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Abstract. This paper addresses the problem of automatic behavior un-
derstanding in smart environments. Automatic behavior understanding
is defined as the generation of semantic event descriptions from machine
perception. Outputs from available perception modalities can be fused
into a world model with a single spatiotemporal reference frame. The
fused world model can then be used as input by a reasoning engine that
generates semantic event descriptions. We use a newly developed annota-
tion tool to generate hypothetical machine perception outputs instead.
The applied reasoning engine is based on fuzzy metric temporal logic
(FMTL) and situation graph trees (SGTs), promising and universally ap-
plicable tools for automatic behavior understanding. The presented case
study is automatic behavior report generation for staff training purposes
in crisis response control rooms. Various group formations and interac-
tion patterns are deduced from person tracks, object information, and
information about gestures, body pose, and speech activity.

Keywords: automatic behavior understanding, smart environments, rule-based
expert systems, fuzzy metric temporal logic, situation graph trees

1 Introduction

In recent years, there has been great progress in computer vision and other areas
of machine perception, for example in person tracking and body pose estimation.
However, high-level systems using multiple machine perception modalities and
combining multiple objects have not progressed at the same pace. We are devel-
oping a toolkit for automatic behavior understanding that deploys multimodal
machine perception for multiple objects, fuses everything into a world model
with a single spatiotemporal reference frame, and generates semantic descrip-
tions about the observed scene. The current system uses a dedicated annotation
tool instead of multimodal machine perception as shown in Figure 1.

The presented case study is situated at the Fire Brigade Institute (Institut
der Feuerwehr) Nordrhein-Westfalen, during one of their staff exercises for crisis



2

Fig. 1. System overview

response control room operations (see Figure 2). The task is to automatically
generate behavior reports from multimodal machine perception during staff ex-
ercises and actual crisis management. These reports about staff behavior in the
control room can be used for training purposes, evaluations, and audit trails. For
instance, given the identity, position, orientation, and speech activity of the staff
members over time, and information about objects in the room, these reports
can contain descriptions and visualizations of group formations and interaction
patterns, i.e. who was doing what with whom, using which support tools. This
can be combined with audiovisual recordings and visualizations, and with the
corresponding developments in cyberspace, i.e. field unit status, crisis dynamics,
and other context information. Such a system would provide a rich information
source, conveniently searchable for specific events.

The presented reasoning process is domain independent because it is sepa-
rated from any machine perception it might use. The annotation process too
is designed to be customizable for other application domains. Possible appli-
cation domains include other behavior understanding applications, multimedia
retrieval, robotics, ambient assisted living, intelligent work environments, intelli-
gent user interfaces, indoor and outdoor surveillance, and situational awareness
and decision support for military and civil security. Applied machine perception
can range from video to radar, and from person and vessel tracking to body
pose estimation, speech recognition, and activities in cyberspace. Other uses
include camera control, sensor deployment planning, future event prediction, in-
formation exchange between system components, and top-down knowledge for
machine perception to guide its search and improve outputs.

This paper is organised as follows. After discussing related work in Section 2,
we explain the applied processing chain step by step as depicted in Figure 1. Sec-
tion 3 describes the case study scenario: automatic behavior report generation for
training purposes in crisis response control rooms. A staff exercise was recorded
using multiple cameras and microphones with appropriate postprocessing as de-
scribed in Section 4. The next step is turning the recorded audiovisual data into
a world model consisting of numeric and textual data. Ultimately, this should be
accomplished using machine perception and multimodal fusion, but we currently
use a different approach. Section 5 describes how the postprocessed audiovisual
data was manually analysed and annotated using a tool specifically developed
for such purposes. The resulting world model forms the input for the reason-
ing engine based on fuzzy metric temporal logic (FMTL) and situation graph
trees (SGTs) presented in Section 6. It delivers semantic descriptions about staff
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Fig. 2. Case study scenario from the Fire Brigade Institute (Institut der Feuerwehr)
Nordrhein-Westfalen: automatic behavior report generation for training purposes in
crisis response control rooms. Several events we aim to recognize are visible here: con-
versation, discussion with document, and editing a display.

behavior, which can be compared to ground-truth results annotated using the
annotation tool. Section 7 presents some initial results, Section 8 explains how
we can handle imperfect input data, and Section 9 concludes the paper.

