Now showing 1 - 10 of 24
  • Publication
    Recommendations for an Open Science approach to welding process research data
    ( 2021)
    Fabry, C.
    ;
    Pittner, A.
    ;
    Hirthammer, V.
    ;
    Rethmeier, M.
    The increasing adoption of Open Science principles has been a prevalent topic in the welding science community over the last years. Providing access to welding knowledge in the form of complex and complete datasets in addition to peer-reviewed publications can be identified as an important step to promote knowledge exchange and cooperation. There exist previous efforts on building data models specifically for fusion welding applications; however, a common agreed upon implementation that is used by the community is still lacking. One proven approach in other domains has been the use of an openly accessible and agreed upon file and data format used for archiving and sharing domain knowledge in the form of experimental data. Going into a similar direction, the welding community faces particular practical, technical, and also ideological challenges that are discussed in this paper. Collaboratively building upon previous work with modern tools and platforms, the authors motivate, propose, and outline the use of a common file format specifically tailored to the needs of the welding research community as a complement to other already established Open Science practices. Successfully establishing a culture of openly accessible research data has the potential to significantly stimulate progress in welding research.
  • Publication
    Mechanical properties characterization of resistance spot welded DP1000 steel under uniaxial tensile tests
    ( 2019)
    Javaheri, E.
    ;
    Pittner, A.
    ;
    Graf, B.
    ;
    Rethmeier, M.
    Resistance spot welding (RSW) is widely used in the automotive industry as the main joining method. Generally, an automotive body contains around 2000 to 5000 spot welds. Therefore, it is of decisive importance to characterize the mechanical properties of these areas for the further optimization and improvement of an automotive body structure. The present paper aims to introduce a novel method to investigate the mechanical properties and microstructure of the resistance spot weldment of DP1000 sheet steel. In this method, the microstructure of RSW of two sheets was reproduced on one sheet and on a bigger area by changing of the welding parameters, e. g. welding current, welding time, electrode force and type. Then, tensile tests in combination with digital image correlation (DIC) measurement were performed on the notched tensile specimens to determine the mechanical properties of the weld metal. The notch must be made on the welded tensile specimen to force the fracture and elongation on the weld metal, enabling the characterization of its properties. Additionally, the parameters of a nonlinear isotropic material model can be obtained and verified by the simulation of the tensile specimens. The parameters obtained show that the strength of DP1000 steel and the velocity of dislocations for reaching the maximum value of strain hardening, are significantly increased after RSW. The effect of sample geometry and microstructural inhomogeneity of the welded joint on the constitutive property of the weld metal are presented and discussed.
  • Publication
    Strain-rate controlled Gleeble experiments to determine the stress-strain behavior of HSLA steel S960QL
    ( 2018)
    Neubert, S.
    ;
    Pittner, A.
    ;
    Rethmeier, M.
    In order to generate a material data base for computational welding mechanics, temperature and strain-rate dependent stress-strain experiments were performed by using a Gleeble®3500 testing system. The object of the investigation was HSLA transformable steel S960QL and related solid phases as bainite, martensite and austenite. For the production of these solid phases, the base material was heat treated according to an average weld temperature cycle which was extracted within the heat affected zone of a thermal numerical weld simulation of a GMA weld. The hot tensile tests were carried out via cost-saving flat specimen geometries. Two experimental series with different strain-rates were conducted, where the longitudinal strain-rate was controlled by specification of the transversal strain-rate applying Poisson's-ratio. Subsequently, the resulting stress-strain curves were approximated in accordance with the Ramberg-Osgood-materials law. Consequently, it is shown that the temperature and strain-rate dependent stress-strain behavior of metals can be successfully characterized by means of a Gleeble®-system. However, this requires a control of the longitudinal strain-rate by specification of the transversal strain-rate. The related experimental procedure and the method of evaluation are explained in detail. With regard to all tested solid phases, a significant strain-rate dependency can only be observed upwards from temperatures of 400 °C. Based on experimental results, Ramberg-Osgood-parameters will be presented to describe the stress-strain behavior of steel S960QL and related solid phases for temperatures between 25 °C and 1200 °C. Furthermore, the use of costsaving flat specimen-geometry appears reasonable.
  • Publication
    Design of neural network arc sensor for gap width detection in automated narrow gap GMAW
    ( 2018)
    Fabry, C.
    ;
    Pittner, A.
    ;
    Rethmeier, M.
