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Abstract. In this paper, we describe the combination of machine learn-
ing and simulation towards a hybrid modelling approach. Such a com-
bination of data-based and knowledge-based modelling is motivated by
applications that are partly based on causal relationships, while other
effects result from hidden dependencies that are represented in huge
amounts of data. Our aim is to bridge the knowledge gap between the
two individual communities from machine learning and simulation to
promote the development of hybrid systems. We present a conceptual
framework that helps to identify potential combined approaches and
employ it to give a structured overview of different types of combinations
using exemplary approaches of simulation-assisted machine learning and
machine-learning assisted simulation. We also discuss an advanced pair-
ing in the context of Industry 4.0 where we see particular further poten-
tial for hybrid systems.
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1 Introduction

Machine learning and simulation have a similar goal: To predict the behaviour
of a system with data analysis and mathematical modelling. On the one side,
machine learning has shown great successes in fields like image classification [21],
language processing [24], or socio-economic analysis [7], where causal relation-
ships are often only sparsely given but huge amounts of data are available. On the
other side, simulation is traditionally rooted in natural sciences and engineering,
e.g. in computational fluid dynamics [35], where the derivation of causal rela-
tionships plays an important role, or in structural mechanics for the performance
evaluation of structures regarding reactions, stresses, and displacements [6].
However, some applications can benefit from combining machine learning
and simulation. Such an hybrid approach can be useful when the processing
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capabilities of classical simulation computations can not handle the available
dimensionality of the data, for example in earth system sciences [30], or when
the behaviour of a system that is supposed to be predicted is based on both
known, causal relationships and unknown, hidden dependencies, for example
in risk management [25]. However, such challenges are in practice often still
approached distinctly with either machine learning or simulation, apparently
because they historically originate from distinct fields. This raises the question
how these two modelling approaches can be combined into a hybrid approach
in order to foster intelligent data analysis. Here, a key challenge in developing
a hybrid modelling approach is to bridge the knowledge gap between the two
individual communities, which are mostly either experts for machine learning or
experts for simulation. Both groups have extremely deep knowledge about the
methods used in their particular fields. However, the respectively used termi-
nologies are different, so that an exchange of ideas between both communities
can be impeded.

Related work that describes a combination of machine learning with simula-
tion can roughly be divided in two groups, not surprisingly, either from a machine
learning or a simulation point of view. The first group frequently describes the
integration of simulation into machine learning as an additional source for train-
ing data, for example in autonomous driving [23], thermodynamics [19], or bio-
medicine [13]. A typical motivation is the augmentation of data for scenarios
that are not sufficiently represented in the available data. The second group of
related works describes the integration of machine learning techniques in sim-
ulation, often for a specific application, such as car crash simulation [6], fluid
simulation [38], or molecular simulation [26]. A typical motivation is to iden-
tify surrogate models [16], which offer an approximate but cheaper to evaluate
model to replace the full simulation. Another technique that is used to adapt
a dynamical simulation model to new measurements is data assimilation, which
is traditionally used in weather forecasting [22]. Related work that considers an
equal combination of machine learning and simulation is quite rare. A work that
is closest to describing such a hybrid, symbiotic modelling approach is [4].

More general, the integration of prior knowledge into machine learning can be
described as informed machine learning [34] or theory-guided data science [18].
The paper [34] presents a survey with a taxonomy that structures approaches
according to the knowledge type, representation, and integration stage. We reuse
those categories in this paper. However, that survey considers a much broader
spectrum of knowledge representations, from logic rules over simulation results
to human interaction, while this paper puts an explicit focus on simulations.

Our goal is to make the key components of the two modelling approaches
machine learning and simulation transparent and to show the versatile, potential
combination possibilities in order to inspire and foster future developments of
hybrid systems. We do not intend to go into technical details but rather give a
high-level methodological overview. With our paper we want to outline a vision
of a stronger, more automated interplay between data- and simulation-based
analysis methods. We mainly aim our findings at the data analysis and machine
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Fig. 1. Subfields of Combining Machine Learning and Simulation. The fields
of machine learning and simulation have an intersecting area, which we partition into
three subfields: 1. Simulation-assisted machine learning describes the integration of
simulations into machine learning. 2. Machine-learning assisted simulation describes
the integration of machine learning into simulation. 3. A hybrid combination describes
a combination of machine learning and simulation with a strong mutual interplay.

learning community, but also those from the simulation community are welcome
to read on. Generally, our target audience are researchers and users of one of the
two modelling approaches who want to learn how they can use the other one.