The ultimate goal is an integrated system performing all these steps, using
multiple machine perception components and multimodal fusion instead of man-
ual annotation. Such a system should run in real time with synchronous visual-
izations of sensor data, machine perception, and resulting semantic descriptions.
In application domains such as robotics and intelligent user interfaces, appro-
priate embodiment and action generation would be required. Our research is
situated in a work environment that focuses on machine perception (especially
computer vision) and human-machine interaction, which facilitates the progress
toward such an online system. In the meantime, the presented approach improves
high-level reasoning processes without the need for corresponding progress in ma-
chine perception. And even though behavior reports and visualizations cannot
be generated fully automatically yet, our current and future data, observations,
and reasoning results can improve understanding of control room operations.
The novel contributions of this paper are as follows. Several steps toward an
integrated development toolkit were completed, including a new dataset and a
new tool for data analysis and annotation. The presented case study is of gen-
eral interest because of its unique character and its large amount of perception
modalities and objects. A newly developed FMTL/SGT knowledge base for this
case study is contributed that is also applicable to other domains, along with
corresponding experimental results. And we explain how to handle imperfect
input data using FMTL and SGTs.
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2 Related Work

Surveys on automatic behavior understanding are provided by [1–3]. In [1], a dis-
tinction is made between single-layered approaches operating directly on sensor
data and hierarchical approaches applying machine perception first and using
its output to generate semantic descriptions. In hierarchical systems, seman-
tic event descriptions are usually generated from machine perception outputs
using either the statistical approach, the syntactic approach, or the description-
based approach. In statistical approaches, event likelihoods are computed by
(derivations of) hidden Markov models, (dynamic) Bayesian networks, propaga-
tion networks, or similar models [4–6]. In syntactic approaches, atomic events
are combined into complex events using formal (stochastic) grammars, mapping
spatiotemporal changes in image sequences to events for instance [7–9]. And
description-based approaches use formal languages such as logics and and-or
graphs for representing and reasoning about spatiotemporal dynamics [10–14].
Statistical and description-based approaches are combined in Markov logic net-
works by [15–17]. Similarly, Bayesian compositional hierarchies are combined
with rule generation from ontologies in [18]. Related studies on smart environ-
ments, surveillance, and other applications are found in [19–21]. And [22, 23]
present two relevant studies from the field of crisis management.

Our own hierarchical description-based approach to automatic behavior un-
derstanding uses fuzzy metric temporal logic (FMTL) combined with situation
graph trees (SGTs). In [24, 25], FMTL and SGTs are used to monitor road traffic
scenes, [26–29] apply them to human behavior understanding and surveillance,
and [30] uses them for intelligent robot control. Preliminary work on the case
study presented in this paper is included in [31]. The models we use for repre-
sentation and reasoning are based on expert knowledge rather than learned from
training data. Compared to other approaches, expert-knowledge-based represen-
tation and reasoning in FMTL and SGTs is intuitive, convenient, flexible, and
easily controllable. The clear boundary between machine perception and reason-
ing makes it easier to improve one without the other. Furthermore, deductions
are understandable by humans and completely provable, and existing rules can
be adapted to new settings with relatively little effort. Especially the ability
to understand the reasoning process is essential to the presented case study.
FMTL/SGT expert systems are suitable for knowledge intensive problems with
heterogeneous search spaces such as the one presented here.

3 Case Study Scenario

The presented case study is situated at the Fire Brigade Institute (Institut der
Feuerwehr) Nordrhein-Westfalen, during one of their staff exercises for crisis re-
sponse control room operations (Figure 2). The exercise is a six hour role playing
effort where the participants take on the roles of a full control room staff and
others stage the outside world; simulating field units, crisis dynamics, distress
calls, and radio communications. The simulated crisis for this exercise was a col-
lision between a passenger train and a cargo train carrying potentially hazardous
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material. The staff inside the control room is organized as follows. Each first of-
ficer is responsible for a functional area: unit management (S1), crisis dynamics
(S2), strategy (S3), and supplies (S4). The first officers answer to the director of
operations, and each first officer as well as the director of operations have one
or two additional staff members answering to them. Furthermore, there is some
supporting staff for maintaining displays (e.g. maps and unit tables), editing
documents, and managing incoming and outgoing messages. Several instructors
are offering assistance, the director of operations being one of them.

