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Abstrakt. Seit den fr�uhen neunziger Jahren besteht ein stark wachsender Bedarf an ef-
�zienteren Methoden zur L�osung gro�er, d�unnbesetzter und unstrukturierter linearer Glei-
chungssysteme. Klassische L�osungsverfahren sind f�ur praktisch relevante Problemgr�o�en
an ihre Grenzen gesto�en und neue hierarchische Verfahren mu�ten entwickelt werden, um
die numerische E�zienz zu steigern. Dieses Paper gibt einen �Uberblick �uber den ersten
hierarchischen, rein matrix-orientierten Verfahrensansatz, die algebraische Mehrgitterme-
thode (AMG). AMG kann, zum Beispiel, unmittelbar zur L�osung verschiedener Typen
elliptischer partieller Di�erentialgleichungen auf unstrukturierten, zwei- oder dreidimen-
sionalen Gittern eingesetzt werden. Weil AMG keine geometrische Information ausnutzt,
ist es ein \black-box" L�oser, der unmittelbar auch zur L�osung von Problemen eingesetzt
werden kann, die keinen direkten geometrischen Hintergrund besitzen, vorausgesetzt, die
zugrundeliegenden Matrizen erf�ullen gewisse Voraussetzungen.

Schlagw�orter. AMG, Algebraische Mehrgittermethoden, Mehrgitter, unstrukturierte
Gitter, unstrukturierte Matrizen, hierarchische L�oser.

Abstract. Since the early nineties, there has been a strongly increasing demand for
more e�cient methods to solve large sparse, unstructured linear systems of equations. For
practically relevant problem sizes, classical one-level methods had already reached their
limits and new hierarchical algorithms had to be developed in order to allow an e�cient
solution of even larger problems. This paper gives a review of the �rst hierarchical and
purely matrix-based approach, algebraic multigrid (AMG). AMG can directly be applied,
for instance, to e�ciently solve various types of elliptic partial di�erential equations, dis-
cretized on unstructured meshes, both in 2D and 3D. Since AMG does not make use of
any geometric information, it is a \plug-in" solver which can even be applied to problems
without any geometric background, provided that the underlying matrices have certain
properties.

Keywords. AMG, algebraic multigrid, multigrid, unstructured grids, unstructured ma-
trices, hierarchical solvers.

To appear in: Journal of Computational and Applied Mathematics, 2000.
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1 Introduction

The e�cient numerical solution of large systems of discretized elliptic partial di�erential
equations (PDEs) requires hierarchical algorithms which ensure a rapid reduction of both
short and long range error components. A breakthrough, and certainly one of the most
important advances during the last three decades, was due to the multigrid principle. Any
corresponding method operates on a hierarchy of grids, de�ned a priori by coarsening the
given discretization grid in a geometrically natural way (\geometric" multigrid). Clearly,
this is straightforward for logically regular grids. However, the de�nition of a natural hier-
archy may become very complicated for highly complex, unstructured meshes, if possible
at all.

The �rst attempt to automate the coarsening process took place in the early eight-
ies [10, 11, 12], at the time when the so-called Galerkin-principle and operator-dependent
interpolation were combined in geometric multigrid to increase its robustness (aiming at
the e�cient solution of di�usion problems with jumping coe�cients [1, 21]). This attempt
was motivated by the observation that reasonable operator-dependent interpolation and
the Galerkin operator can often be derived directly from the underlying matrices, without
any reference to the grids. The result was a multigrid-like approach which did not merely
allow an automatic coarsening process, but could be directly applied to (linear sparse)
algebraic equations of certain types, without any pre-de�ned hierarchy (\algebraic" multi-
grid1, AMG).

The �rst fairly general AMG program was described and investigated in [47, 48, 50].
Since this code was made publically available in the mid eighties (AMG1R5), there had
been no substantial further research and development in AMG for many years. However,
since the early nineties, and even more since the mid nineties, there was a strong increase of
interest in algebraically oriented multilevel methods. One reason for this was certainly the
increasing geometrical complexity of applications which, technically, limited the immediate
use of geometric multigrid. Another reason was the steadily increasing demand for e�cient
\plug-in" solvers. In particular, in commercial codes, this demand was driven by increasing
problem sizes which made clear the limits of the classical one-level solvers still used in most
packages.

For instance, CFD applications in the car industry involve very complicated ow re-
gions. Flows through heating and cooling systems, complete vehicle underhood ows, or
ows within passenger compartments are computed on a regular basis. Large complex
meshes, normally unstructurd, are used to model such situations. Requirements on the
achievable accuracy are ever increasing, leading to �ner and �ner meshes. Locally re�ned
grid patches are introduced to increase the accuracy with as few additional mesh points
as possible. Figure 1 shows an example.

In the recent past, several ways to realize concrete AMG algorithms have been in-
vestigated and there is still an ongoing rapid development of new AMG and AMG-like
approaches and variants. Consequently, there is no unique and best approach yet. When-
ever we talk about AMG in the context of concrete numerical results, we actually refer to
the code RAMG052 (described in detail in [51]), which is a successor of the original code

1We should actually use the term multilevel rather than multigrid. It is just for historical reasons that

we use the term multigrid.
2The development of RAMG05 has partly been funded by Computational Dynamics Ltd., London.
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Figure 1: Mesh for computing the underhood ow of a Mercedes-Benz E-Class

AMG1R5 mentioned above. However, RAMG05 is completely new and, in particular,
incorporates more e�cient and more robust interpolation and coarsening strategies.

This paper gives a survey of the classical AMG idea [48], certain improvements and ex-
tensions thereof, and various new approaches. The focus in Sections 2-6 is on fundamental
ideas and aspects, targeting classes of problems for which AMG is best-developed, namely,
symmetric positive-de�nite (s.p.d.) problems of the type as they arise, for instance, from
the discretization of scalar elliptic PDEs of second order. We want to point out, how-
ever, that the potential range of applicability is much larger. In particular, AMG has
successfully been applied to various non-symmetric (e.g. convection-di�usion) and certain
inde�nite problems. Moreover, important progress has been achieved in the numerical
treatment of systems of PDEs (mainly Navier-Stokes and structural mechanics applica-
tions). However, major research is still ongoing and much remains to be done to obtain
an e�ciency and robustness comparable to the case of scalar applications. In particular
in Section 7, we will set pointers to the relevant literature where one can �nd further in-
formation or more recent AMG approaches. Although we try to cover the most important
references, the list is certainly not complete in this rapidly developing �eld of research.

2 Algebraic versus geometric multigrid

Throughout this paper, we assume the reader to have some basic knowledge of geometric
multigrid. In particular, he should be familiar with the fundamental principles (smoothing
and coarse-grid correction) and with the recursive de�nition of multigrid cycles. This is
because, for simplicity, we limit our main considerations to just two levels. Accordingly,
whenever we talk about the e�ciency of a particular approach, we implicitly always assume
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the underlying two-level method to be recursively extended to a real multi-level method,
involving only a small number of variables (20 to 40, say) on the coarsest level. Regarding
more detailed information on geometric multigrid, we refer to [60] and the extensive list
of references given therein.

A two-level AMG cycle to solve (sparse) s.p.d. systems of equations

Ahu
h = fh or

X
j2
h

ahiju
h
j = fhi (i 2 
h) (1)

is formally de�ned in the same way as a Galerkin-based geometric two-grid cycle. The
only di�erence is that, in the context of AMG, 
h is just an index set while it corresponds
to a grid in geometric multigrid. Accordingly, a coarser level, 
H , just corresponds to a
(much smaller) index set.