    An approach to develop an arc sensor for gap width estimation during automated NG-GMAW with a weaving electrode motion is introduced by combining arc sensor readings with optical measurements of the groove shape to allow precise analyses of the process. The two test specimen welded for this study were designed to feature a variable groove geometry in order to maximize efficiency of the conducted experimental efforts, resulting in 1696 individual weaving cycle records with associated arc sensor measurements, process parameters and groove shape information. Gap width was varied from 18 mm to 25 mm and wire feed rates in the range of 9 m/min to 13 m/min were used in the course of this study. Artificial neural networks were applied as a modelling tool to derive an arc sensor for estimation of gap width suitable for online process control that can adapt to changes in process parameters as well as changes in the weaving motion of the electrode. Wire feed rate, weaving current, sidewall dwell currents and angles were defined as inputs to calculate the gap width. The evaluation of the proposed arc sensor model shows very good estimation capabilities for parameters sufficiently covered during the experiments.
  • Publication
    Automatisierte Fertigung von Hohlprofilknoten für Jacket-Gründungsstrukturen
    ( 2018)
    Schaumann, P.
    ;
    Rethmeier, M.
    ;
    Schürmann, K.
    ;
    Pittner, A.
    ;
    Dänekas, C.
    ;
    Schippereit, C.
    Die Entwicklung in der Offshore‐Windenergie hin zu größeren, leistungsstärkeren Anlagentypen sowie die zeitgleich zunehmenden Wassertiefen der projektierten Windparks stellt u. a. Designer und Fertiger der Gründungsstrukturen der Windenergieanlagen vor wachsende Herausforderungen. Neben dem Gründungskonzept mittels XL‐Monopiles rückt auch die Jacketgründung wegen der Kombination aus dem vergleichsweise geringen Materialverbrauch bei gleichzeitig hoher Steifigkeit in den Fokus. Der Fertigungsaufwand der Jackets ist verglichen mit Monopiles groß, kann jedoch durch die Kombination aus Standardrohren mit automatisiert gefertigten Jacketknoten reduziert werden. Vor diesem Hintergrund befasst sich dieser Beitrag mit der Prozesskette der automatisierten Fertigung von Hohlprofilknoten inklusive der Digitalisierung relevanter Fertigungsparameter sowie der optischen Erfassung der Schweißnahtgeometrie durch einen Linienlaser. Des Weiteren wird eine Methodik zur Analyse der gescannten Schweißnahtgeometrie anhand von drei Referenzstellen eines X‐Knotens vorgestellt, mit der sowohl die Kerbradien als auch die Nahtanstiegswinkel bestimmt werden können. Abschließend werden die Geometrieparameter beim Ermüdungsnachweis nach dem Kerbspannungskonzept berücksichtigt und ihr Einfluss durch einen Vergleich mit dem Strukturspannungskonzept auf Basis äquivalenter Spannungskonzentrationsfaktoren quantifiziert.
  • Publication
    Environmental energy efficiency of single wire and tandem gas metal arc welding
    ( 2017)
    Sproesser, G.
    ;
    Chang, Y.-J.
    ;
    Pittner, A.
    ;
    Finkbeiner, M.
    ;
    Rethmeier, M.
    This paper investigates gas metal arc welding (GMAW) with respect to energy consumption and its associated environmental impacts. Different material transfer modes and power levels for single wire GMAW (SGMAW) and tandem GMAW (TGMAW) are evaluated by means of the indicator electrical deposition efficiency. Furthermore, the wall-plug efficiency of the equipment is measured in order to describe the total energy consumption from the electricity grid. The results show that the energy efficiency is highly affected by the respective process and can be significantly enhanced by a TGMAW process. The wall-plug efficiency of the equipment shows no significant dependency on the power range or the material transfer mode. Moreover, the method of life cycle assessment (LCA) is adopted in order to investigate the influences of energy efficient welding on the environmental impacts. In the comparative LCA study, the demand of electrical energy is reduced up to 24%. In consequence, the indicator values for global warming potential (100), acidification potential, eutrophication potential, and photochemical ozone creation potential are reduced up to 11%.
  • Publication
    Assessing carbon dioxide emission reduction potentials of improved manufacturing processes using multiregional input output frameworks
    ( 2017)
    Ward, H.
    ;
    Burger, M.
    ;
    Chang, Y.-J.
    ;
    Fürstmann, P.
    ;
    Neugebauer, S.
