Now showing 1 - 2 of 2
  • Publication
    Effect of heat source configuration on the result quality of numerical calculation of welding-induced distortion
    ( 2012)
    Heinze, C.
    ;
    Schwenk, C.
    ;
    Rethmeier, M.
    The results of numerical welding simulations strongly depend on its temperature field. In the present paper, the temperature field of a pulsed gas metal arc weld of structural steel S355J2+N (ASTM A572 Gr. 50) with a thickness of 5 mm is experimentally and numerically investigated. In the case of temperature field validation, volumetric Gauss and double-ellipsoid Goldak heat sources are applied. Additionally, different heat source configurations, including adaptations of thermal conductivity, are analyzed regarding their influence on the calculation of welding-induced distortion. The investigations clarify the influence of heat source configurations on the calculated results, thus, contribute to an improved prediction of welding-induced distortion.
  • Publication
    The effect of tack welding on numerically calculated welding-induced distortion
    ( 2012)
    Heinze, C.
    ;
    Schwenk, C.
    ;
    Rethmeier, M.
    A single-layer pulsed gas metal arc weld of structural steel S355J2+N with a thickness of 5 mm is experimentally and numerically investigated. Two tack welds are considered in the numerical simulation into two different ways. First, the tack welds are represented by elements belonging to the initial material. This implies that the "tack weld material" was not exposed to any thermal load or phase transformation before actual welding was performed. The weld seam is shortened and there is an influence on the stiffness of the whole structure affecting the calculation result. Secondly, the tack welds were simulated as conducted in the experimental welding procedure. The cases considering tack welding are compared to a simulation neglecting tack welding and to the experimental results. The influence of tack welds on the calculated welding-induced distortion is clarified and a contribution to an improved simulation-based prediction of welding-induced distortion is possible by modeling tack welding according to the realistic fabrication procedure.