If we know how to map H-vectors into h-vectors by some (full rank) \interpolation"
operator IhH , the (s.p.d.) coarse-level operator AH is de�ned via

AH := IHh Ah I
h
H with IHh = (IhH)

T :

One two-level correction step then runs as usual, that is

uhnew = uhold + IhHe
H (2)

where the correction eH is the exact solution of

AHe
H = rH or

X
j2
H

aHij e
H
j = rHi (i 2 
H)

with rH = IHh (rhold) and rhold = fh � Ahu
h
old. (Note that we normally use the letter

u for solution quantities and the letter e for correction or error quantities.) For the
corresponding errors eh = uh? � uh (uh? denotes the exact solution of (1)), this means

ehnew = Kh;H ehold with Kh;H := Ih � IhHA
�1
H IHh Ah (3)

being the coarse-grid correction operator (Ih denotes the identity).
We �nally recall that { given any relaxation operator, Sh, for smoothing { the con-

vergence of Galerkin-based approaches can most easily be investigated w.r.t. the energy
norm, kehkAh

= (Ahe
h; eh)1=2. Assuming � relaxation steps to be performed for (pre-)

smoothing, the following well-known variational principle holds (see, for instance, [51]),

kKh;HS
�
he

hkAh
= min

eH
kS�

he
h � IhHe

HkAh
: (4)

As a trivial consequence, convergence of two-level cycles and, if recursively extended to
any number of levels, the convergence of complete V-cycles is always ensured as soon
as the relaxation method converges. This is true for any sequence of coarser levels and
interpolation operators. More importantly, (4) indicates that the speed of convergence
strongly depends on the e�cient interplay between relaxation and interpolation. Based on
(4), we want to outline the basic conceptual di�erence between geometric and algebraic
multigrid.
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2.1 Geometric multigrid

In geometric multigrid, �xed coarsening strategies are employed and interpolation is usu-
ally de�ned geometrically, typically by linear interpolation. Depending on the given prob-
lem, this necessarily imposes strong requirements on the smoothing properties of Sh (in
order for the right hand side in (4) to become small), namely, that the error after relaxation
varies in a geometrically smooth way from the �ne-level grid points to the neighboring
coarse-level ones. In other words, the error after relaxation has to be geometrically smooth,
relative to the coarse grid.

As an illustration, let us assume the coarser levels to be de�nd by standard geometric
h ! 2h coarsening in each spatial direction. It is well-known that pointwise relaxation
geometrically smooths the error in each direction only if the given problem is essentially
isotropic. In case of anisotropic problems, however, smoothing is only \in the direction
of strong couplings". In such cases, more complex smoothers, such as alternating line-
relaxation or ILU-type schemes, are required in order to still achieve a good interplay
between smoothing and interpolation and, thus, fast multigrid convergence.

While the construction of \robust smoothers" is not di�cult in 2D model situations,
for 3D applications on complex meshes their realization tends to become rather cumber-
some. For instance, the robust 3D analog of alternating line relaxation is alternating plane
relaxation (e.g., realized by 2D multigrid within each plane) which, in complex geometric
situations, becomes very complicated to implement, if possible at all. ILU smoothers, on
the other hand, loose much of their smoothing property in general 3D situations. The
only way to loosen the requirements on the smoothing properties of the relaxation and
still maintain an e�cient interplay between relaxation and interpolation is to use more
sophisticated coarsening techniques. In geometric multigrid, steps in this direction have
been done by, for example, employing more than one coarser grid on each multigrid level
(\multiple semi-coarsening" [35, 61, 20, 34]).

2.2 Algebraic multigrid

While geometric multigrid essentially relies on the availability of robust smoothers, AMG
takes the opposite point of view. It assumes a simple relaxation process to be given (typ-
ically plain Gauss-Seidel relaxation) and then attempts to construct a suitable operator-
dependent interpolation IhH (including the coarser level itself). According to (4), this
construction has to be such that error of the form S�

he
h is su�ciently well represented in

the range of interpolation, R(IhH). The better this is satis�ed, the faster the convergence
can be. Note that it is not important here whether relaxation smooths the error in any
geometric sense. What is important, though, is that the error after relaxation can be
characterized algebraically to a degree which makes it possible to automatically construct
coarser levels and de�ne interpolations which are locally adapted to the properties of the
given relaxation. This local adaptation is the main reason for AMG's exibility in adjust-
ing itself to the problem at hand and its robustness in solving large classes of problems
despite using very simple point-wise smoothers.
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3 The classical AMG approach

In classical AMG, we regard the coarse-level variables as a subset of the �ne-level ones.
That is, we assume the set of �ne-level variables to be split into two disjoint subsets,

h = Ch [ F h, with Ch representing those variables which are to be contained in the
coarse level (C-variables) and Fh being the complementary set (F-variables). Given such
a C/F-splitting, we de�ne 
H = Ch and consider (full rank) interpolations eh = IhHe

H of
the form

ehi = (IhHe
H)i =

(
eHi if i 2 ChP

k2Ph

i

wh
ike

H
k if i 2 Fh

(5)

where Ph
i � Ch is called the set of interpolatory variables. (For reasons of sparsity of

AH , P
h
i should be a reasonably small subset of C-variables \near" i.) Clearly, R(IhH)

strongly depends on both the concrete selection of the C-variables and the de�nition of
the interpolation. In a given situation, one can easily imagine \bad" C/F-splittings which
just do not allow any interpolation which is suitable in the sense that was outlined in the
previous section. That is, the construction of concrete C/F-splittings and the de�nition
of interpolation are closely related processes.

Concrete algorithms used in practice are largely heuristically motivated. In Section
3.1, we mainly summarize the basic ideas as described in [48] and some modi�cations
introduced in [51]. In Section 3.2, we take a closer look at some theoretical and practical
aspects in case that Ah contains only non-positive o�-diagonal entries (M-matrix). To
simplify notation, we usually omit the index h in the following, for instance, we write S,
A, K and e instead of Sh, Ah, Kh;H and eh. Moreover, instead of (5), we simply write

ei =
X
k2Pi

wik ek (i 2 F ) : (6)

3.1 The basic ideas

Classical AMG uses plain Gauss-Seidel relaxation for smoothing. From some heuristic
arguments, one can see that the error e, obtained after a few relaxation steps, is charac-
terized by the fact that the (scaled) residual is, on the average for each i, much smaller
than the error itself, jrij � aii jeij. This implies that ei can locally be well approximated
by

ei � �
� X
j2Ni

aijej
�
=aii (i 2 
) (7)

where Ni = fj 2 
 : j 6= i; aij 6= 0g denotes the neighborhood of any i 2 
. Such an error
is called algebraically smooth. According to the remarks at the end of Section 2, it is this
kind of error which has to be well represented in R(IhH). That is, the general goal is to
construct C/F-splittings and de�ne sets of interpolatory variables Pi � C (i 2 F ) along
with corresponding weights wik such that (6) yields a reasonable approximation for each
algebraically smooth vector e.

Obviously, a very \accurate" interpolation in this sense is obtained by directly using
(7), that is, by choosing Pi = Ni and wik = �aik=aii. However, this would require
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selecting a C/F-splitting so that, for each i 2 F , all of its neighbors are contained in C.
Although any such selection can even be seen to yield a direct solver, this approach is of no
real practical relevance since, in terms of computational work and memory requirement,
the resulting method will generally be extremely ine�cient if recursively extended to a
hierarchy of levels [51].

In practice, we want to achieve rapid convergence with as small sets of interpolatory
variables Pi as possible (in order to allow for a rapid coarsening and to obtain reasonably
sparse Galerkin-operators). Various approaches have been tested in practice which cannot
be described in detail here. In the following, we just give an outline of some typical
approaches.

3.1.1 Direct interpolation

We talk about direct interpolation if Pi � Ni. Such an interpolation can immediately be
derived from (7) if we know how to approximate the \non-interpolatory part" (i.e. that
part of the sum in (7) which refers to j 2 Ni n Pi) for an algebraically smooth error. This
approximation is the most critical step in de�ning interpolation.

