WHAT WILL BE THE COST OF RENEWABLE HYDROGEN TODAY AND IN THE FUTURE

Results of a Comprehensive Techno-Economic Simulation-Based Analysis of one Representative Power-to-Hydrogen Plant (D3.2)

<u>Christopher Voglstätter</u>, Nikolai Wiebe

Fraunhofer Institute for Solar Energy Systems ISE

IRES 2018 Düsseldorf, 15th of March 2018 www.ise.fraunhofer.de

AGENDA

Techno-Economical Analysis of a Power-to-Hydrogen Plant:

- Motivation for Power-to-Hydrogen
- Methodology Our toolbox
- Results of a large scale Wind-H₂ plant
- Conclusion

Hydrogen Refuelling Station at Fraunhofer ISE in Freiburg

Motivation for Power-to-Hydrogen Residual Load and Sector Coupling: "Push and Pull" for Renewable Hydrogen

"Push": "Excess electric energy" or residual load converted to hydrogen is a necessary measure for our future energy system

"Pull" / Sector Coupling: Green H_2 is needed to reduce CO_2 -Emissions in other sectors.

H₂ generation capacity of future Energy System ¹

3

Methodology for Techno-Economic Analysis System-Simulations-Tool H2ProSim

Methodology for Techno-Economic Analysis Hydrogen Production Costs

Methodology for Techno-Economic Analysis Cost Model Hydrogen Plant

Approach

- Site specific costs like planning, risks, land (approx. 10 – 30% of overall costs¹) were neglected
- Cost functions for major components
 - Literature
 - Expert information (projects)
 - Budget quotes
 - Electrolysis cost model
- OPEX as "% of CAPEX" of major components

Result

6

CAPEX and OPEX for H₂-plant

Cost functions of major plant components

© Fraunhofer ISE FHG-SK: ISE-INTERNAL ¹ Compared to results from: G. Müller-Syring (2015): "Ergebnispräsentation zur Metastudie zur Untersuchung der Potenziale von Wasserstoff für die Integration von Verkehrsund Energiewirtschaft"

Methodology for Techno-Economic Analysis Cost Model PEM Water Electrolysis 2015/2017

- Base of cost model: stack and system concept
- Component costs from: quotes, commercial planners, material & production costs
- Result: cost break down for state of the art stack technology (2015)
 - Extrapolation for huge plants, technology forecast for future scenarios

7 Smolinka et. Al.: "Cost Break Down and Cost Reduction Strategies for PEM Water © Fraunhofer ISE Electrolysis Systems" auf 6th EUROPEAN PEFC & Electrolyser Forum, Luzern, Juli 2017 FHG-SK: ISE-INTERNAL

Scenario: Huge Water Electrolysis Supplying a H₂-Grid Assumptions and Boundary Conditions

Objective: Huge water electrolysis supplying a large scale hydrogen grid

- Input
 - Synth. fuel demand profile + const. hydrogen demand of industry
 - Onshore wind turbine in East-Ger.
 (2 MW Turbines @ 2009)
- Deployment strategy:
 - Off-grid system no connection to the electric grid
 - H₂-demand has to be met
- Optimization algorithm can change:
 - Size of electrolysis
 - Size of wind farm
 - Size of storage

8 © Fraur

Scenario: Huge Water Electrolysis Supplying a H₂-Grid **The Resulting Plant**

¹Result of EEG wind tenders: 01.08.2017 - 1GW Wind for 4.28 ct/kWh

9

Scenario: Huge Water Electrolysis Supplying a H₂-Grid Economics

- ➤ CAPEX: 1.4 bn. €
- Maintenance caused by wind farm (76%) and electrolysis (17%)
- Costs dominated by wind farm
- Seasonal energy storage for 4.6% of hydrogen costs (= 18 ct/kg or 0.54 ct/kWh_{LHV})
- Results for base year 2017. Improvement possible!

Date: 02/18 Scenario: EIMN17

Scenario: Huge Water Electrolysis Supplying a H₂-Grid Is this economically feasible? Depends on the Case

Scenario: Huge Water Electrolysis Supplying a H₂-Grid The Same Plant in 2030

12

¹ Further cost reduction of 24 % assumed.

Scenario: Huge Water Electrolysis Supplying a H₂-Grid Is this economically feasible in 2030? Depends on cost development of wind and natural gas.

Conclusion / Outlook

- We showed a potential setup for a large scale hydrogen plant that could produce green hydrogen for 4 €/kg (marginal costs) today
- We showed that **seasonal energy storage** with hydrogen and salt caverns is possible for **very small costs** (18 ct/kg or 0,54 ct/kWh_{LHV})
- Wind farm land demand might be an issue in densely populated **countries**, going off-shore might help and might increase full load hours
- The **costs of hydrogen** are **strongly influenced** by the costs of the wind farm
- Results might **improve** with
 - use of heat and oxygen
 - technical optimization
 - technological progress

Picture credits: Left picture Philip May - Eigenes Werk, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=7315944 Right picture: ©Fraunhofer ISE

The author would like to thank the following persons and institutions

- BMWi for funding this project
- PtJ: Dr. Reetz, Dr. Waninger for the supervision of the project
- Dr. Fischer for the coordination of the project
- All partners for the helpful discussions and the good cooperation

Deutsches Zentrun

für Luft- und Raumfahrt e.V. in der Helmholtz-Gemeinschaft

This work is part of the project "Wissenschaftliche Begleitforschung WESpe: Modellbasierte Betrachtung und Standortanalyse von Power-to-Gas-Systemen"

This work was funded by the German Federal Ministry of Economics and Energy. Funding cipher: 0325619B

The author is responsible for the content of this publication.

Gefördert durch:

Bundesministerium für Wirtschaft und Energie

aufgrund eines Beschlusses des Deutschen Bundestages

All involved colleges at Fraunhofer ISE for their work and support of this project.

15

Thank you for your attention!

Fraunhofer Institute for Solar Energy Systems ISE

Christopher Voglstätter

www.ise.fraunhofer.de

christopher.voglstaetter@ise.fraunhofer.de

16

Scenario: Huge Water Electrolysis Supplying a H₂-Grid **Estimated Land Consumption**

17 © Fraunhofer ISE FHG-SK: ISE-INTERNAL

Outskirts of Hamburg, Reitbrook (Germany) Pictures © 2017 Google, map data © GeoBasis-DE/BKW (©2009), Google

Scenario: Huge Water Electrolysis Supplying a H₂-Grid Operation Profile of Plant

Scenario: Huge Water Electrolysis Supplying a H₂-Grid Sensitivity-Analysis

Overview on Business Models PtHy Plant has Market-Roles on Both Sides

