Evaluation of measurement devices for radioactive and nuclear material

M. Risse, W. Berky, S. Chmel, H. Friedrich, J. Glabian, T. Köble, S. Ossowski, W. Rosenstock, O. Schumann

Fraunhofer Institute INT, Euskirchen, Germany

Introduction

- Fraunhofer INT has long lasting experience in the assessment of devices
- Several devices of different device classes available on the market
 - PRD: Personal Radiation Detector (also spectroscopic SPRD)
 - RIID: Radiation Isotope Identifiers Device
 - RPM: Radiation Portal Monitor (also spectroscopic SRPM)

Evaluation of measurement devices

- comparability is difficult
- no well established standard or quality label
- test environments for qualification measurements are necessary
- Development of INT testing facility to verify instrument's compliance regarding test methods / standards

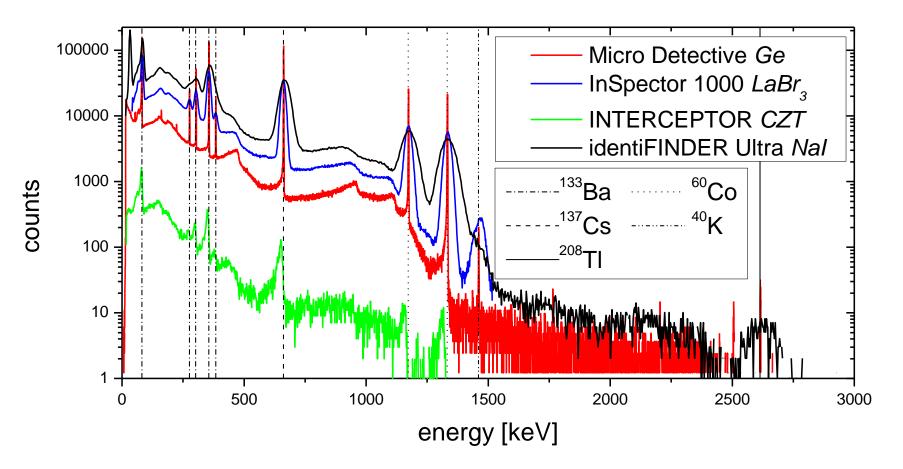
Experience

Conference paper INMM annual meeting

- 2006: Detection and Identification of Radioactive Sources Covert Under Water
- 2007: Identification of Nuclear Material with Different Gamma Spectroscopic Devices
- 2009: Searching and identifying radioactive material with hand-held high-resolution Gamma detectors
- 2010: Identification of nuclear material with hand-held and portable gamma and neutron measuring devices
- 2012: Identification Measurements of nuclear material Detective EX versus Falcon 500
- 2013: The influence of shielding measurements of nuclear material

Identification of nuclear material with hand-held and portable gamma and neutron measuring devices

- measurements at the European joint research centre JRC in ISPRA
- gamma and neutron measurements
- 5 detectors with different detector materials
- nuclear material:
 9 uranium and plutonium sources
- automatic identification
- handling of the detection systems



Gamma detection systems

	Micro Detective ORTEC	Inspector 1000 Canberra	INTERCEPTOR Thermo	IdentiFINDER Ultra
crystal material	HPGe	LaBr ₃	CZT	Nal(Tl)
crystal size [cm]	length 3 ø 5	length 3.8 ø 3.8	0.7 x 0.7 x 0.35	length 5.1 ø 3.6
weight [kg]	6.9	2.4 (complete)	0.27	1.25
size of device [cm]	37.4 x 14.6 x 27.9	19 x 16.5 x 6.4 (body)	11.2 x 6.1 x 2.5	24.8 x 9.4 x 7.6
battery life [h]	>3	9	10	8
energy resolution [keV] at 662 keV	1.5	23.2	19	45
relative efficiency	10.7 %	12.6 %	0.02 %	8.0 %

Gamma Energy Spectra – ¹³³Ba, ¹³⁷Cs and ⁶⁰Co sources

Results

- Uranium:
 - identified by all gamma measurement devices with good quality
 - but partly additional isotopes are identified
 - \implies altogether 7 of 19 measurements \checkmark
- Plutonium:
 - identification is more difficult
 - one device could not identify plutonium at all
 altogether 7 of 20 measurements
- Different manufactures use different display depiction of the results
- Some manufacturers use unusual definitions for high enriched uranium
- Other measurements: one device always identified Plutonium without presence

necessary to familiarize oneself with the device being used, experience for assessment of the result needed