For M-matrices A, for instance, such an approximation can be obtained by observing
that an algebraically smooth error varies slowly in the direction of strong (large) couplings.
In particular, the more strong couplings of any variable i are contained in Pi, the better
an algebraically smooth error satis�es

1P
k2Pi

aik

X
k2Pi

aikek �
1P

j2Ni
aij

X
j2Ni

aijej (i 2 
) :

Inserting this into (7), we obtain an interpolation (6) with positive weights

wik = ��iaik=aii where �i =

P
j2Ni

aijP
`2Pi

ai`
: (8)

Practically, this means that we have to construct C/F-splittings so that each i 2 F has
a su�ciently large number of strongly coupled C-neighbors which are then taken as the
set of interpolatory variables Pi. (See Section 3.2 regarding some important additional
aspects.)

In the case of (scalar) elliptic PDEs, the largest o�-diagonal entries are usually negative.
If there are also positive o�-diagonal entries, a similar process as before can be applied as
long as such entries are relatively small: Small positive couplings can simply be ignored by
just considering them as weak. However, the situation becomes less obvious, if A contains
large positive o�-diagonal entries. In many such cases, an algebraically smooth error can
be assumed to oscillate along such couplings (e.g. in case of weakly diagonally dominant
s.p.d. matrices A [26, 51]). This can be used to generalize the above approach by, for
instance, a suitable separation of positive and negative couplings, leading to interpolation
formulas containing both positive and negative weights. A corresponding approach has
been proposed in [51] which can formally be applied to arbitrary s.p.d. matrices. However,
the resulting interpolation is heuristically justi�ed only as long as, for any i, those error
components ek which correspond to large positive couplings aik > 0, change slowly among
each other (unless aik is very small in which case its inuence can be ignored).
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In practice, these simple algebraic approaches to construct an interpolation cover a
large class of applications. However, there is no best way yet to automatically construct
an interpolation which is good for arbitrary s.p.d. matrices, at least not by merely con-
sidering the size and sign of coe�cients. For instance, in case of particular higher order
�nite-element dicretizations or discretizations by bilinear elements on quadrilateral meshes
with large aspect ratios, the resulting matrices typically contain signi�cant positive o�-
diagonal entries and are far from being weakly diagonally dominant. In such cases, the
performance of AMG may be only suboptimal. If this happens, it often helps to exploit
some information about the origin of these positive connections rather than to rely only on
information directly contained in the matrix. For instance, one could try to structurally
simplify the given matrix before applying AMG (see, e.g., [41]). Alternative approaches
de�ning the coarsening and interpolation are outlined in Section 7.

3.1.2 More complex interpolations

There are several ways to improve the direct interpolation of the previous section. To out-
line some possibilities, let us assume a C/F-splitting and, for each i 2 F , a set of (strongly
coupled) interpolatory variables Pi � Ni\C to be given. Rather than to immediately ap-
proximate the non-interpolatory part of the i-th equation (7) as done above, one may �rst
(approximately) eliminate all strongly coupled ej (j =2 Pi) by means of the corresponding
j-th equation. The ideas outlined in the previous section can then analogously be applied
to the resulting extended equation for ei, leading to an interpolation with an increased
set of interpolatory variables. The corresponding interpolation (called standard interpola-
tion in [51]) is, in general, considerably more robust in practice. Alternatively, one may
obtain an improved interpolation by applying one F-relaxation step (for more details, see
\Jacobi-interpolation" in Section 5) to either the direct or the standard interpolation.

In both approaches, compared to the direct interpolation, the \radius" of interpola-
tion increases which, in turn, will reduce the sparsity of the resulting Galerkin operator.
However, interpolation weights corresponding to variables \far away" from variable i are
typically much smaller than the largest ones. Before computing the Galerkin operator,
one should therefore truncate the interpolation operator by ignoring all small entries (and
re-scale the remaining weights so that the total sum remains unchanged). Note that, be-
cause of the variational principle, the truncation of interpolation is a \safe process"; in
the worst case, overall convergence may slow down, but no divergence can occur. On the
other hand, a truncation of the Galerkin operators can be dangerous since this destroys
the validity of the variational principle and, if not applied with great care, may even cause
strong divergence in practice.

Apart from other minor di�erences, the original AMG interpolation proposed in [48]
(and realized in the code AMG1R5) can be regarded as a compromise between the direct
interpolation and the standard interpolation described before. There, an attempt was
made to replace all strongly coupled ej (j =2 Pi) in (7) by averages involving only variables
in Pi. However, for this to be reasonable, based on certain criteria, new C-variables had
to be added to a given splitting a posteriori (\�nal C-point choice" in [48]). Although this
approach worked quite well in those cases treated in [48], typically too many additional
C-variables are required in geometrically complex 3D situations, causing unacceptably
high �ll-in towards coarser levels (see Section 4.2 for examples). In practice, the standard
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interpolation outlined above (in combination with a reasonable truncation) has turned out
to be more robust and often considerably more e�cient.

The above improvements of interpolation generally lead to faster convergence but also
increase the computational work per cycle and the required memory to some extent.
Whether or not this �nally pays, depends on the given application. If memory is an issue
(as it is often in commercial environments), one may, instead, wish to simplify interpolation
at the expense of a reduced convergence speed. One way to achieve this is to generally
allow interpolation from variables which are not in the direct neighborhood. Such \long-
range" interpolation [48] generally allows a much faster coarsening and drastically increases
the sparsity on coarser levels. For details of a simple approach which has been tested in
practice, see [51] (\aggressive coarsening" and \multi-pass interpolation").

3.2 The M-matrix case

In practice, it turns out that AMG V-cycle convergence is, to a large extent, independent
of the problem size. Unfortunately, this cannot be proved based merely on algebraic
arguments. Nevertheless, some important aspects can be investigated theoretically, in
particular, matrix-independent two-level convergence can be proved for various classes of
matrices if interpolation is de�ned properly. We here consider the class of M-matrices.
Generalizations to other classes and the corresponding proofs can be found in [51].

3.2.1 Two-level considerations

The following theorem shows that direct interpolation based on (8) ensures matrix-
independent two-level convergence if, for each i 2 F , the connectivity represented in
Pi is a �xed fraction of the total connectivity.

Theorem 3.1 Let A be a symmetric, weakly diagonally dominant M-matrix. With �xed
0 < � � 1 select a C/F-splitting so that, for each i 2 F , there is a set Pi � C \ Ni

satisfying X
k2Pi

jaikj � �
X
j2Ni

jaij j (9)

and de�ne interpolation according to (8). Then the two-level method, using one Gauss-
Seidel relaxation step for (post-) smoothing, converges at a rate which depends only on �
but not on the given matrix,

kSKkA �
p
1� �=4 :

The above theorem con�rms that it is the strong couplings which are important to
interpolate from, while the use of weak couplings would increase the computational work
but hardly a�ect the convergence. The more strong connections are used for interpolation,
the better the convergence can be. Note that this implicitly means that coarsening will be
\in the direction of smoothness" which is the main reason for the fact that AMG's conver-
gence does not sensitively depend on anisotropies. Moreover, AMG's interpolation can be
regarded as an algebraic generalisation of the operator-dependent interpolation introduced
in [1, 21], which explains why the performance of AMG does not sensitively depend on
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large, discontinuous variations in the coe�cients of the given system of equations. For an
illustration, see Section 4.1.

From a practical point of view, the above convergence estimate is a worst-case estimate,
at least if the given problem has some kind of geometric background (which it typically
does). The reason is that the algebraic requirement (9) does not take the location of the
interpolatory C-points, relative to the F-points, into account. For an illustration, consider
the 9-point discretization of the Poisson operator,

1

3h2

24 �1 �1 �1
�1 8 �1
�1 �1 �1

35
h

: (10)

From geometric multigrid, we know that linear interpolation yields fast convergence. The
algebraic interpolation, however, cannot distinguish between geometrically \good" and
\bad" C/F-splittings. For instance, in Figure 2a and 2b we use the same total weight for
interpolation but the second arrangement will clearly result in much better convergence.
Similarly, the arrangement in Figure 2d, although it does not give exactly second order,
will be much better than the one in Figure 2c.