The contributions of this paper are: 1. A conceptual framework serving as an
orientation aid for comparing and combining machine learning and simulation,
2. a structured overview of combinations of both modelling approaches, 3. our
vision of a hybrid approach with a stronger interplay of data- and simulation
based analysis.

The paper is structured as follows: In Sect. 2 we give a brief overview of the
subfields that result from combining machine learning and simulation. In Sect. 3
we present these two separate modelling approaches along our conceptual frame-
work. In Sect. 4 we describe the versatile combinations by giving exemplary refer-
ences and applications. In Sect. 5 we further discuss our observations in Industry
4.0 projects that lead us to a vision for the advanced pairing of machine learning
and simulation. Finally we conclude in Sect. 6.

2 Overview

In this section, we give a short overview about the subfields that result from a
combination of machine learning with simulation. We view the combination with
equal focus on both fields, driving our vision of a hybrid modelling approach
with a stronger and automated interplay. Figurel illustrates our view on the
fields’ overlap, which can be partitioned into the three subfields simulation-
assisted machine learning, machine-learning assisted simulation, and a hybrid
combination. Even though the first two can be regarded as one-sided approaches
because they describe the integration with a point of view from one approach,
the last one can be regarded as a two-sided approach. Although the term hybrid
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Machine Learning

1. Model Generation Phase: Learning an Inductive Model
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Fig.2. Components of Machine Learning. Machine Learning consists of two
phases 1. model generation, and 2. model application, where the focus is usually made
on the first phase, in which an inductive model is learned from data. The compo-
nents of this phase are the training data, a hypothesis set, a learning algorithm, and
a final hypothesis [1,34]. It describes the finding of patterns in an initially large data
space, which are finally represented in a condensed form by the final hypothesis. This
is illustrated by the reversed triangle and can be described as a “bottom-up approach”.

is in the literature often used for the above one-sided approaches, we prefer to
use it only for the two-sided approach where machine learning and simulation
have a strong mutual, symbiotic-like interplay.

3 Modelling Approaches

In this section, we describe the two modelling approaches by means of a concep-
tual framework that aims to make them and their components transparent and
comparable.

3.1 Machine Learning

The main goal of machine learning is that a machine automatically learns a
model that describes patterns in given data. The typical components of machine
learning are illustrated in Fig.2. In the first, main phase an inductive model is
learned. Inductive means that the model is built by drawing conclusions from
samples and is thus not guaranteed to depict causal relationships, but can instead
identify hidden, previously unknown patterns, meaning that the model is usually
not knowledge-based but rather data-based. This inductive model can finally be
applied to new data in order to predict or infer a desired target variable.

The model generation phase can be roughly split into four sub-phases or
respective components [1,34]. Firstly, training data is prepared that depicts his-
torical records of the investigated process or system. Secondly, a hypothesis set
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Simulation
1. Model Generation Phase: Identifying a Deductive Model
2. Model Application Phase: Running a Simulation

Model ~ Model
Parameter
Numerical Method
Data Simulation Result

Fig. 3. Components of Simulation. Simulation comprises the two phases 1. model
generation, and 2. model application, where the focus often is on the second phase, in
which an earlier identified deductive model is used in order to create simulation results.
The components of this phase are the simulation model, input parameters, a numerical
method, and the simulation result. It describes the unfolding of local interactions from
a compactly represented initial model into an expanded data space. This is supposed
be illustrated by the triangle and can be described as a “top-down approach”.

is defined in the form of a function class or network architecture that is assumed
to map input features to the target variables. Thirdly, a learning algorithm
tunes the parameters of the hypothesis set so that the performance of the map-
ping is maximized by using optimization algorithms like gradient descent and
results in, fourthly, the final hypothesis, which is the desired inductive model.
This model generation phase is often repeated in a loop-like manner by tuning
hyper-parameters until a sufficient model performance is achieved.