What follows is a description of the typical workflow in such control rooms,
corresponding to the recorded data. Once the control room is fully occupied, the
director of operations introduces the staff to the current crisis situation. Every-
body stops working and returns to their seats to listen. After the introduction,
the director of operations tells his staff to continue their preparations and asks
his first officers to join him at the table at the central table for strategic plan-
ning. When this is done, the director of operations addresses the whole room,
announcing that everybody must attend to their tasks until the next briefing.
This is when their behavior becomes highly dynamic. Director of operations, first
officers, their subordinates, and supporting staff scatter across the room, attend-
ing to their displays, documents, and messages. Groups are constantly forming
and breaking, and there is a lot of discussion going on. In due time, the director
of operations calls the next briefing and everybody returns to their seats. After
an introduction by the director of operations, each of the first officers stands
in front of the appropriate wall display to give a status report on their own
functional area. Everybody listens quietly, except for the director of operations
who is occasionally asking the presenter questions, sometimes involving one of
the other first officers in the discussion. The director of operations concludes
the briefing by summarizing the current action plan and everybody gets back to
performing dynamic control room operations.

We aim to model and recognize the different types of person-person interac-
tion and person-object interaction in various group formations. Besides dynamic
behavior, we also aim to recognize the more structured events during briefings.
The recorded data consists of five briefing / dynamic behavior cycles, each lasting
around 70 minutes. The first cycle containing the described introductory phase
was analyzed thoroughly and two four minute fragments and two ten minute
fragments were selected for the annotation process described in Section 5.

4 Sensor Setup

The staff exercise was recorded with four normal cameras and one fisheye, provid-
ing complete and redundant coverage from various angles as shown in Figure 3.
Four microphones were installed across the room to provide complete audio cov-
erage. To make the data analysis and annotation easier, we used the raw video
data to generate one synchronized five-pane image per second. One of them is
shown in Figure 3. A sampling rate of 1fps is sufficient, because no machine
perception is performed on the data, and because the events we aim to recog-
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Fig. 3. Five-pane image showing the cameras’ viewing angles. To simplify the annota-
tion process, such images are generated at 1fps from the raw video data recorded at
the Fire Brigade Institute (Institut der Feuerwehr) Nordrhein-Westfalen.

nize do not have fast dynamics. Higher sampling rates could be obtained with
corresponding annotation effort, or an interpolation algorithm applied to the
1fps numeric and textual data (world model). The audio data is used to better
understand what is going on in the control room (context information), and to
annotate the participants’ speech activity.

5 Annotation Process

Two four minute fragments and two ten minute fragments from the first 70 min-
utes of the exercise were selected for annotation with hypothetical outputs from
machine perception and ground-truth for corresponding semantic event descrip-
tions. A PyQt annotation tool was specifically developed for this purpose. Its
main component is an interactive birdseye view allowing the user to manipulate
the modeled objects. The tool is used to create a birdseye view and underlying
XML data (hypothetical machine perception and semantic ground-truth results)
for each second of recorded data. This is exemplified by the screenshot in Fig-
ure 4, displaying the same data as the five-pane image in Figure 3.

Before the annotation process can begin, the user has to edit an XML stage
file using a custom XML scheme, specifying which dynamic objects can be added
to the scene; in this case people, notepads, and messages. The stage file specifies
their static attributes: name, type, subtype, and size. The file also determines
which semantic event types should be recognized, so that the corresponding
ground-truth results can be annotated using the provided interaction elements.
Event types are specified in terms of their names, arities (number of arguments),
and argument domains (allowed object types). Finally, the stage file describes
the static objects in the room in terms of name, type, subtype, location, and
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Fig. 4. Tool for annotating audiovisual data with hypothetical machine perception
and semantic ground-truth. It provides an interactive birdseye view for manipulating
modeled objects. The displayed data and ground-truth results correspond to Figure 3:
a) two people discussing the field unit status table, b) similar c) two people discussing
a notepad, d,e) similar, f) person working on a notepad, g) similar, h) delivering a
message, and i) underway with notepad.

size. In this case, the static object types are: wall, table, display, door, hatch, and
device. The static objects are visualized as in Figure 4. And the dynamic object
specifications (in this case for people, notepads, and messages) and the ground-
truth event types to choose from, are used to fill the corresponding interaction
elements. Upon loading the stage file, no dynamic objects are present, they are
added and removed through user interaction.