    ;
    Radebach, A.
    ;
    Sproesser, G.
    ;
    Pittner, A.
    ;
    Rethmeier, M.
    ;
    Uhlmann, E.
    ;
    Steckel, J.C.
    Evaluating innovative process technologies has become highly important within the last decades. As standard tools different Life Cycle Assessment methods have been established, which are continuously improved. While those are designed for evaluating single processes they run into difficulties when it comes to assessing environmental impacts of process innovations at macroeconomic level. In this paper we develop a multi-step evaluation framework building on multi regional input-output data that allows estimating macroeconomic impacts of new process technologies, considering the network characteristics of the global economy. Our procedure is as follows: i) we measure differences in material usage of process alternatives, ii) we identify where the standard processes are located within economic networks and virtually replace those by innovative process technologies, iii) we account for changes within economic systems and evaluate impacts on emissions. Within this paper we exemplarily apply the methodology to two recently developed innovative technologies: longitudinal large diameter steel pipe welding and turning of high-temperature resistant materials. While we find the macroeconomic impacts of very specific process innovations to be small, its conclusions can significantly differ from traditional process based approaches. Furthermore, information gained from the methodology provides relevant additional insights for decision makers extending the picture gained from traditional process life cycle assessment.
  • Publication
    Influence of non-uniform martensitic transformation on residual stresses and distortion of GMA-welding
    ( 2017)
    Neubert, S.
    ;
    Pittner, A.
    ;
    Rethmeier, M.
    A combined experimental and numerical approach is applied for a numerical analysis of the non-uniform martensitic transformation kinetic on welding residual stresses and distortion of a single pass weld. The (g RT a)-transformation kinetic within the weld pool region is governed by a non-uniform distribution of the elements chromium and nickel. The single-pass weld was performed by use of the low-alloyed high-strength steel S960QL with the high-alloyed high-strength filler wire CN 13/4-IG®. A thermo-mechanical FE model of the welding process was experimentally validated against temperature field, solid phase distribution, transformation behaviour, X-Ray stress measurements and transient optical distortion measurements. The experimentally determined and calculated weld residual stresses and transient distortion are in good agreement. It can be shown that the change on the (g RT a)-transformation kinetic driven by the inhomogeneous distribution of the chemical contents causes a strong influence on the weld residual stresses within the volume of the weld pool, which could promote crack propagation within the solidified weld pool by use of high-alloyed filler materials. Furthermore, a significant influence on the development of the transient welding distortion is visible. This influence should be respected during numerically calculation of welding distortion in case of multi-pass welding using interpass temperatures and high-alloyed filler materials.
  • Publication
    Energy efficiency and environmental impacts of high power gas metal arc welding
    ( 2017)
    Sproesser, G.
    ;
    Chang, Y.-J.
    ;
    Pittner, A.
    ;
    Finkbeiner, M.
    ;
    Rethmeier, M.
    Single-wire gas metal arc welding (SGMAW) and high power tandem GMAW (TGMAW) are evaluated with respect to energy efficiency. The key performance indicator electrical deposition efficiency is applied to reflect the energy efficiency of GMAW in different material transfer modes. Additionally, the wall-plug efficiency of the equipment is determined in order to identify the overall energy consumption. The results show that energy efficiency can be increased by 24% and welding time is reduced over 50% by application of the tandem processes. A comparative life cycle assessment of a 30-mm-thick weld is conducted to investigate the influences of the energy efficiency on the environmental impacts. The environmental impacts on the categories global warming potential, acidification potential, eutrophication potential, and photochemical ozone creation potential can be reduced up to 11% using an energy-efficient TGMAW process.
  • Publication
    Numerical sensitivity analysis of TRIP-parameter K on weld residual stresses for steel S355J2+ N
    ( 2016)
    Neubert, S.
    ;
    Pittner, A.
    ;
    Rethmeier, M.
    A combined experimental numerical approach is applied for sensitivity analysis of the transformation induced plasticity (TRIP)-parameter K on weld residual stresses for welding of structural steel of grade S355J2+ N. K was determined experimentally using the Gleeble 3500 facility. A thermomechanical FE model of the real welding process was experimentally validated against temperature field and X-ray stress measurements. Within sensitivity analyses K was varied by several orders of magnitude and the influence on the calculated residual stresses is evaluated by performing corresponding FEA. The correct order of magnitude is sufficient to reproduce the residual stresses qualitatively and quantitatively.