3.2 Simulation

The goal of a simulation is to predict the behaviour of a system or process
for a particular situation. There are different types of simulations, ranging
from cellular automata, over agent-based simulations, to equation-based sim-
ulations [9,15,36]. In the following we concentrate on the last type, which is
based on mathematical models and is especially used in science and engineer-
ing. The first, required stage preceding the actual simulation is the identification
of a deductive model, often in the form of differential equations. Deductive in
this context means that the model describes causal relationships and can thus
be called knowledge-based. Such models are often developed through extensive
research, starting with a derivation, for example in theoretical physics, and con-
tinuing with plentiful experimental validations. Some recent research exists of
proof-of-concepts for identifying models directly from data [8,33].

The main phase of a simulation is the application of the identified model
for a specific scenario, often called running a simulation. This phase can be
described in four typical main components or sub-phases, which are, as illus-
trated in Fig. 3, the mathematical model, the input parameters, the numerical
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Simulation- Assisted Machine Learning
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Fig.4. Types of Simulation-Assisted Machine Learning. Simulations, in par-
ticular the simulation results, can be generally integrated into the four different com-
ponents of machine learning. The triangles illustrate the machine learning (blue/dark
gray) or the simulation (orange/light gray) approach and their components, which are
themselves presented in Figs. 2 and 3. The simulation results can be used to (a) aug-
ment the training data, (b) define parts of the hypothesis set in the form of empirical
functions, (c) steer the training algorithm in generative adversarial networks, or (d)
verify the final hypothesis against scientific consistency. (Color figure online)

method, and finally the simulation result [36]. After the selection of a math-
ematical model, the input parameters that describe the specific scenario are
defined in the second sub-phase. They can comprise general parameters such
as the spatial domain or time of interest, as well as initial conditions quanti-
fying the systems’ or processes’ initial status and boundary conditions defining
the behaviour at domain borders. In the third sub-phase, a numerical method
computes the solution of the given model observing the constraints resulting
from the input parameters. Examples for numerical methods are finite differ-
ences, finite elements or finite volume methods for spatial discretization [36], or
particle methods based on interaction forces [26]. These form the basis for an
approximate solution, which is the final simulation result. This model application
phase is often repeated in a loop-like manner, e.g., by tuning the discretization
to achieve a desired approximation accuracy and stability of the solution.

4 Combining Machine Learning and Simulation

In this section, we describe combinations of machine learning and simulation
by using our conceptual framework from Sect.3. Here, we focus on simulation-
assisted machine learning and machine-learning assisted simulation. For each of
the methodical combination types, we give exemplary application references.

4.1 Simulation-Assisted Machine Learning

Simulation offers an additional source of information for machine learning that
goes beyond typically available data and that is rich of knowledge. This addi-
tional information can be integrated into the four components of machine learn-
ing as illustrated in Fig. 4. In the following, we will give an overview about these
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integration types by giving for each an illustrative example and refer for a more
detailed discussion to [34].

Simulations are particularly useful for creating additional training data in
a controlled environment. This is for example applied in autonomous driving,
where simulations such as physics engines are employed to create photo-realistic
traffic scenes, which can be used as synthetic training data for learning tasks like
semantic segmentation [14], or for adversarial test generation [40]. As another
example, in systems biology, simulations can be integrated in the training data
of kernelized machine learning methods [13].

Moreover, simulations can be integrated into the hypothesis set, either
directly as the solvers or through deduced, empirical functions that compactly
describe the simulations results. These functions can be built into the architec-
ture of a neural network, as shown for the application of finding an optimal
design strategy for a warm forming process [20].

The integration of simulations into the learning algorithm can for example
be realized by generative adversarial networks (GANSs), which learn a prediction
function that obeys constraints, which might be unknown but are implicitly
given through a simulation [31].

Another important integration type is in the validation of the final hypothesis
by simulations. An example for this comes from material discovery, where first
a machine learning model suggests new compounds based on patterns in a data
basis, and second the physical properties are computed and thus checked by a
density functional theory simulation [17].

