Electrooxidation of the pyrolysis aqueous phase on boron-doped diamond electrodes

International eConference on Analytical and Applied Pyrolysis (ePYRO2021)

M.Sc. Christopher Kick

Fraunhofer Institute for Environmental, Safety, and Energy Technology UMSICHT, Institute Branch Sulzbach-Rosenberg

13. April 2021

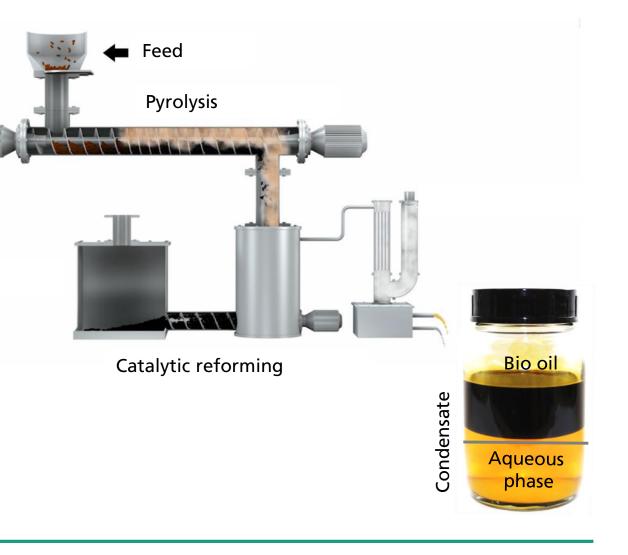
AGENDA

- 1 Thermo-catalytic reforming technology formation of the aqueous phase
- 2 Quantity and composition of the aqueous phase from sewage sludge
- 3 Wastewater parameters
- 4 Theory of electrooxidation
- 5 Electrooxidation results
- 6 Summary & Conclusion

Outlook

7

Thermo-catalytic reforming (TCR^{®)} Formation of the aqueous phase

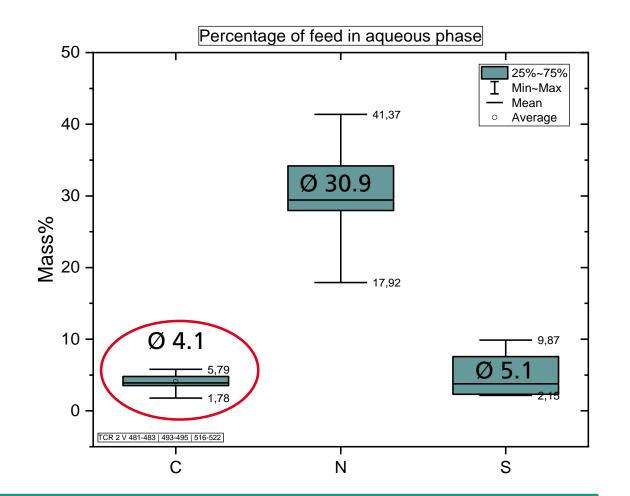

Formation due to:

- Initial moisture of feedstock
- Chemical reactions during conversion

Composition and quantity depend on:

- Initial moisture of feedstock
- Chemical composition of feedstock

For this study: Feedstock sewage sludge

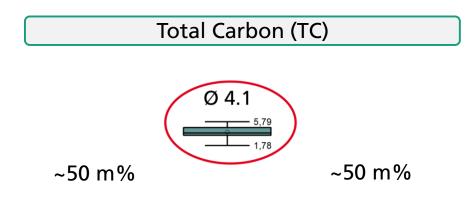

Aqueous phase from sewage sludge Composition and quantity

Elemental analysis of TCR[®] aqueous phase

	C in m%	H in m%	N in m%	O in m%	S in m%	H ₂ O in m%
Average	6.41	2.55	8.55	9.73	0.23	72.54
Median	5.87	2.51	8.18	8.95	0.14	73.68
Standard deviation	1.30	0.51	1.46	2.15	0.12	4.08

Further characteristics of the aqueous phase

- Quantity: ~20 30 m% of feedstock
- Lower heating value: < 0.2 MJ/kg</p>



Aqueous phase from sewage sludge Wastewater parameters and carbon distribution

Wastewater parameter:

- Total organic carbon (TOC)
- Chemical oxygen demand (COD)

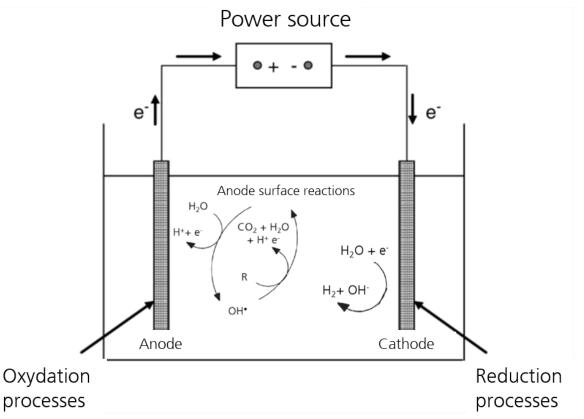
Typical organic compounds found in the aqueous phase:

Chemical group	Typical representative
Carboxylic acids:	Acetic acid
Nitriles:	Acetonitrile
Azines:	Pyridine, Pyrazine
Azoles:	Pyrrole
Phenols	Phenol