C F F

F F F

C F F

a)  wik ≡ 1 2/

C F F

F F C

C F F

d)  wik ≡ 1 3/

C F

F F

C F

F F F

C F C

F F F

b)  wik ≡ 1 2/

C

F

F

c)  wik ≡ 1 3/

Figure 2: Di�erent C/F-arrangements and corresponding interpolation formulas

This illustrates that the concrete arrangement of a C/F-splitting will have a substantial
inuence on the quality of interpolation, and, through this, on the �nal convergence. In
order to strictly ensure an optimal interpolation, we would have to exploit the geometric
location of (strongly coupled) points among each other. In practice, however, it turns
out to be su�cient to base the construction of a C/F-splitting on the following additional
objective. As a rule, one should arrange the C/F-splitting so that the set of C-variables
builds (approximately) a maximal set with the property that the C-variables are not
strongly coupled among each other (\maximally independent set") and that the F-variables
are \surrounded" by their interpolatory C-variables. This can be ensured to a su�cient
extent by merely exploiting the connectivity information contained in the matrix (for an
algorithm, see [48, 51]). Note that strong connectivity does not necessarily have to be via
direct couplings.

Observing this objective will, in practice, substantially enhance convergence even if
only small sets of interpolatory variables are used.
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3.2.2 Extension to multi-level cycles

Unfortunately, the assumptions on interpolation in Theorem 3.1 are su�cient for uniform
two-level, but not for uniform V-cycle convergence. Although, by chosing � � 1=2, one can
ensure that all recursively de�ned Galerkin operators remain weakly diagonally dominant
M-matrices and, hence, the formal extension to complete V-cycles is straightforward, A-
independent V-cycle convergence cannot be proved. The reason is the limited accuracy
of purely algebraically de�ned interpolation as discussed in the previous section. We will
return to this problem in Section 6 where we consider a worst-case scenario in the context
of \aggregation-type" AMG approaches.

In practice, however, one can observe V-cycle convergence which is, to a large extent,
independent of the problem size if we take the additional objective of the previous section
into account. Furthermore, it turns out to not be important to force the coarse-level
matrices to exactly remain M-matrices. On the contrary, such a requirement puts too
many restrictions on the coarsening process, in particular on lower levels, where the size
of the Galerkin operators then may grow substantially.

In this context, we want to emphasize again that, for an e�cient overall performance,
convergence speed is only one aspect. An equally important aspect is the complexity
(sparsity) of the coarser level matrices produced by AMG (which directly inuences both
the run time and the overall memory requirement). Only if both the convergence speed
and the operator complexity,

cA =
X
`

jm`j=jm1j ; (11)

(m` denotes the number of non-zero entries contained in the matrix on level `) are bounded
independently of the size of A, do we have an asymptotically optimal performance. The
typical AMG performance in case of some complex problems is given in Section 4.2.

3.3 AMG as a pre-conditioner

In order to increase the robustness of geometric multigrid approaches, it has become
very popular during the last years, to use multigrid not as a stand-alone solver but rather
combine it with acceleration methods such as conjugate gradient, BI-CGSTAB or GMRES.
This development was driven by the observation that it is often not only simpler but also
more e�cient to use accelerated multigrid approaches rather than to try to optimise the
interplay between the various multigrid components in order to improve the convergence
of stand-alone multigrid cycles.

This has turned out to be similar for AMG which, originally, was designed to be
used stand-alone. Practical experience has clearly shown that AMG is also a very good
pre-conditioner, much better than standard (one-level) ILU-type pre-conditioners, say.
Heuristically, the major reason is due to the fact that AMG, in contrast to any one-
level pre-conditioner, aims at the e�cient reduction of all error components, short-range
as well as long-range. However, although AMG tries to capture all relevant inuences
by proper coarsening and interpolation, its interpolation will hardly ever be optimal. It
may well happen that error reduction is signi�cantly less e�cient for some very speci�c
error components. This may cause a few eigenvalues of the AMG iteration matrix to
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be considerably closer to 1 than all the rest. If this happens, AMG's convergence factor
is limited by the slow convergence of just a few exceptional error components while the
majority of the error components is reduced very quickly. Acceleration by, for instance,
conjugate gradient typically eliminates these particular frequencies very e�ciently. The
alternative, namely, to try to prevent such situations by putting more e�ort into the
construction of interpolation, will generally be much more expensive. And even then,
there is no �nal guarantee that such situations can be avoided. (We note that this even
happens with \robust" geometric multigrid methods.)

4 Applications and performance

The exibility of AMG and its simplicity of use, of course, have a price: A setup phase, in
which the given problem is analysed, the coarse levels are constructed and all operators
are assembled, has to be concluded before the actual solution phase can start. This extra
overhead is one reason for the fact that AMG is usually less e�cient than geometric
multigrid approaches (if applied to problems for which geometric multigrid can be applied
e�ciently). Another reason is that AMG's components can, generally, not be expected to
be \optimal". They are always constructed on the basis of compromises between numerical
work and overall e�ciency. Nevertheless, if applied to standard elliptic test problems,
the computational cost of AMG's solution phase (ignoring the setup cost) is typically
comparable to the solution cost of a robust geometric multigrid solver [47].

However, AMG should not be regarded as a competitor of geometric multigrid. The
strengths of AMG are its robustness, its applicability in complex geometric situations and
its applicability to even solve certain problems which are out of the reach of geometric
multigrid, in particular, problems with no geometric or continuous background at all. In
such cases, AMG should be regarded as an e�cient alternative to standard numerical
methods such as conjugate gradient accelerated by typical (one-level) pre-conditioners.
We will show some concrete performance comparisons in Section 4.2. Before, however,
we want to illustrate the exibility of AMG in adjusting its coarsening process locally
to the smoothing properties of relaxation by means of a simple but characteristic model
equation.

4.1 A model problem for illustration

We consider the model equation

�(aux)x � (buy)y + cuxy = f(x; y) (12)

de�ned on the unit square with Dirichlet boundary conditions. We assume a = b = 1
everywhere except in the upper left quarter of the unit square (where b = 103) and in
the lower right quarter (where a = 103). The coe�cient c is zero except for the upper
right quarter where we set c = 2. The resulting discrete system is isotropic in the lower
left quarter of the unit square but strongly anisotropic in the remaining quarters. Figure
3a shows what a \smooth" error looks like on the �nest level after having applied a few
Gauss-Seidel point relaxation steps to the homogeneous problem, starting with a random
function. The di�erent anisotropies as well as the discontinuities across the interface lines
are clearly reected in the picture.
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Figure 3: a) \Smooth" error in case of problem (12). b) The �nest and three consecutive
levels created by the standard AMG coarsening algorithm.

It is heuristically clear that such an error can only be e�ectively reduced by means
of a coarser grid if that grid is obtained by essentially coarsening in directions in which
the error really changes smoothly in the geometric sense and if interpolation treats the
discontinuities correctly. Indeed, see Section 3.2, this is exactly what AMG does. First, the
operator-based interpolation ensures the correct treatment of the discontinuities. Second,
AMG coarsening is in the direction of strong connectivity, that is, in the direction of
smoothness.

Figure 3b depicts the �nest and three consecutive grids created by using standard AMG
coarsening and interpolation. The smallest dots mark grid points which are contained only
on the �nest grid, the squares mark those points which are also contained on the coarser
levels (the bigger the square, the longer the corresponding grid point stays in the coarsening
process). The picture shows that coarsening is uniform in the lower left quarter where the
problem is isotropic. In the other quarters, AMG adjusts itself to the di�erent anisotropies
by locally coarsening in the proper direction. For instance, in the lower right quarter,
coarsening is in x-direction only. Since AMG takes only strong connections in coarsening
into account and since all connections in the y-direction are weak, the individual lines
are coarsened independently of each other. Consequently, the coarsening of neighboring
x-lines is not \synchronized"; it is actually a matter of \coincidence" where coarsening
starts within each line. This has to be observed in interpreting the coarsening pattern in
the upper right quarter: within each diagonal line, coarsening is essentially in the direction
of this line.

