Now showing 1 - 3 of 3
  • Publication
    Effect of laser-beam and hybrid-laser-arc welding parameters and filler metal on microstructure and mechanical properties of thick heat-treated steel X8Ni9+QT640 for cryogenic service
    ( 2018)
    El-Batahgy, A-M.
    ;
    Gook, S.
    ;
    Gumenyuk, A.
    ;
    Rethmeier, M.
    The present research work encloses results of experimental investigations of the interaction between welding process parameters for laser-beam and hybrid-laser-arc as well as type of the filler metal and the achievable mechanical properties of the weld joints on steel grade X8Ni9+QT640 for cryogenic service containing 9% nickel. The results obtained contribute to the development and conversion in the industrial practice a new laser beam-based welding technology for the automated manufacturing of facilities for the liquefaction, storage and the transport of natural gases (LNG facilities). The results show, that the martensitic microstructure of the laser weld metal including low amount of retained austenite not exceeding 3.5% leads to the relatively low V-notch impact energy. The remarkable heterogeneity in the chemical composition of the weld metal through the weld thickness could be recognized in the case of hybrid-laser-arc welding with ERNiCrMo-3 austenitic filler metal, what also led to insufficient impact toughness of the weld metall. The most promising results could be achieved by using 11%Ni filler wire, which is similar to the base metal and provides a homogeneous microstructure with uniform distribution of Ni through the weld seam. It is remarkable, that a correlation between Charpy impact toughness and wire feeding speed and respectively process heat input exists. The highest toughness values were 134±58 J at -196 °C. The both laser as well as laser-hybrid welds passed the tensile test. The failure stress of 720±3 MPa with a fracture location in the base material was achieved for all samples tested.
  • Publication
    Influence of heat input and preheating on the cooling rate, microstructure and mechanical properties at the hybrid laser-arc welding of API 5L X80 steel
    ( 2018)
    Turichin, G.
    ;
    Kuznetsov, M.
    ;
    Pozdnyakov, A.
    ;
    Gook, S.
    ;
    Gumenyuk, A.
    ;
    Rethmeier, M.
    This study investigates the influence of hybrid laser-arc welding parameters: heat input and preheating on the cooling rates, microstructure and mechanical properties of the welding joint. Samples from API 5L X80 steel with root thickness 14 mm were welded using welding wire MF 940 M. Decreasing cooling rate of welds from 588 °C/sec up to 152 °C/sec, weld metal hardness from 343±12 HV up to 276±6 HV and ultimate tensile strength from 1019.5±14 MPa up to 828±10 MPa and increasing bainite phase term of the weld metal was detected at the increasing preheating temperature up to 180 °C and maximal heat input. The mathematical relations of the input and output parameters were created using linear regression equations. Preheating temperature 180 °C allows increasing maximal welding speed up to more than 3.0 m/min with acceptable welding joint quality.
  • Publication
    Comparison between GTA and laser beam welding of 9% Ni steel for critical cryogenic applications
    ( 2018)
    El-Batahgy, A-M.
    ;
    Gumenyuk, A.
    ;
    Gook, S.
    ;
    Rethmeier, M.
    In comparison with GTA welded joints, higher tensile strength comparable to that of the base metal was obtained for laser beam welded joints due to fine martensitic microstructure. Impact fracture toughness values with much lower mismatching were obtained for laser beam welded joints due to similarity in the microstructures of its weld metal and HAZ. In this case, the lower impact fracture toughness obtained (1.37 J/mm2) was much higher than that of the GTA welded joints (0.78 J/mm2), which was very close to the specified minimum value (>0.75 J/mm2). In contrast to other research works, the overall tensile and impact properties are influenced not only by the fusion zone microstructure but also by the size of its hardened area as well as the degree of its mechanical mismatching, as a function of the welding process. A better combination of tensile strength and impact toughness of the concerned steel welded joints is assured by autogenous laser beam welding process.