\rightarrow No solemn biological treatment possible

→ 2 m% of aqueous phase as TOC \triangleq 80.000 mg/l COD

~80x municipial wastewater


Electrooxidation Theory and advantages

<u>Theory</u>

- Electrooxidation class of advanced oxidation processes (AOP's)
- In-situ production of oxidants through electricity
- Non selective in regards to organics

Advantages of boron-doped diamond electrodes:

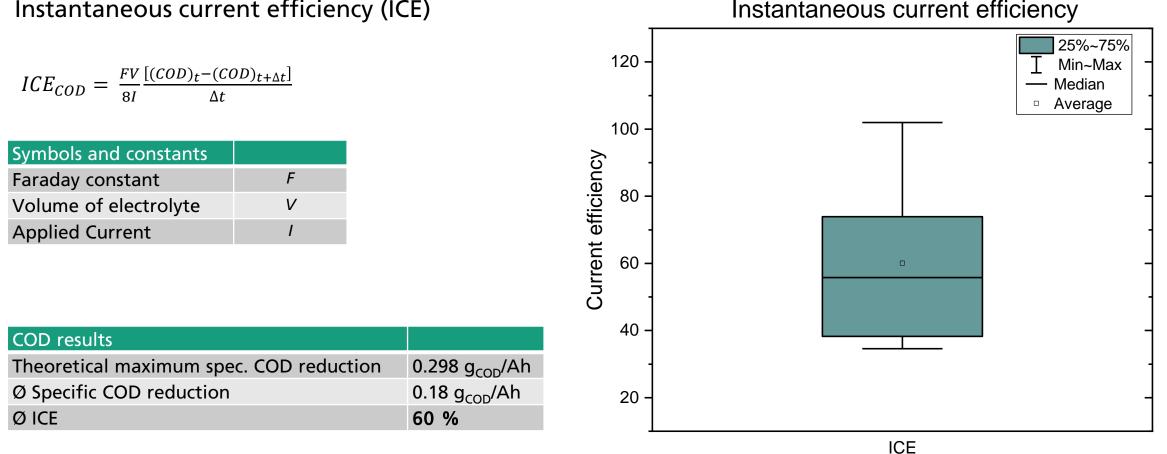
- Chemical stable
- Highest overpotential towards oxygen
- Highest production yield of hydroxyl radicals

Electrooxidation Model TCR[®] aqueous phase and COD results

Model TCR® aqueous phase

COD	10.000 mg/l	
Added organic compounds	Acetonitrile, Acetic acid, Pyrrole, Pyridine, Phenol	

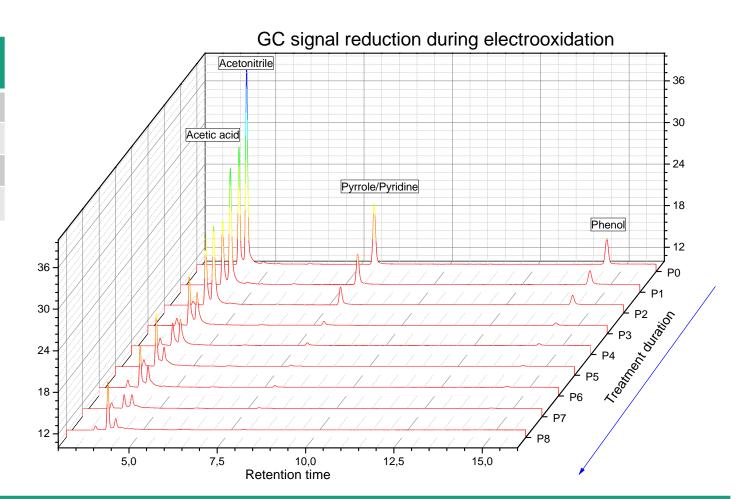
Colour reduction


Treatment duration

10000 Chemical oxygen demand (COD) Linear fit y = -189.4 * x + 9674 8000 COD in mg O_2/I -93% 6000 4000 2000 ~Municipial wastewater Average of 2 trials 0 10 20 30 40 50 0 Specific electrical charge in Ah/I

COD reduction of aqueous phase due to electrooxidation

Electrooxidation Energy efficiency in regards to the COD


Instantaneous current efficiency (ICE)

Slide 8 © Fraunhofer UMSICHT

Electrooxidation Gas chromatography results

Compound	Achieved area reduction
Acetic acid	84%
Acetonitrile	88%
Pyrrole/Pyridine	>98%
Phenol	>96%

Summary and Conclusion

- Thermo-catalytical reforming of biomass produces an aqueous phase
- In case of sewage sludge it has a low energy content and consists out of ~72 m% H₂O, 6.4 m% C
- About 50 % of this carbon is of organic nature consisting of various organic compounds
- The persistance of some of those compounds make a solemn biological treatment not possible
- Electrooxidation is suitable for reduction of those organic compounds (COD -93%, non-selective)
- The current efficiency for the model aqueous phase was ~ 0.18 g_{COD}/Ah equally to an ICE of 60%

Outlook Whats next

- Testing of a real TCR[®] aqueous phase from sewage sludge
- Parameter variation in order to further increase the current efficiency
- Separation tests for evolving hydrogen

