# Evaluierung eines Anlagenkonzepts zur Kraftstofferzeugung durch thermochemische Konversion von Klärschlamm

9. Wissenschaftskongress "Abfall- und Ressourcenwirtschaft" der DGAW e.V.







Johannes Neidel Fraunhofer UMSICHT

> 14.03.19 Amberg



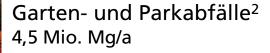
#### **Motivation**





Grenzen regenerativer Nutzung




Diskussion Teller-Tank



Biogene Reststoffe



Bioabfall<sup>1</sup> 4 Mio. Mg/a





Stroh<sup>3</sup> 8 - 13 Mio. Mg/a



Gärrest<sup>4</sup> 80 Mio. Mg/a



Klärschlamm<sup>5</sup> 1,9 Mio. Mg/a (TS)

Quellen: <sup>1</sup> UBA, 2011 <sup>2</sup>Destatis 2010 <sup>3</sup>Zeller et al., 2011; <sup>4</sup> eigene Abschätzung; <sup>5</sup>UBA, 2012



# Thermochemische Konversion von Biomasse Pyrolyseprozess

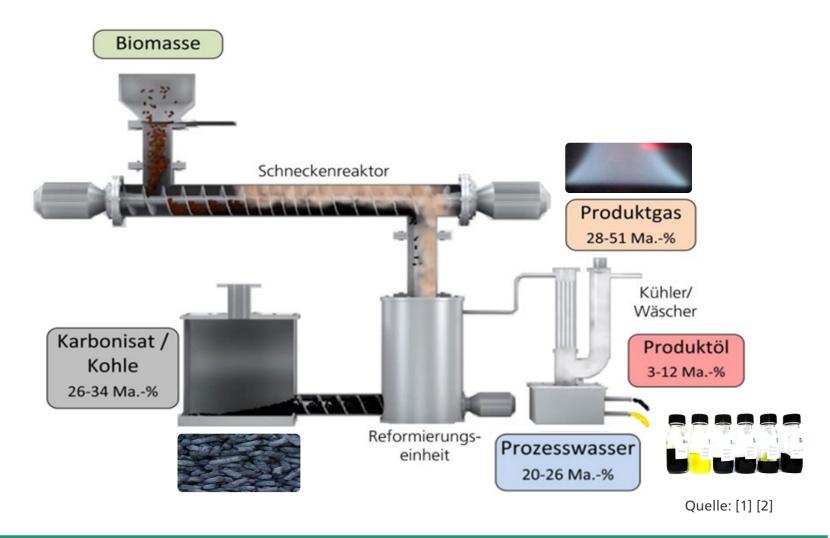
- Thermochemische Zersetzung von organischen Materialen
  - In Abwesenheit von Sauerstoff
  - Unter erhöhten Temperaturen
- Hauptpyrolysearten und Ausbeuten
  - Holzkohleherstellung mittels langsamer Pyrolyse
  - Produktion von Pyrolyseöl mittels schneller Pyrolyse





#### Thermochemische Konversion von Reststoffen

TCR®- Prozessbedingungen


- Pyrolyse-Temperatur ca. 450 °C
- Reformer-Temperatur variabel bis 750 °C
- Heizrate > 10 K/s
- Partikelgrößen > ca. 2 mm
- Trockensubstanz > 80 % (Vortrocknung optional)
- Jedwede Biomasse einsetzbar

