play paradigm. The service ensures the conditions of a computer vision system component to keep the reliability of the overall system workflow. In addition it will be demonstrated how system components could be virtualized in container-based cloud environments to save required on-board resources of the robotic system while keeping the whole system communication secure. Finally, results will be presented for different intercommunication scenarios.