Searching and Identifying radioactive material with hand-held gamma detectors

- 6 investigated detection systems
- Search parcours for performance testing in a lab
- ⁶⁰Co source was hidden
 - 4 different heights
 - 7 persons searching, partly not knowing the devices in advance
 - 24 runs for each person
- Search strategy chosen by the seeker
- Time until finding measured

Results of all Measurements

- The "best device" does not exist
- Assessment of the devices are often a matter of taste and the experience of the user, e.g. acoustic signals
- Localization: 3 Detectors have shown to be significantly superior to the others (µ-Detective, IdentiFinder, InSpector 1000),

mean search times about half or less than the others'

- Resulting strategy for tasks without preliminary knowledge of suspicious area:
 - 1. first: medium-weight detector with reliable identification mode
 - 2. second: depending on information needed, high resolution detector

Experts in the ITRAP+10 Program

ITRAP: Illicit Trafficking Radiation Assessment Program

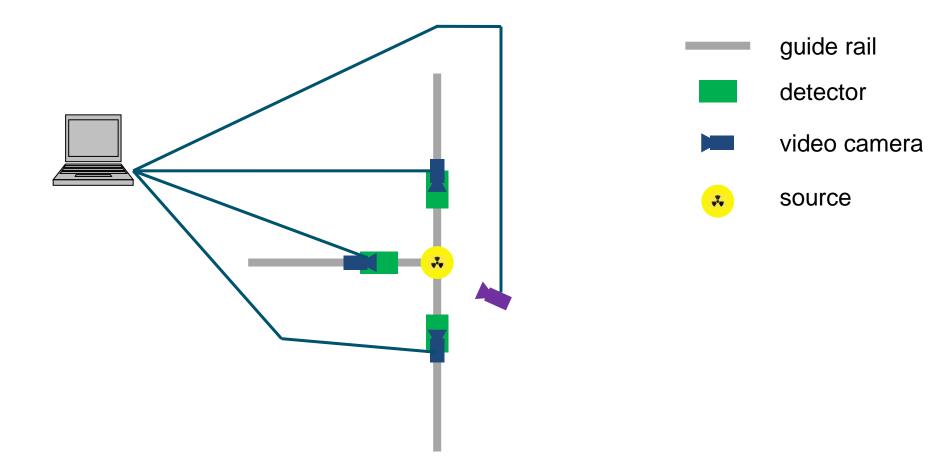
- **Aim**: Evaluation and comparison of the performance of available radiation detection equipment relevant to nuclear security.
- JRC developed in cooperation with IAEA and DNDO test procedures for testing of Border Monitoring Equipment.
- Working group Researcher participated as European nuclear security experts.
- Task of the expert: validation of the test methods which are based on the ANSI and / or IEC standards.
- Test methods exist for different device classes.
- Phase II (work package 2) of the ITRAP + 10 Program: laboratories in Europe are enabled to perform the corresponding tests.

INT Measurement system is developed

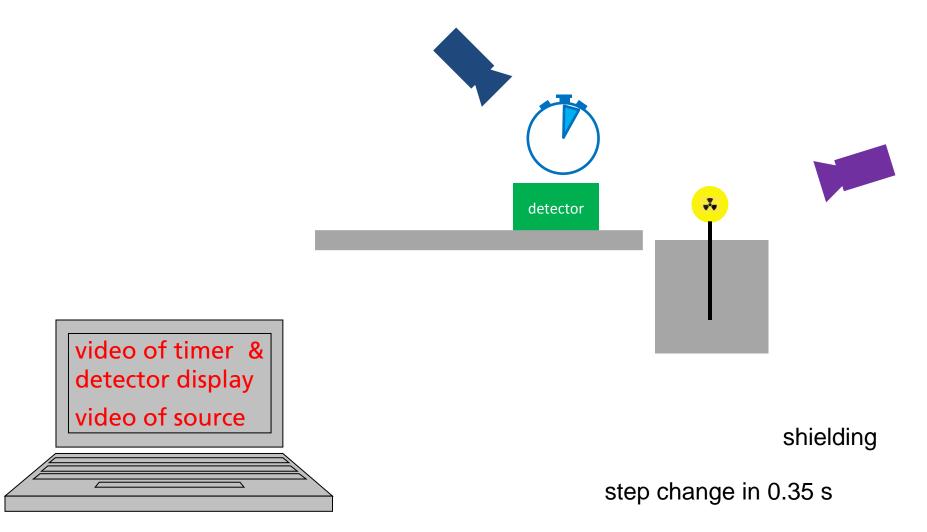
Evaluation categories

- False identification rate
- Time to alarm; Photons
- Time to alarm; Neutrons
- Accuracy tests for photons
- Over range characteristics for ambient dose equivalent rate indication
- Gamma response of neutron detector and neutron response in the presence of gammas
- Single radionuclide identification RIID