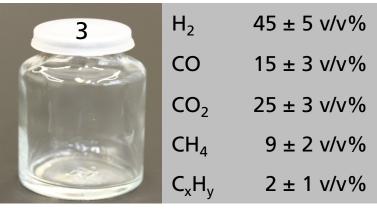




#### Thermochemische Konversion von Klärschlamm

#### TCR®-Verfahren

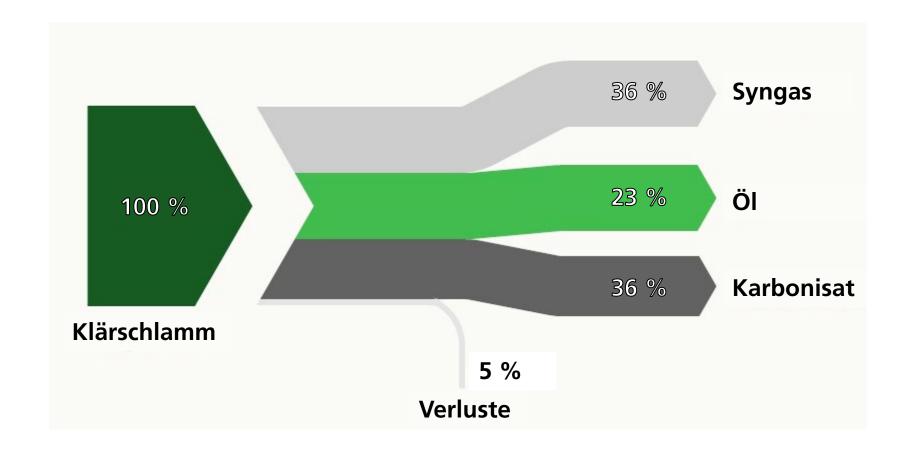





# Thermochemische Konversion von Klärschlamm

#### **TCR®- Produkte**

#### Produkte


- TCR®-Karbonisat (1)
- TCR®-Öl (2)
- TCR®-Gas (3)





#### Thermochemische Konversion von Klärschlamm

### Energiebilanz für Klärschlamm





# Thermochemische Konversion von Klärschlamm TCR®- Produktverwendung – Pyrolysegas

# **Energetische Nutzung**

**BHKW-Kraftstoff** 

**Dual-Fuel-Nutzung (mit Bio-Öl)** 

**Gasbrenner (Beheizung)** 

# **Stoffliche Nutzung**


**Synthesegas** 

**Grüner Wasserstoff** 













ınhofer UMSICHT; © ME

### TCR®- Produktverwendung – Karbonisat

# **Energetische Nutzung**

Mitverbrennung in Kraftwerken

Zementindustrie

Vergasung

### Stoffliche Nutzung

**Bodenverbesserer** 

Phosphorrückgewinnung













Fraunhofer

UMSICHT

# TCR®- Produktverwendung – Bio-Öl

#### TCR®-Rohöl

#### Kraftstoffmischung

#### **Dual-Fuel-Nutzung (mit Synthesegas)**

#### **BHKW-Kraftstoff**








| C                | 77,6 Ma.%    |
|------------------|--------------|
| Н                | 8,0 Ma.%     |
| N                | 4,6 Ma.%     |
| S                | 0,6 Ma.%     |
| O (diff.)        | 7,0 Ma.%     |
| H <sub>2</sub> O | 2,2 Ma.%     |
| TAN              | 2,1 mg KOH/g |
| $H_u$            | 34,0 MJ/kg   |

#### Aufbereitetes TCR®-Öl

#### **Grüner Diesel**

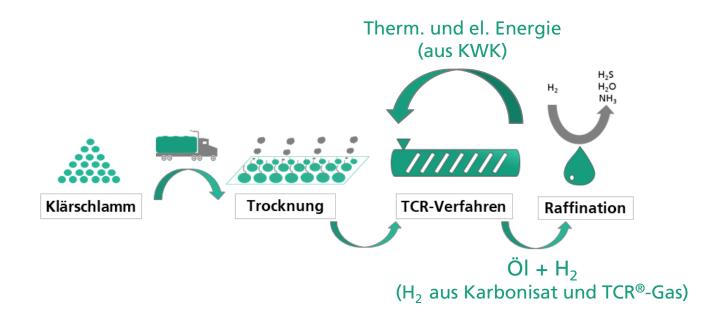
#### **Grüner Benzin und Flugzeugtreibstoff**