The attributes of the dynamic objects are manipulated using mouse inter-
action. Each person can be moved and rotated, and their body pose, gesture
activity, and speech activity can be set. Speech is indicated by a rim around
the head, speech-supporting gesticulation by a rim around the right hand. An
extended and optionally rotated arm indicates pointing and interaction with dis-
plays, notepads, and messages, an extended head indicates looking down, and
extended legs indicate sitting (see Figure 4). Notepads and messages can only
be moved around. After the dynamic objects have been manipulated to reflect
the audiovisual data, semantic event descriptions can be annotated by selecting
the required event-argument-combinations (see Figure 4, i). This process is re-
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peated for each second of data, i.e. for each of the images exemplified by Figure
3. The interface includes elements for recording, playing back, and navigating
through the data, and data files can be saved to be reloaded at a later time. The
resulting XML data contains a description of the recorded dymanic objects and
ground-truth events for each second. People, notepads, and messages possess
the attributes name, type, subtype (strings), presence (boolean), x-coordinate,
y-coordinate, width, and height (integers). In addition, people have orientation,
gesture (integers), speech, looking down, and sitting (booleans). The recorded
ground-truth events have their name and list of arguments specified in XML.

To further improve the annotation process, still images, video streams, and
audio streams should be displayed in sync with the birdseye view visualizing the
XML data. Furthermore, results and ground-truth (semantic event descriptions)
should be visualized in the birdseye view, and ideally also in the audiovisual
data. The bounding boxes in Figure 4 were added manually. Other ideas to
improve the annotation tool include a more sophisticated set of data objects,
3D data functionality, and convenience/data-quality improvements through AI
and physics laws that operate on the data model. The presented tool can also
visualize real machine perception outputs, and it can be customized for any of
the application domains described in Section 1.

6 Fuzzy Metric Temporal Logic (FMTL) and Situation
Graph Trees (SGTs)

Once input data is available, the actual generation of semantic event descrip-
tions can begin. The XML data from the annotation process and the handwritten
XML stage file are fed into a reasoning engine based on fuzzy metric temporal
logic (FMTL) and situation graph trees (SGTs) [24–31]. We use F-Limette: a
reasoning engine for FMTL written in C, and the SGT-Editor: a Java applica-
tion for editing and traversing SGTs. The FMTL language is a first order logic
extended with fuzzy evaluation and temporal modality. Fuzzy evaluation allows
for reasoning about inherently vague concepts such as distance categories (e.g.
close, far) as well as reasoning about uncertainty in the input data. The latter
will be addressed in Section 8. Temporal modality allows for reasoning about
temporal developments using rule conditions grounded in points along the time
axis corresponding to past, current, and future states of the world.

Each reasoning process starts at the root node of an SGT, which is then
traversed as described in [28]. From each traversed node, FMTL rule conclusions
are queried that initiate Prolog-like rule execution processes (i.e. F-Limette uses
the logic programming paradigm). Each rule execution process returns a truth
value between 0.0 and 1.0 depending on the rule conditions that were directly
or indirectly evaluated after querying the rule conclusion in the SGT node, and
ultimately on the atomic facts from the input data. The returned truth values
are carried down to the next SGT node where they are used as base truth value
(instead of 1.0 ). Semantic event descriptions with corresponding truth values
but also actuator commands can be generated from any SGT node.



9

Fig. 5. Part of a situation graph tree (SGT) from the presented case study. It is used
to detect groups around tables and conceptual refinements thereof.