An approach that uses simulations along the whole machine learning pipeline
is reinforcement learning (RL), when the model is learned in a simulated envi-
ronment [2]. Studies under the keyword “sim-to-real” are often concerned with
robots learning to grip or move unknown objects in simulations and usually
require retraining in reality. An application for controlling the temperature of
plasma follows the analogous approach, i.e., a training based on a software-
physics model, where the learned RL model is then further adapted for use in
reality [41].

4.2 Machine-Learning Assisted Simulation

Machine learning is often used in simulation with the intention to support the
solution process or to detect patterns in the simulation data. With respect to our
conceptual framework presented in Sect. 3, machine learning techniques can be
used for the initial model, the input parameters, the numerical method, and the
final simulation results, as illustrated in Fig.4. In the following we will give an
overview about the integration types. Again, we do not intend to cover the full
spectrum of machine-learning assisted simulation, we rather want to illustrate
its diverse approaches through representative examples.

A prominent integration type of machine learning techniques into simulation
is the identification of simpler models, such as surrogate models [11,12,16,26].
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Machine-Learning Assisted Simulation
Integration of Machine Learning Model in:
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Fig. 5. Types of Machine-Learning Assisted Simulation. Machine learning tech-
niques, in particular the final hypothesis, can be used in different simulation compo-
nents. The triangles illustrate the machine learning (blue/dark gray) or the simulation
(orange/light gray) approach and their components, which are themselves explained
in Figs.2 and 3. Exemplary use cases for machine learning models in simulation are
(a) model order reduction and the development of surrogate models that offer approxi-
mate but simpler solutions, (b) the automated inference of an intelligent choice of input
parameters for a next simulation run, (¢) a partly trainable solver for differential equa-
tions, or d) the identification of patterns in simulation results for scientific discovery.
(Color figure online)

These are approximate and cheap to evaluate models that are particularly of
interest when the solution of the original, more precise model is very time- or
resource-consuming. The surrogate model can then be used to analyse the over-
all behaviour of the system in order to reveal scenarios that should be further
investigated with the detailed original simulation model. Such surrogate models
can be developed with machine-learning techniques either with data from real-
world experiments, or with data from high-fidelity simulations. One application
example is the optimization of process parameters using deep neural networks
as surrogate models [27]. Kernel-based approaches are also commonly used as
surrogate models for simulations, an example to improve the energetic efficiency
of a gas transport network is shown in [10]. A well-established approach for sur-
rogate modelling is model order reduction, for example with proper orthogonal
decomposition, which is closely related to principal component analysis [5,37].

Data assimilation, which includes the calibration of constitutive models and
the estimation of system states, is another area where machine learning tech-
niques enhance simulations. Data assimilation problems can be modelled using
dynamic Bayesian networks with continuous physically interpretable state spaces
where the evaluation of transition kernels and observation operators requires
forward-simulation runs [29].

Machine learning techniques can also be used to study the parameter depen-
dence of simulation results. For example, after an engineer executes a sequence of
simulations, a machine learning model can detect different behavioral modes in
the results and thus reduce the analysis effort during the engineering process [6].
This supports the selection of the parameter setting for the next simulation, for
which active learning techniques can also be employed. For example, [39] studied
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it for selecting the molecules for which the internal energy shall be determined
by computationally expensive quantum-mechanical calculations, as well as for
determining a surrogate model for the fluid flow in a well-bore while drilling,.

The integration of machine learning techniques into the numerical method
can support to obtain the numerical solution. One approach is to exchange parts
of the model that are resource-consuming to solve, with learned models that can
be computed faster, for example with machine learning generated force fields in
molecular dynamics simulations [26]. Another approach that is recently investi-
gated are trainable solvers for partial differential equations that determine the
complete solution through a neural network [28].

A further, very important integration type is the application of machine
learning techniques on the simulation results in order to detect patterns, often
motivated by the goal of scientific discovery. While there are plenty of applica-
tion domains, two exemplary representatives are particle physics [3] and earth-
sciences, for example with the use of convolutional neural networks for the detec-
tion of weather patterns on climate simulation data [30]. For further examples we
refer to a survey about explainable machine learning for scientific discovery [32].

5 Advanced Pairing of Machine Learning and Simulation

Section 4 gave a brief overview of the versatile existing approaches that integrate
aspects of machine learning into simulation and vice versa, or that combine sim-
ulation and machine learning sequentially. Yet, we think that the integration of
these two established worlds is only at the beginning, both in terms of modelling
approaches and in terms of available software solutions.

