ASSESSING EXPECTED COST REDUCTIONS FROM ONSHORE WIND TENDER AUCTIONS

Volker Berkhout (IEE), Katherina Grashof (IZES), Robert Cernusko (IEE) 23.04.2018, Petten, The Netherlands

PUBLISHED TENDER RESULTS 2017-FIGURES CANNOT BE COMPARED DIRECTLY

Important issues to adapt for:

- Time of commissioning
- Tariff degression pathway by law
- New reference yield model for levelizing for site quality do apply
- Site quality of awarded projects

WINNING PROJECTS SIZE LIKELY WAS 18 MW WITH 4-5 TURBINES

1st tender round: project size from 2-6 wind turbines

- 2nd tender round: mainly projects with 5 wind turbines
- 3rd tender round: mainly projects with 4 wind turbines
- 93 % awarded to BEG-projects
- BEG-auction rules based on De-Minimis regulation of EU-Guideline allowing max. 18 MW
- Implication:
 Change in bidding strategy from 1st to 2nd round
 Bidders assumed 3,6 MW turbines in second round and
 4,5 MW turbines in third round

DEFINITION AND CONDITIONS FOR ,COMMUNITY' WIND

Definition

- At least 10 members or shareholders in person
- At least 51% of rights to vote at people living in the community where the turbines are to be installed for at least one year
- No member or shareholder holds more then 10% of votes
- No prior contracts to change the community setup are allowed

■Bids

- A community wind bid must not exceed six turbines with a total of 18 MW
- Community wind projects may bid without a permission for the project.
- Members of the community have not won bids within the last year and are not member of other communities which would exceed 18MW
- Local municipalities have to be offered a 10% project share

■Realisation

- Community Wind will receive price of highest successful bid in auction
- Installation has to be completed within 54 month

SITE QUALITY CORRECTION FACTOR

© Fraunhofer

BEST SITES IN FIRST ROUND, LOWEST PRICES ACHIEVED IN LATER ROUNDS

- Site quality compares expected yield to reference wind site with
 - avg. wind speed of 6.45 m/s at 100m hub height and Hellmann-Exponent a=0,25
 - Adjustments for
 - different heights
 - Availability
 - Technical losses
 - Not modelled: Regulative effects (noise, fauna)

EXPECTED EFFECTIVE PRICES DECLINE AND RANGE BETWEEN 4 CT/KWH AND 6.5 CT/KWH

- Expected tariff (REA 2017)
- Volume weighted average shown

TRARIFF COMPARISON HAS TO CONSIDER COMMISSIONING DATE AND TARIFF DEGRESSION PATHWAY

TENDER RESULTS 2017 SHOW ONLY SAVINGS COMPARED TO DEGRESSION PATHWAY FOR THIRD ROUND PROJECTS

10

CONCLUSION: 2017 TENDER AUCTIONS DID NOT BEAT EARLIER TARIFF DEGRESSION PATHWAY

- > 90% of awarded bids are BEG-projects without permission and realisation deadline of 4.5 years
- Expected Time of Commissioning crucial to assess cost effect of tender price
- Assuming realisation after 4 years no cost reduction compared to older FiT-system with degression path (2.4% per quarter)
- Value of non-BEG-projects not indicative for future bids
- Realisation of projects is subject to permission and further risks
- System change delivered marginal cost reduction at best but induced high efforts and uncertainty within the industry.
- Tender system achieved cap of installation volume, significant realisation risks for awarded projects do apply

OUTLOOK 2018 - CHANGES IN TENDER RULES

- Rule Change Permission Required
- Tender Result 2018-February
 - Lower participation
 - Share of BEG-projects decreased
- PV-Wind-Tender May 2018
 - No reference yield model correction
 - No wind power bid awarded
 - Highest winning bid 5,76
- Additional 1 GW Tender in political approval process

 $Source: https://www.bundesnetzagentur.de/DE/Sachgebiete/Elektrizitaetund Gas/Unternehmen_Institutionen/Ausschreibungen/Wind_Onshore/Beendete Ausschreibungen/Beendete Ausschreibungen_node.html$

REFERENCE

"Durch Auktionen wirklich günstiger?"
Special Report in: Windenergie Report Deutschland 2017,Fraunhofer IEE

To be available online soon (German version only): http://windmonitor.iee.fraunhofer.de/opencms/opencms/windmonitor_de/5_Veroeffentlichungen/1_windenergiereport