SGTs are hypergraphs consisting of situation graphs (see Figure 5). Each sit-
uation graph contains one or more situation schemes, and each situation scheme
possesses a name, one or more preconditions, and zero or more postconditions
(i.e. semantic event descriptions and/or actuator commands). To model temporal
dynamics and and events consisting of multiple phases, situation schemes can be
interconnected through temporal edges within each situation graph. This feature
is not used in Figure 5, as its situation graphs (visualized by thick boxes) contain
only one situation scheme each. Its only temporal edge is the reflexive one on
the Root situation scheme, causing the reasoning process to continue over time.
Conceptual refinement is visualized by a thick edge between a situation scheme
and a situation graph below it. FMTL rules are largely domain independent and
typically about spatiotemporal relations, whereas SGTs are more domain spe-
cific as they usually constitute abstract relations between the FMTL rules they
deploy. Once an FMTL rule base has been established it stays relatively fixed
and it can be used by different SGTs within the same application domain or
across different application domains. We now provide a detailed description of
some of the formal knowledge that was developed for the presented case study.
Figure 5 depicts an example SGT, Equations 1–10 and Figure 6 show some of
the applied FMTL rules, and Table 1 lists the available atomic fact types.
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EdgeDistanceIs(p, q, δ) ∧ AssociateEdgeDistance(δ, category)

→ HaveEdgeDistance(p, q, category) (1)

Position(p, xp, yp) ∧ Position(q, xq, yq) ∧ Size(q, wq, hq) ∧Orientation(q, θq)

∧ DistancePointToP lane(xp, yp, xq, yq, wq, hq, θq, δ)

→ EdgeDistanceIs(p, q, δ) (2)

AngularDistanceIs(p, q, δ) ∧ AssociateAngularDistance(δ, category)

→ HaveAngularDistance(p, q, category) (3)

Position(p, xp, yp) ∧Orientation(p, θp) ∧ Position(q, xq, yq) ∧ Angle(xp, yp, θp, xq, yq, δ)

→ AngularDistanceIs(p, q, δ) (4)

Position(p, xp, yp) ∧ AbsoluteArmAngle(p, θarmabs
) ∧ Position(q, xq, yq)

∧ Angle(xp, yp, θarmabs
, xq, yq, δ) ∧ AssociateAngularDistance(δ, close)

→ ExtendingArmToward(p, q) (5)

Orientation(p, θp) ∧ ExtendingArm(p, θarm) ∧ AngularSum(θp, θarm, θarmabs
)

→ AbsoluteArmAngle(p, θarmabs
) (6)

δy = yq − yp ∧ δx = xq − xp ∧ Atan2(δy, δx, θyx) ∧ AngularDifference(θp, θyx, δ)

→ Angle(xp, yp, θp, xq, yq, δ) (7)

Speaking(p) ∨Gesticulating(p) ∨ ExtendingArm(p, θ)

→ Interacting(p) (8)

3−1Interacting(p) ∨ Interacting(p) ∨ 31Interacting(p)

→ InteractingInInterval(p) (9)

3−1InteractingInInterval(p) ∧ 31InteractingInInterval(q)

→ InteractingTogether(p, q) (10)

Root in Figure 5 sorts the modeled objects into lists according to arbitrary
FMTL sort criteria, in this case objects p with Type(p, person). The situation
scheme TableGroup selects objects Table with Type(Table, table). For each of
them, the list containing all persons is filtered into a list containing only persons
that are close to that table. HaveEdgeDistance(Elem, Table, close) calculates
the distance between a person’s center and an object’s closest edge and then as-
sociates this distance with fuzzy categories (see Equations 1 and 2 and Figure 6,
left). Filter(InputList, RuleToApply(Elem, ...), OutputList) applies an arbitrary
rule (in this case HaveEdgeDistance(...)) to each element Elem in InputList and
adds each Elem with truth value V[RuleToApply(Elem, ...)] > 0 to OutputList.
V[Filter(InputList, RuleToApply(Elem, ...), OutputList)] is the average over all
V[RuleToApply(Elem, ...)].

The situation scheme TableGroup is refined into StrategicPlanning if Table
= centralTable and the director of operations (doo) and S1 through S4 are close
(determined by fuzzy evaluation in HaveEdgeDistance(...)). This can be further
refined into S1-S4OrientedAtDoo if HaveAngularDistance(sX, doo, medium) ap-
plies to S1 through S4, i.e. if they have the director of operations in their fuzzy
fields of vision (see Equations 3, 4, and 7, and Figure 6, right). The other
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Fig. 6. Visualization of FMTL rules associating distances to distance categories

Table 1. Atomic facts from the input data (static and dynamic object attributes)

Present(p) Orientation(p, θ1) Speaking(p) Sitting(p)
Position(p, x, y) Type(p, τ1) Gesticulating(p) LookingDown(p)
Size(p, w, h) Subtype(p, τ2) ExtendingArm(p, θ2) OwnerOf(p, q)

side of Figure 5 shows how MessengerMeeting and its refinements can be de-
duced once TableGroup has been established. Table needs to be instantiated
as messageTable and the staff handling incoming and outgoing messages (msgr
and msgr2 ) need to be close (HaveEdgeDistance(...)). Then, HaveAngularDis-
tance({msgr, msgr2}, {msgr, msgr2}, medium) is used to deduce whether they
are oriented at each other.