#### **Grüner Chemie-Rohstoff**







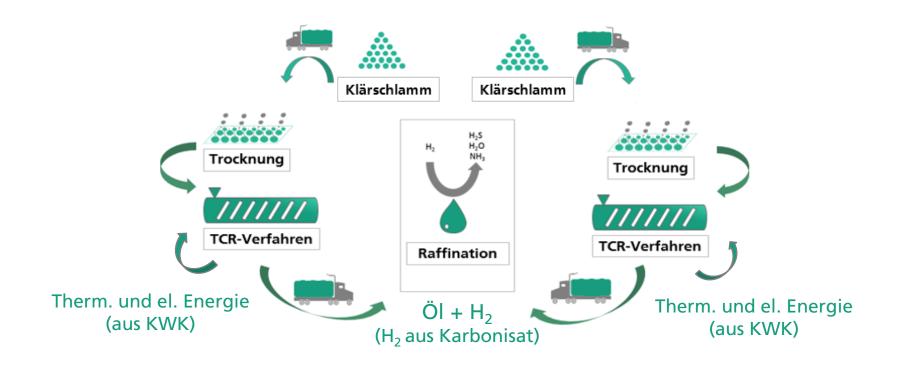

# **Industrielle TCR-Anlage**







# TCR®-Versuche – CO<sub>2</sub>-Bilanzierung Szenario 1:




Dezentrale Verarbeitung und Aufbereitung zu Kraftstoffen



# TCR®-Versuche – CO<sub>2</sub>-Bilanzierung

#### Szenario 2:

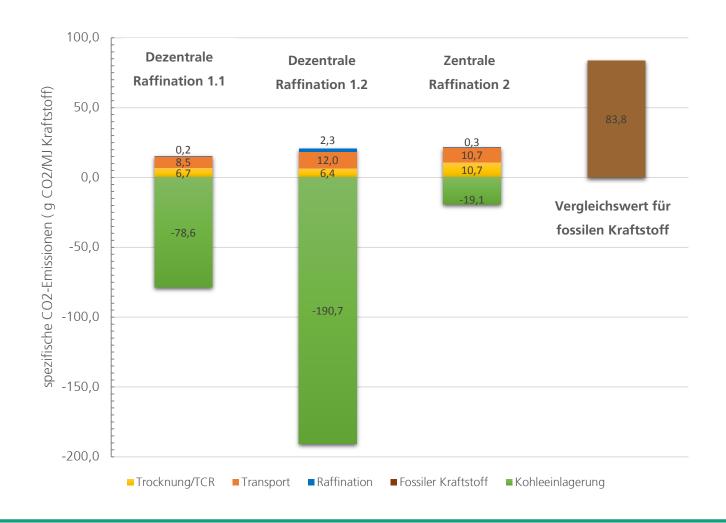


"Dezentrale Konversion – zentrale Kraftstoffaufbereitung



# TCR®-Versuche – CO<sub>2</sub>-Bilanzierung

#### Szenarienübersicht:


| Szenario                  | Dezentrale                               | Dezentrale            | Zentrale               |
|---------------------------|------------------------------------------|-----------------------|------------------------|
|                           | Raffination 1.1                          | Raffination 1.2       | Raffination 2          |
| Trocknung                 | Karbonisatvergasung +<br>KWK             | Holzvergasung + KWK   | Holzvergasung + KWK    |
| Transport (LKW)           |                                          |                       |                        |
| Trocknung / Raffination / | 650 km                                   | 650 km                | 850 km                 |
| Prozesswasserentsorgung & |                                          |                       |                        |
| Karbonisatsequestrierung  |                                          |                       |                        |
| Karbonisatsequestrierung* | 41%                                      | 100 %                 | 10 %                   |
| Wasserstoffbereitstellung | DWA von TCR®-Gas und                     | Elektrolyse aus KWK-  | DWA von Karbonisat     |
|                           | Karbonisat nach Vergasung                | Strom (Holzvergasung) | nach Vergasung         |
| Kraft-Wärme-Kopplung      | Rest TCR®-Gas und<br>Karbonisat nach DWA | Holzvergasung + KWK   | TCR®-Gas mit           |
|                           |                                          |                       | Wasserstoff und Kar-   |
|                           |                                          |                       | bonisat nach Vergasung |
|                           |                                          |                       | und nach DWA           |

<sup>\*</sup> Menge an Karbonisat, die nicht zur Wasserstoffgewinnung benötigt wird (in 1.1 und 2.0)





# TCR®-Versuche – Ergebnisse CO<sub>2</sub>-Bilanzierung TCR®-Kraftstoff





#### **Ausblick**

### Thermokatalytisches Reforming

- Langzeitversuche und weitere Optimierungen um:
  - Jährliche Betriebsstunden im Dauerbetrieb zu ermitteln
  - Abfallmengen zu reduzieren / vermeiden
  - Betriebskosten zu senken
- Generierung eines Biokraftstoffes
  - Emissionseinsparungen von 95 % bis 240 %
  - Erfüllt europäische Kraftstoffnormen (EN 228 und EN 590)
  - Verwertung von Rest- und Abfallstoffen (Klärschlamm)
  - Schonung der natürlichen Ressourcen





# Vielen Dank für die Aufmerksamkeit!

# Fraunhofer UMSICHT Institute Branch Sulzbach-Rosenberg

An der Maxhütte 1

92237 Sulzbach-Rosenberg

Phone: +49 (0) 9661 908-400

E-Mail: <u>info-suro@umsicht.fraunhofer.de</u>

Internet: http://www.umsicht-suro.fraunhofer.de

http://www.centrum-energiespeicherung.de

# Fragen?





#### Quellen:

- 1. Quicker, Peter und Schulten, Marc. Biokohle: Erzeugung und technische Einsatzmöglichkeiten. Müll und Abfall Fachzeitschrift für Abfall- und Ressourcenwirtschaft. 2012, September 2012.
- 2. Binder, S., et al. Design, construction and results of a demo-scale pyrolysis and reforming plant for non-woody residue biomass. *Papers of the 23rd European Biomass Conference*. 2015.