In the following, we describe a number of observations from our project expe-
rience in the development of cyber-physical systems for Industry 4.0 applications
that support this assessment. Note that the key technical goal of Industry 4.0 is
the flexibilization of production processes. In addition to the broad integration of
digital equipment in the production machinery, a key provider of flexibilization
is a decrease of process design and dimensioning times and ideally, a merging
of planning and production phase that are today still strictly separated. This
requires a new generation of computer-aided engineering (CAE) software sys-
tems that allow for very fast process optimization cycles with real time feedback
loops to the production machinery. An advanced pairing of machine learning
and simulation will be key to realize such systems by addressing the following
issues:

— Simulation results are not fully exploited: Especially in the indus-
trial practice, simulations are run with a very specific analysis goal based
on expert-designed quantities of interest. This ignores that the simulation
result might reveal more patterns and regularities, which might be irrelevant
for the current analysis goal but useful in other contexts.

— Selective surrogate modelling: Even if modern machine learning
approaches are used, surrogate models are built for very specific purposes
and the decision when and where to use a surrogate model is left to domain
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experts. In this way, it is exploited too little that similar underlying systems
might lead to similar surrogate models and in consequence, too many costly
high-fidelity simulations are run to generate the data basis, although parts of
the learned surrogate models could be transferred.

— Parameter studies and simulation engines: Parameter and design stud-
ies are well-established tools in many fields of engineering. Surprisingly, the
frameworks to conduct these studies and to build the surrogate models are
third-party solutions that are separated from the core simulation engines. For
the parameter study framework, the simulation engine is a black box, which
does not know that it is currently used for a parameter study. In turn, the
standard rules to generate sampling points in the parameter space are not
aware about the internals of the simulation engine. This raises the question
how much more efficient parameter studies could be conducted so that both
software systems were stronger connected to each other.

These observations lead us to a research concept that we propose in this
paper and call it learning simulation engines. A learning simulation engine
is a hybrid system that combines machine learning and simulation in an opti-
mal way. Such an engine can automatically decide when and where to apply
learned surrogate models or high-fidelity simulations. Surrogate models are effi-
ciently organized and re-used through the use of transfer learning. Parameter and
design optimization is an integral component of the learning simulation engine
and active learning methods allow the efficient re-use of costly high-fidelity com-
putations.

Of course, the vision of a learning simulation engine raises numerous research
questions. We describe some of them in view of Fig. 1. First of all, the question
is how learning and simulation can be technically combined to such an advanced
hybrid approach, especially, if they can only be integrated into each other by
using the final simulation results and the final hypothesis (as shown in Figs. 4
and 5), or if they can also be combined at an earlier sub-phase. Moreover, the
counterparts of the learning’s model generation phase and the simulation’s model
application phase (see Figs.2 and 3) should be investigated further in order
to better understand the similarities and differences to the simulation’s model
generation phase and a learning’s model application phase.

6 Conclusion

In this paper, we described the combination of machine learning and simulation
motivated by fostering intelligent analysis of applications that can benefit from
a combination of data- and knowledge-based solution approaches.

We categorized the overlap between the two fields into three sub-fields,
namely, simulation-assisted machine learning, machine-learning assisted simu-
lation, and a hybrid approach with a strong and mutual interplay. We presented
a conceptual framework for the two separate approaches, in order to make them
and their components transparent for the development of a potential combined
approach. In summary, it describes machine learning as a bottom-up approach
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that generates an inductive, data-based model and simulation as a top-down
approach that applies a deductive, knowledge-based model. Using this concep-
tual framework as an orientation aid for their integration into each other, we
gave a structured overview about the combination of machine learning and sim-
ulation. We showed the versatility of the approaches through exemplary methods
and use cases, ranging from simulation-based data augmentation and scientific
consistency checking of machine learning models, to surrogate modelling and
pattern detection in simulations for scientific discovery. Finally, we described
the scenario of an advanced pairing of machine learning and simulation in the
context of Industry 4.0 where we see particular further potential for hybrid
systems.
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