Hier finden Sie wissenschaftliche Publikationen aus den Fraunhofer-Instituten.

FIST: Fast interactive segmentation of tumors

: Steger, Sebastian; Sakas, Georgios


Yoshida, Hiroyuki (Ed.); Sakas, Georgios (Ed.); Linguraru, Marius George (Ed.):
Abdominal imaging. Computational and clinical applications : Third international workshop, held in conjunction with MICCAI 2011, Toronto, ON, Canada, September 18, 2011; revised selected papers
Berlin: Springer, 2012 (Lecture Notes in Computer Science 7029)
ISBN: 978-3-642-28556-1
ISBN: 3-642-28556-2
ISBN: 978-3-642-28557-8
ISSN: 0302-9743
DOI: 10.1007/978-3-642-28557-8
International Workshop on Computational and Clinical Applications in Abdominal Imaging <3, 2011, Toronto>
International Conference on Medical Image Computing and Computer-Assisted Intervention (MICCAI) <14, 2011, Toronto>
Conference Paper
Fraunhofer IGD ()
Interactive Segmentation; tumor

Automatic segmentation methods for tumors are typically only suitable for a specific type of tumor in a specific imaging modality and sometimes lack in accuracy whereas manual tumor segmentation achieves the desired results but is very time consuming. Interactive segmentation however speeds up the process while still being able to maintain the accuracy of manual segmentation. This paper presents a novel method for fast interactive segmentation of tumors (called FIST) from medical images, which is suitable for all somewhat spherical tumors in any 3d medical imaging modality. The user clicks in the center of the tumor and a belief propagation based iterative adaption process is initiated, thereby considering image gradients as well as local smoothness priors of the surface. During that process, instant visual feedback is given, enabling to intervene in the adaption process by sketching parts of the contour in any cross section. The approach has successfully been applied t o the segmentation of liver tumors in CT datasets. Satisfactory results could be achieved in 15.20875 seconds on the average. Further trials on oropharynx tumors, liver tumors and the prostate from MR images as well as lymph nodes and the bladder from CT volumes demonstrate the generality of the presented approach.