4.2 Complex applications

For a demonstration of AMG's e�ciency, we consider some complex problems of the type
typically solved in two commercial codes designed for oil reservoir simulation and for
computational uid dynamics, respectively. In both codes, the numerical kernel requires
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Figure 4: Cooling jacket of a four-cylinder engine

the fast solution of scalar elliptic equations. While, in oil reservoir simulation, geometries
are typically fairly simple but the underlying problems have strongly anisotropic and dis-
continuous coe�cients (jumps by several orders of magnitude in a nearly random way), in
computational uid dynamics these problems are Poisson-like but de�ned on very complex,
unstructured grids. For more details on these codes, see [51].

The following test cases are considered3 :

1. Reservoir. The underlying reservoir corresponds to a simple domain discretized
by a mesh consisting of 1.16 million cells. The variation of absolute permeabilities
results in a discontinuous variation of the coe�cients by four orders of magnitude.

2. Cooling jacket. Computation of the ow through the cooling jacket of a four-
cylinder engine. The underlying mesh consists of 100,000 tetrahedra cells (see Figure
4).

3. Coal furnace. Computation of the ow inside the model of a coal furnace. The
underlying mesh consists of 330,000 hexahedra and a few thousand pentahedra,
including many locally re�ned grid patches.

4. Underhood. Computation of the underhood ow of a Mercedes-Benz E-class
model. The mesh is highly complex and consists of 910,000 cells (see Figure 1).

5. E-Class. Computation of the exterior ow over a Mercedes-Benz E-class model (see
Figure 5). The original mesh consists of 10 million cells. Due to memory restrictions,
our test runs refer to two reduced mesh sizes consisting of 2.23 and 2.82 million cells,
respectively. (Note that the underlying mesh also includes all modelling details of
the previous underhood case.)

Memory requirement is a major concern for any commercial software provider. In-
dustrial users of commercial codes always drive their simulations to the limits of their
computers, shortage of memory being a serious one. For these reasons, in a commercial
environment, low-memory AMG approaches are of primary interest, even if the reduction

3The �rst case has been provided by StreamSim Technologies Inc., the other ones by Computational

Dynamics Ltd.
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Figure 5: Model of a Mercedes-Benz E-Class

of the memory requirement is at the expense of a (limited) increase of the total compu-
tational time. Compared to standard one-level solvers, a memory overhead of some tens
of percents is certainly acceptable. In any case, however, the operator complexity cA (11)
must not be larger than 2.0, say. Therefore, in the following test runs, we employ an
aggressive coarsening strategy (cf. Section 3.1) and, in order to make up for the resulting
reduced convergence speed, use AMG as a pre-conditioner rather than stand-alone.

Figure 6 shows AMG's V-cycle convergence histories for each of the above cases, based
on the code RAMG05 mentioned in the introduction. The results reect the general
experience that the convergence of AMG depends, to a limited extent, on the type of
elements used as well as on the type of problem, but hardly on the problem size. In
particular, the three Mercedes meshes are comparable in their type but their size varies
by more than a factor of three. Convergence, obviously, is inuenced only marginally.

Table 1 compares the RAMG05 performance with that of ILU(0) pre-conditioned con-
jugate gradient. For both methods and for each of the above problems, the number of
iterations as well as total run times (in sec), required to reduce the residuals by nine digits,
are shown. Compared to ILU(0)/cg, AMG reduces the number of iterations by up to a
factor of 46. In terms of run time, AMG is up to 19 times faster. The table also shows
that the industrial requirements in terms of memory, mentioned before, are fully met. In
fact, the A-complexity (11) is very satisfactory for all cases, namely, cA � 1:45.

For a comparison, the last column in the table shows the unacceptably high com-
plexity values of RAMG05's forerunner, AMG1R5. As already mentioned in Section 3.1,
AMG1R5 typically performs quite well in the case of 2D problems. In complex 3D cases as
considered here, however, the results clearly demonstrate one of the advantages of the dif-
ferent coarsening and interpolation approaches used in RAMG05. (For more information
on the di�erences in the two codes, we refer to [51].)
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Figure 6: RAMG05 convergence histories for various problems

RAMG05/cg ILU(0)/cg AMG1R5
problem time iter cA time iter cA
jacket 12.3 21 1.44 218.2 926 5.35

furnace 45.7 18 1.47 292.8 286 7.06

reservoir 165.0 18 1.41 2707.0 720 7.66

underhood 172.9 25 1.43 1364.0 461 5.64

eclass (2.23) 438.8 25 1.46 8282.0 1151 6.24

Table 1: Performance of RAMG05 vs. ILU(0)/cg

5 AMG based on mere F-relaxation

In this section, we consider a very di�erent approach [28, 51] which can be used to force
the right hand side of (4) to become small. For a description, we assume vectors and
matrices to be re-ordered so that, w.r.t. a given C/F-splitting, the set of equations (1)
can be written in block form,

Ahu =

�
AFF AFC

ACF ACC

� �
uF
uC

�
=

�
fF
fC

�
= f : (13)

Correspondingly, the interpolation operator is re-written as IhH = (IFC ; ICC)
T with ICC

being the identity operator. Instead of eh = IhHe
H , we simply write eF = IFCeC .
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5.1 The basic idea

The approach mentioned above is based on the fact that the sub-matrix AFF is very well
conditioned if we just select the C/F-splitting accordingly. For instance, for all problems
we have in mind here, we can easily force AFF to be strongly diagonally dominant,

aii �
X

j2F; j 6=i

jaij j � �aii (i 2 F ) (14)

with some �xed � > 0. Assuming this to hold in the following, we can e�ciently approxi-
mate the solution of the F-equations (with frozen eC),

AFF eF +AFCeC = 0 ; (15)

for instance, by relaxation (in the following called F-relaxation). Using this as the basis
for both the de�nition of smoothing and interpolation, we can force the right hand side
of (4) to become as small as we wish.

To be more speci�c, given any eC , interpolation is de�ned by applying � F-relaxation
steps to approximately solve (15). In order to keep the resulting operator as \local" as pos-
sible, we only consider Jacobi-relaxation (below, we refer to this as Jacobi-interpolation).
That is, we iteratively de�ne a sequence of operators,

I
(�)
FC = PFF I

(��1)
FC �D�1

FFAFC where PFF = IFF �D�1
FFAFF ; (16)

starting with some reasonable �rst-guess interpolation operator, I
(0)
FC . Because of (14), we

have rapid convergence (IhH)
(�)eC ! be (�!1) at a rate which depends only on �. Herebe := (beF ; eC)T where beF := �A�1

FFAFCeC denotes the solution of (15).
Similarly, we also use F-relaxation for smoothing (referred to as F-smoothing below).

That is, we de�ne one smoothing step by u �! u where

QFF uF + (AFF �QFF )uF +AFCuC = fF ; uC = uC : (17)

In contrast to the interpolation, we here normally use Gauss-Seidel relaxation, i.e., QFF is
the lower triangular part of AFF (including the diagonal). The corresponding smoothing
operator is easily seen to be

S�
he =

�
S�
FF (eF � beF ) + beF

eC

�
where SFF = IFF � Q�1

FFAFF : (18)

As with the interpolation, for any given e = (eF ; eC)
T , we have rapid convergence S�

he! be
(� ! 1).