Figure 5 depicts one branch from the current SGTs. Other branches recognize
events centered around persons, notepads, messages, and displays. Furthermore,
all branches can contain further conceptual refinements for describing interaction
patterns. Equations 5–7 and Figure 6 (right) for example can be used for display
centric events, calculating a fuzzy truth value for ExtendingArmToward(person,
display). Equations 8–10 can be used in a conceptual refinement for Figure 5.
Here, interactivity is checked at the previous, current, and next frame using 3−1

and 31. And if two persons in a group are interacting simultaneously or in short
succession, they are probably interacting together, provided that they are facing
the same object or facing each other.

7 Results

Figure 7 shows some experimental results generated by the SGT in Figure 5
(black lines displaying truth values V as a function of time t in s), and the
corresponding ground-truth that was annotated using the tool depicted in Fig-
ure 4 (black dots). The top-left graph shows that the system correctly recognizes
when the director of operations and his first officers are gathering around the
central table. The bottom-left graph shows that it also succeeds in detecting that
the first officers are oriented at the director of operations. The system correctly
drops this deduction when the director of operations is referring to a display
and the first officers turn to look at it. The top-right graph shows the successful
recognition of the supporting staff in charge of message handling (msgr1 and
msgr2 ) meeting at the message table, and msgr2 briefly stepping away from
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Fig. 7. Experimental results generated by the SGT in Figure 5

it twice. And the bottom-right graph shows that the system correctly classifies
their orientations.

Table 2 provides an overview of the events that are recognized by the current
system (top) and the ones that are still under development (bottom). Note that
this list is by no means final and that each event can have multiple refinements
where the staff members’ roles and object names are taken into account for ex-
ample. The presented results were obtained in real time, but as the number of
involved objects, the predicates’ arities, and the complexity of the FMTL rules
and SGTs increase, runtime needs to be improved by applying better parallelliza-
tion, more computer resources, and heuristics about which objects to consider.
At the time of writing, a quantitative evaluation was not yet possible. We are
currently performing one to evaluate the presented system.

8 Handling Imperfect Input Data

Algorithms for automatic behavior understanding must be able to handle gaps
and uncertainty in their input data. Incomplete data handling is important be-
cause of possible occlusions in the sensor data, areas without sensor coverage,
and technical problems with machine perception components. High-level events
can not be detected if some of their rule conditions are not fulfilled due to
missing data. Uncertainty handling is important because machine perception
components often provide confidence values that should be incorporated into
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Table 2. Events currently recognized (top) and still under development (bottom)

Person alone
Group around {person, notepad, message, table}
Person {joining, leaving} group
Person underway
Person underway with {notepad, message}
Group underway (similar speeds)
Group or person {observing, editing, discussing} {notepad, message} (uses LookingDown(p))
Group or person {observing, editing, discussing} display
Person {talking, listening} to someone

Everybody at own seat (uses Sitting(p) and OwnerOf(p, q), truth value = sitting
all )

Briefing phases: introduction, S1, S2, S3, S4, conclusion
Discussions during briefing
Message handling and its phases
Fetching someone to join a group

the reasoning process so that uncertainty in perception outputs is reflected in
the high-level results as well.

Related problems include various types of noise in the input data as well as
wrong data, typically in the form of outliers. Our approach can inherently handle
noisy data through FMTL rules applying temporal filtering and fuzzy evaluation.
Such rules are also helpful against outliers. Additionaly, outlier detection can be
applied to the input data during preprocessing. Outliers could also be detected
by the reasoning process itself, using rules about the data’s expected dynamics,
potentially even providing machine perception with top-down knowledge about
this to improve its outputs or guide sensor and resource deployment.