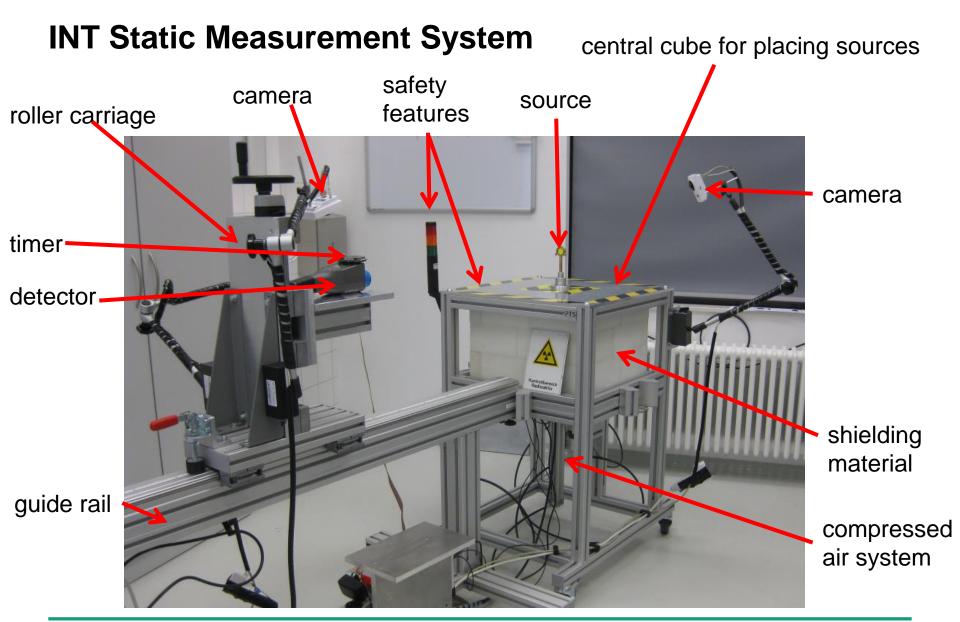
Nuclear Security Policy and Detection Techniques


- Overload characteristics for identification RIID
- Dynamic sensitivity to gamma and neutron radiations

dynamic measurements

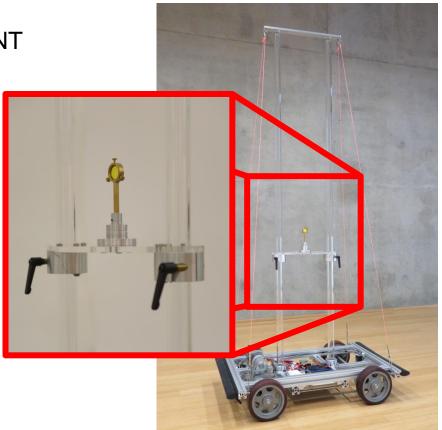

static measurements

INT Static Measurement System – Scheme Top View



Scheme of INT Static Measurement System – Side View

Video System



source view

INT dynamic measurement system

- Designed and constructed at the INT
- Trolley carries a source
 - o variable height
 - $\,\circ\,$ source holder of static system
- Automated drive, velocity and acceleration can be chosen (0.02 m/s – 2.2 m/s as requested)
- Video observation system
- Rail to guide the trolley
- Mobile, can be transported on a trailer



Nuclear Security Policy

rail sections on base plates

INT dynamic measurement system Application situation: Radiation Portal Monitor RPM

Nuclear Security Policy and Detection Techniques

© Fraunhofer

Summary

- Fraunhofer INT has developed a static and dynamic test environment
- Qualification measurements in the framework of a project have already been done successfully
- New measurement devices for radioactive or nuclear material can be qualified
- Already deployed devices can be qualified, too
- Comparison of different devices is possible and can be the basis for the procurement of additional or new components for replacement, e.g., in the field of military detection equipment
- Both systems are mobile and can be brought where needed

Visit us at **booth A6** We have brought our **static measurement system** and a video of the **dynamic system**!