5.2 Two-level convergence

For various classes of matrices A one can show that F-smoothing and Jacobi-interpolation
can be used to obtain matrix-independent two-level convergence if the �rst-guess inter-

polation, I
(0)
FC , is selected properly. Moreover, two-level convergence becomes arbitrarily

fast if �, � are chosen su�ciently large. As an example, we again consider the class of
M-matrices (cf. Theorem 3.1).
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Theorem 5.1 Let A be a symmetric, weakly diagonally dominant M-matrix. De�ne the
interpolation by applying � � 0 Jacobi F-relaxation steps, using an interpolation as de�ned
in Theorem 3.1 as the �rst-guess (with �xed 0 < � � 1). Then, if � � 1 Gauss-Seidel F-
relaxation steps are used for (pre-) smoothing, the following two-level convergence estimate
holds,

kKS�kA � kSFF k
�
AFF

+ e�kPFF k�AFF
;

where kSFF kAFF
< 1 and kPFF kAFF

< 1, and both norms as well as e� depend only on �

but not on the matrix A.

In this theorem, we have used the interpolation from Theorem 3.1 as a �rst-guess. In
particular, we assume the C/F-splitting to satisfy (9) which can easily be seen to ensure
strong diagonal dominance (14) with � = � . Although one may think of various other
ways to de�ne the �rst-guess interpolation, we want to point out that a proper selection
of the �rst-guess interpolation is important for obtaining matrix-independent two-level

convergence (it is, for instance, not su�cient to simply select I
(0)
FC = 0). Generally, the

�rst-guess interpolation has to be such that the Galerkin operator which corresponds to

it, A
(0)
H , is spectrally equivalent to the Schur complement, ACC � ACFA

�1
FFAFC , w.r.t.

all matrices in the class under consideration. For more details and generalizations of the
above theorem as well as the proofs, see [51].

Note that the AMG approach discussed here is not really in the spirit of standard
multigrid since smoothing in the usual sense is not exploited. In fact, the role of F-
smoothing is merely to force S�e � be rather than to smooth the error of the full system.
This, together with Jacobi-interpolation, is a \brute force" approach to make kS�e �
IhHeCkA small for all e = (eF ; eC)T .

5.3 Practical remarks

The mere fact that AMG can be forced to converge as fast as we wish, is only of little
relevance in practice. Each F-relaxation step applied to the interpolation increases its
\radius" by one additional layer of couplings, causing increased �ll-in in the Galerkin
operator. The resulting gain in convergence speed is, generally, more than eaten up for by
a corresponding increase of matrix complexities towards coarser levels. Consequently, the
main problem is the tradeo� between convergence and numerical work (which is directly
related to the memory requirements). Note that this is, in a sense, just opposite to
geometric multigrid where the numerical work per cycle is known and controlable but the
convergence may not be satisfactory.

For a practical realisation of Jacobi-interpolation, several things are important to ob-
serve. First, most of the new entries introduced by each additional relaxation step will be
relatively small and can be truncated (before computing the Galerkin operator) without
sacri�cing convergence seriously (cf. also Section 3.1). Second, it is usually not necessary
to perform F-relaxation with the complete matrix AFF . Instead, one may well ignore all
those entries of AFF which are relatively small (and add them to the diagonal, say, in or-
der to preserve the row sums of interpolation). Finally, we want to remark that, although
Theorem 5.1 states fast convergence only if � is su�ciently large, in practice, � > 2 is
hardly ever required (at least if � is not too small).
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Figure 7 shows some V-cycle convergence factors as a function of the mesh size for the
model equation

�((1 + sin(x+ y))ux)x � (ex+yuy)y = f(x; y) ; (19)

discretized on the unit square with uniform mesh size h = 1=N . We �rst observe the
rapid h-independent convergence of the \standard" AMG V-cycle (corresponding to the
approach outlined in Section 3, using one full Gauss-Seidel relaxation step both for pre-
and post-smoothing). Convergence drastically drops, and becomes strongly h-dependent,
if we just replace each full smoothing step by two F-smoothing steps and leave interpolation
unchanged (case � = 0). This has to be expected since the de�nition of interpolation in
classical AMG is based on the assumption that the error after relaxation is algebraically
smooth (cf. Section 3.1). This is, clearly, not true if only partial relaxation, such as F-
relaxation, is performed. However, if we use just one Jacobi F-relaxation step to improve
interpolation (� = 1), convergence becomes comparable to that of the standard cycle.
Results are shown using two di�erent truncation parameters, 0.1 and 0.02, respectively.
Finally, the case � = 2 (and four partial relaxation steps for smoothing rather than two)
gives a convergence which is about twice as fast as that of the standard cycle.
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Figure 7: Convergence factors of AMG based on F-relaxation

We note that, if computational time and memory requirement is taken into account
in this example, the standard V-cycle is more e�cient than the other ones. In particular,
the cycle employing � = 2 is substantially inferior, mainly due to the considerably higher
setup cost. This seems typical for applications for which algebraically smooth errors, in
the sense of Section 3.1, can be characterized su�ciently well. The heuristic reason is that
then, using full smoothing steps, relatively simple interpolations of the type outlined in
Section 3.1 are usually su�cient to approximate algebraically smooth errors and obtain
fast convergence. This is no longer true if mere F-smoothing is employed and, generally,
additional e�ort needs to be invested to \improve" interpolation by F-relaxation in order
to cope with all those error components which are not a�ected by mere F-smoothing.
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(In particular, note that all error components of the form be are not reduced at all by
F-smoothing.)

In general, however, when the characterization of algebraically smooth errors is less
straightforward, the use of F-relaxation provides a means to enhance convergence. Further
numerical experiments employing F-smoothing and Jacobi-interpolation can be found in
[28, 51]. F-relaxation is a special case of a \compatible relaxation" which, in a more
general context, is considered in [13].

6 Aggregation-type AMG

In the previous sections, we have considered increasingly complex interpolation ap-
proaches. In this section, we go back and consider the most simple case that each F-
variable interpolates from exactly one C-variable only. We have already pointed out in
Section 3.2 that the use of such \one-sided" interpolations is not recommendable. In fact,
one important goal of the additional objective introduced in Section 3.2 was just to avoid
such extreme interpolations. On the other hand, the resulting method is so easy to im-
plement that it, nevertheless, has drawn some attention. We will outline the fundamental
problems with this approach in Section 6.2 and summarize three possibilities of improve-
ment in Sections 6.3-6.5. Since we just want to highlight the main ideas, we restrict our
motivations to very simple but characteristic (Poisson-like) problems.

6.1 The basic approach

Let us consider C/F-splittings and interpolations (6) where, for each i 2 F , wik = 1 for
just one particular k 2 C and zero otherwise. Consequently, the total number of variables
can be subdivided into \aggregates" Ik (k 2 C) where Ik contains (apart from k itself)
all indices i corresponding to F-variables which interpolate from variable k (see Figure 8).
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Figure 8: Subdivision of �ne-level variables into aggregates. The arrows indicate which
C-variable an F-variable interpolates from.

With this notation, the computation of the Galerkin operator becomes very simple.
One easily sees that
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IHh Ah I
h
H =

�
aHkl

�
where aHkl =

X
i2Ik

X
j2Il

ahij (k; l 2 C) ; (20)

that is, the coe�cient aHkl is just the sum of all cross-couplings between Ik and Il. Obvi-
ously, regarding the coe�cients aHkl , the particular role of the variables k and l (as being
C-variables) is not distinguished from the other variables; the Galerkin operator merely
depends on the de�nition of the aggregates. Consequently, we might as well associate
each aggregate Ik with some \new" coarse-level variable which has no direct relation to
the C-variable k. The above interpolation then is nothing else than piecewise constant
interpolation from these new coarse-level variables to the associated aggregates.

Originally, such aggregation-type AMG approaches [52, 53, 9] have been developed the
other way around: Coarsening is de�ned by building aggregates (rather than constructing
C/F-splittings), a new coarse-level variable is associated with each aggregate and interpo-
lation IhH is de�ned to be piecewise constant. (That is, the set of coarse-level variables is
generally not considered as a subset of the �ne-level ones.) Clearly, for a given subdivi-
sion into aggregates to be reasonable, all variables in the same aggregate should strongly
depend on each other. Otherwise, piecewise constant interpolation makes no real sense.