In logic reasoning, the effects of incomplete data can be countered to a certain
degree using abduction, where intermediate conditions that can not be deduced
are hallucinated instead so that reasoning can continue and certain events can
be detected despite their missing conditions. Furthermore, interpolation can be
applied to incomplete input data to counter such effects early in the processing
chain. It can be applied as preprocessing, independently of the chosen high-level
methods. This effectively turns the missing data problem into an uncertainty
problem, because interpolated data should have appropriate confidence values
associated with them that depend on the confidence in the surrounding data used
for interpolation as well as on the temporal distances between new data points
and the ones they were calculated from. Confidence should increase towards
an interpolated gap’s edge, and large gaps should cause ever lower confidence
values as you move to the center. In [27], we describe how to apply abduction
and interpolation to the FMTL/SGT framework.

Uncertainty in the input data (from interpolation or other causes) can be
handled in the FMTL/SGT framework as follows. Each perception output i can
have a confidence value P [i] between 0.0 an 1.0. Let a and b be two points on a
plane with confidence values P [a] and P [b]. The Euclidian distance between a and
b is calculated by an appropriate FMTL rule as δab =

√
(xa − xb)2 + (ya − yb)2.

Confidence values are usually combined through multiplication and δab depends
on a and b, so P [AssociateDistance(δpq, category)] = P [δpq] = P [a]P [b]. Vague
truth values for V [AssociateDistance(δpq, category)] are calculated from δpq as
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in Figure 6, regardless of these confidence values. This means that uncertainty
and vagueness are represented separately. Using appropriate FMTL conjunction
semantics, each P (f) and V (f) can be condensed into V ′(f), a truth value
reflecting both uncertainty and vagueness.

9 Conclusion

The presented toolkit for automatic behavior understanding generates semantic
event descriptions from machine perception using fuzzy metric temporal logic
(FMTL) and situation graph trees (SGTs). It was applied to a case study on
automatic behavior report generation for training purposes in crisis response
control rooms. Instead of machine perception and multimodal fusion we used a
newly developed annotation tool to provide the reasoning engine with input. The
paper contains several novel contributions: a new dataset, a new tool for data
analysis and annotation, a unique case study with a large amount of percep-
tion modalities and objects, a newly developed FMTL/SGT knowledge base for
this case study (also applicable to other domains), corresponding experimental
results, and an explanation on how to handle imperfect input data.

This forms the basis for our future work. First and foremost, exhaustive
quantitative evaluations will be performed on the case study data, comparing
the results to ground-truth in a precision/recall-fashion. Our annotation tool
currently generates binary ground-truth, but we would like to expand this to n-
valued or fuzzy ground-truth because of the fuzzy nature of the results. Second,
we will keep improving the FMTL rules and SGTs to recognize more sophis-
ticated events from the presented case study data, exploiting the full power of
fuzzy evaluation and temporal modality. Third, such experiments will be per-
formed on various types of imperfect input data as described in Section 8 to
evaluate the system’s robustness. Fourth, the annotation tool shall be developed
further as described at the bottom of Section 5.

We are also starting to involve end-users, human science experts, and soft-
ware developers. We currently focus on the physical attributes of the people and
objects in the room (hypothetical machine perception outputs), but the system
can be improved by taking into account more domain specific attributes, i.e.
context information (unit status, crisis dynamics, staff roles, and more object
information). This would allow us to model more sophisticated expert knowledge
in FMTL and SGTs in order to deduce a richer set of semantic event descrip-
tions that is of greater use to potential end-users. To achieve this, we plan to
organize a seminar with participants from the Fire Brigade Institute (Institut
der Feuerwehr) Nordrhein-Westfalen and participants from the research group
that was involved in the data recording. In addition to the audiovisual data, they
gathered and analysed the messages, documents, and context-related develop-
ments of the staff exercise. We are also investigating the alternative application
domains listed in Section 1. Our research is situated in an environment that
focuses on computer vision and other forms of machine perception, which facil-
itates the progress toward an online system. The ultimate goal is an unsuper-
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vised real-time system containing multiple machine perception components and
multimodal fusion instead of manual annotation, with embodiment and action
generation, and synchronous visualization of sensor data, machine perception,
and semantic event descriptions.
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