As expected, an immediate implementation of this simple coarsening and interpolation
approach leads to very ine�cient solvers, even if used only as a pre-conditioner. Figure
9a shows the typical convergence of both the V- and the W-cycle, used stand-alone and
as pre-conditioner, in solving the model equation (19). Convergence is indeed very slow
and exhibits a strong h-dependency. For a comparison, the much better performance of
classical AMG is depicted in Figure 9b.
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Figure 9: Convergence of a) aggregation-type AMG, b) classical AMG

6.2 The reason for slow convergence

The main reason for this unsatisfactory convergence is that piecewise constant interpola-
tion is not able to approximate the values of smooth error if approximation is based on
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the energy norm (cf. (4)). In fact, the approximation order becomes zero.
To illustrate this, let us consider the most simple case that Ah is derived from dis-

cretizing �u00 on the unit interval with meshsize h, i.e., the rows of Ah correspond to the
di�erence stencil

1

h2
[�1 2 � 1]h ;

with Dirichlet boundary conditions. Let eh be an error satisfying the homogeneous bound-
ary conditions. According to the variational principle, the corresponding two-level correc-
tion, IhHe

H , is optimal in the sense that it minimizes keh � IhHe
HkAh

w.r.t. all possible
corrections in R(IhH). (At this point, the concrete choice of IhH is not relevant.) This
implies that IhHe

H minimizes

kvhk2Ah
= (Ahv

h; vh) =
1

2h2

X
i;j

0
(vhi � vhj )

2 +
X
i

si(v
h
i )

2 (21)

where vh = eh� IhHe
H and si =

P
j a

h
ij . (The prime indicates that summation is only over

neighboring variables i and j.) This, in turn, means that, away from the boundary (where
we have si = 0), the Euclidian norm of the slope of vh is minimal. At the boundary itself
we have si 6= 0, and vh equals zero.

Ωh

ΩH

eh

I eH
h H

Figure 10: Optimal approximation IhHe
H of eh w.r.t. the energy norm

Assuming now the aggregates to be built by joining pairs of neighboring variables, the
result of this minimization is illustrated in Figure 10 (see also [9, 10]). We here consider
a smooth error eh in the neighborhood of the left boundary of the unit interval. On each
aggregate, interpolation is constant and the slope of IhHe

H necessarily vanishes. On the
remaining intervals, the Euclidian norm of the slope of vh becomes minimal if the slope of
IhHe

H equals that of eh. Consequently, IhHe
H has, on the average, only half the slope of eh

(independent of h). That is, the resulting approximation is o� by a factor of approximately
0:5 if compared to the best approximation in the Euclidian sense. (Note that subsequent
smoothing smooths out the \wiggles", but does not improve the quality of the correction.)
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Accordingly, the Galerkin operator, which can easily be computed, turns out to be too
large by a factor of two compared to the \natural" 2h-discretization of �u00.

If the same strategy is now used recursively to introduce coarser and coarser levels,
the above arguments carry over to each of the intermediate levels and, in particular, each
coarser-grid Galerkin operator is o� by a factor of 2 compared to the previous one. A
simple recursive argument shows that errors are accumulated from grid to grid and the
asymptotic V-cycle convergence factor cannot be expected to be better than 1 � 2�m

where m denotes the number of coarser levels. That is, the V-cycle convergence is strongly
h-dependent.

6.3 Improvement by re-scaling the Galerkin operators

The fact that piecewise constant interpolation produces badly scaled AMG components,
was the basis for an improvement introduced in [9]. In that paper, it is demonstrated that
convergence can be substantially improved by just multiplying corrections IhHe

H by some
suitable factor � > 1 (\over-correction"). This is equivalent to re-scaling the Galerkin
operator by 1=�

IHh Ah I
h
H �!

1

�
IHh Ah I

h
H

and leaving everything else unchanged.
In case of the simple model equation �u00 considered in the previous section, � = 2

would be the optimal choice. However, the main arguments carry over to the Poisson
equation in 2D and 3D, assuming a uniform grid and the aggregates to be built by 2� 2
and 2�2�2 blocks of neighboring variables, respectively. In case of more general problems
and/or di�erent grids, the optimal weight is no longer � = 2. Nevertheless, it has been
demonstrated in [9] that a slightly reduced value of � = 1:8 (in order to reduce the risk
of \overshooting") yields substantially improved V-cycle convergence for various types of
problems, if the cycle is used as a pre-conditioner and if the number of coarser levels is kept
�xed (in [9] four levels are always used). Smoothing is done by symmetric Gauss-Seidel
relaxation sweeps.

A comparison of Figure 9a and Figure 11a shows the convergence improvement if re-
scaling by � = 1:8 is applied to the model equation (19). (In contrast to [9], we here have
not restricted the number of coarser levels.) Figure 11a shows that there is indeed a risk
of \overshooting": For larger meshes, the V-cycle starts to diverge. (Note that the above
re-scaling destroys the validity of the variational principle and the iteration process may
well diverge.) Using the V-cycle as a pre-conditioner, eliminates the problem.

We want to point out that the above comparison shows only the tendency of improve-
ments due to re-scaling, the concrete gain depends on how the aggregates are chosen
precisely (which is not optimized here and can certainly be improved to some extent).
In any case, the gain in convergence, robustness and e�ciency of this (very simple and
easily programmable) approach are somewhat limited, one reason being that a good value
of � depends on various aspects such as the concrete problem, the type of mesh and, in
particular, the type and size of the aggregates. For instance, if the aggregates are com-
posed of three neighboring variables (rather than two) in each spatial direction, the same
arguments as in the previous section show that the best weight would be � � 3 in case
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Figure 11: a) Re-scaling appoach (� = 1:8), b) smoothed correction approach

of Poisson's equation. If the size of the aggregates strongly varies over the domain, it
becomes di�cult to de�ne a good value for �.

6.4 Improvement by smoothing corrections

Rather than explicitly prescribing a scaling factor � as before, a reasonable scaling can
also be performed automatically. The idea is to modify the coarse-level correction step (2)
by replacing the true (piece-wise constant) correction eh = IhHe

H by some approximation,
eh0 , and then compute uhnew by

uhnew = uhold + �eh0 with � =
(fh �Ahu

h
old; e

h
0)

(Ahe
h
0 ; e

h
0)

(22)

instead of (2). Note that � is de�ned so that the energy norm of the error of uhnew becomes
minimal.

Clearly, for this minimization to be meaningful, the selection of eh0 is crucial. Most
importantly, eh0 should be some su�ciently smooth approximation to eh. (The choice
eh0 = eh would not give any gain: The variational principle would just imply � = 1.) One
possible selection is

eh0 = S�
he

h (23)

which requires the application of � smoothing steps to the homogeneous equations (starting
with eh). Note that, loosely speaking, this process will leave the \smooth part" of eh

essentially unchanged; only its \high frequency part" will be reduced. Consequently, the
regular smoothing steps, applied to uhnew after the coarse-grid correction, will e�ectively
correct this.

The e�ect of this process of smoothing corrections, is demonstrated in Figure 11b (using
� = 2). Apart from the fact that, compared to the re-scaling approach (see Figure 11a),
convergence is slightly better here, there is no risk of \overshooting" as before since the
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process \controls itself". On the other hand, the additional smoothing steps increase the
overall computing time.

Although smoothing of corrections is a simple means to automatically correct wrong
scalings to some extent, its possibilities are limited. In any case, the resulting overall
performance is generally worse than that of classical AMG.

6.5 Improvement by smoothing the interpolation

A more sophisticated (but also more costly) way to accelerate the basic aggregation-
type AMG approach is developed and analyzed in [52, 53, 54]. Here, piecewise constant
interpolation is only considered as a �rst-guess interpolation which is improved by some
smoothing process (\smoothed aggregation") before the Galerkin operator is computed.
In [52, 53], this smoothing is proposed to be done by applying one !-Jacobi relaxation
step.

To be more speci�c, denote the operator corresponding to piecewise constant interpo-
lation by eIhH . Then the interpolation actually used is de�ned by

IhH = (Ih � !D�1
h Af

h)
eIhH

where Dh = diag(Af
h) and Af

h is derived from the original matrix Ah by adding all weak
connections to the diagonal (\�ltered matrix"). That is, given some coarse-level vector
eH , eh = IhHe

H is de�ned by applying one !-Jacobi relaxation step to the homogeneous

equations Af
hv

h = 0, starting with the piecewise constant vector eIhHeH . (Note that this
process will increase the \radius" of interpolation and, hence, destroy the simplicity of
the basic approach. Moreover, interpolation will generally not be of the special form (5)
any more. Note also that here Jacobi relaxation serves a quite di�erent purpose than
Jacobi F-relaxation as considered in Section 5. In particular, Jacobi-relaxation is here
used as a smoother, applied to the full system of equations, which requires the use of an
under-relaxation parameter, !.)

Ωh

ΩH

Ik−1 Ik Ik+1

ek−1 ek ek+1

smoothed

piecewise constant

Figure 12: Piecewise constant versus smoothed interpolation

To illustrate this process, we again consider the 1D case of �u00 and assume the ag-
gregates to consist of three neighboring variables (corresponding to the typical size of
aggregates used in [52, 53] in each spatial direction). Note �rst that, since all connections

are strong, we have Af
h = Ah. Figure 12 depicts both the piecewise constant interpolation
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(dashed line) and the smoothed interpolation obtained after the application of one Jacobi-
step with ! = 2=3 (solid line). Obviously, the smoothed interpolation just corresponds to
linear interpolation if the coarse-level variables are regarded as the �ne-level analogs of
those variables sitting in the center of the aggregates. Linear interpolation, however, does
not exhibit a scaling problem as described in Section 6.2 for piecewise constant interpola-
tion.

Of course, in more general situations, relaxation of piecewise constant interpolation
will not give exact linear interpolation any more and a good choice of ! depends on
the situation. Nevertheless, even if ! = 2=3 is kept �xed, smoothed interpolation will
typically be much better than the piecewise constant one. (Actually, the real advantage
of smoothed compared to piecewise constant interpolation is that errors, obtained after
interpolation from the coarser level, have a much lower \energy"; see also Section 7.) This
is demonstrated in [53] by means of various examples using a mixture of Gauss-Seidel
and SOR sweeps for error smoothing. The tendency is to compose aggregates of three
neighboring variables in each spatial direction. Note that a good value for ! depends
not only on the problem and the underlying mesh, but also on the size of the aggregates.
If, instead, only two neighbors would be aggregated in each spatial direction, one easily
con�rms that ! � 0:5 should be chosen.

In general, classical AMG and AMG based on smoothed aggregation perform com-
parably if applied to relatively smooth (Poisson-like) problems. A certain advantage of
aggregation-type AMG is that it, often, requires less memory than classical AMG (due
to its very fast coarsening which causes a particularly low operator complexity cA). On
the other hand, this is payed for by a reduced robustness: The aggregation-type code
seems to require acceleration by conjugate-gradient to maintain an acceptable e�ciency
and robustness in more complex situations. Since classical AMG puts more e�ort into
the construction of interpolation and performs a slower coarsening, its performance gen-
erally depends on aspects such as strong discontinuities only to a lesser extent (for some
examples, see [51]).

7 Further developments and conclusions

Algebraic multigrid provides a general approach to developing robust and e�cient methods
for solving large classes of matrix equations such as those typically arising in the numerical
solution of elliptic PDEs, on structured as well as unstructured grids, in 2D and 3D. The
construction of suitable interpolation operators (including the coarsening process) is crucial
for obtaining fast and (nearly) h-independent convergence. Generally, the more e�ort is
put into this construction, the faster the convergence can be, but, unfortunately, the
required numerical work may increase even faster. That is, the main problem in designing
e�cient AMG algorithms is the tradeo� between convergence and numerical work, and
keeping the balance between the two is the ultimate goal of any practical algorithm.

We have summarized and discussed various possibilities to realize concrete AMG al-
gorithms. For most applications of the type discussed in this paper, methods based on
the classical AMG approach still belong to the most e�cient ones. An extensive list of
experiments, based on the original code AMG1R5, can be found in [17]. Robustness and
e�ciency can substantially be improved, in particular in case of complex 3D meshes, by
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employing modi�cations as mentioned in Section 3.1 and 5 (for more details, see [51]).
AMG methods based on smoothed aggregation (see Section 6.5) are an e�cient alterna-
tive to classical AMG, at least if employed as a pre-conditioner rather than stand-alone.
Further developments and applications which are close to the classical AMG ideas are, for
example, contained in [16, 23, 24, 26, 31, 33, 40, 62, 63]. Related approaches, but with
a focus on di�erent coarsening and interpolation strategies, are, for example, found in
[22, 27]. Applications of the aggregation-type approach in computational uid dynamics
are found in [30, 39, 46, 59].

However, there are still many applications for which algebraically de�ned interpola-
tion, and hence the resulting AMG performance, are not yet satisfactory. For instance,
one of the major current research activities in AMG aims at its generalization to e�ciently
treat systems of PDEs such as linear elasticity problems. Although AMG has successfully
been applied to various cases (see, e.g., [9, 14, 32, 48, 53]), its development has not yet
reached a state where a particular approach is well-settled. However, even for scalar ap-
plications, there are still questions about best ways to de�ne coarsening and interpolation,
for instance, if the given matrix is s.p.d., contains relatively large positive o�-diagonal
entries, and is far from being weakly diagonally dominant. In such cases, the performance
of classical AMG may be only suboptimal.

It is often possible to avoid such situations by simplifying the given matrix before
applying AMG [41]. One can also imagine situations where it would be advantageous
(and easy) to provide AMG with some additional information on the problem at hand.
For instance, information on the geometry (in terms of point locations) or more concrete
descriptions on what an \algebraically smooth" error looks like (e.g. in form of some
user-provided \test-vector(s)"). This additional information can be used to �t AMG's
interpolation in order to approximate certain types of error components particularly well.
Straightforward possibilities have already been pointed out in [48].

In the following, we briey summarize a few more recent approaches to de�ne inter-
polation which aim at increasing the robustness in cases such as those mentioned above.

A new way to construct interpolation (AMGe, [14]) starts from the fact that an al-
gebraically smooth error is nothing else but an error which is slow-to-converge w.r.t. the
relaxation process. Hence, an algebraically smooth error, generally, corresponds to the
eigenvectors of A belonging to the smallest eigenvalues. Instead of de�ning interpolation
by directly approximating (7), the goal in [14] is to de�ne interpolation so that eigenvec-
tors are interpolated the better the smaller the associated eigenvalue is. To satisfy this
by explicitly computing eigenvectors is, of course, much too expensive. However, in the
case of �nite element methods { assuming the element sti�ness matrices to be known {
one can derive measures (related to measures used in classical multigrid theory) whose
minimization allows the determination of local representations of algebraically smooth er-
ror components in the above sense. The added robustness has been demonstrated in [14]
by means of certain model applications. However, the approach is still in its infancy. In
particular, signi�cant development work still has to be invested to link the processes of
coarsening and interpolation de�nition in order to obtain an optimal algorithm. In any
case, it is an interesting new approach which has the potential of leading to more generally
applicable AMG approaches.

Other algebraic approaches, designed for the solution of equations derived from �nite-
element discretizations, have been considered in [32, 58]. Both approaches are aggregation
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based and the coarse space basis functions are de�ned so that their energy is minimized in
some sense. (In the �nite-element context it is natural to de�ne interpolation implicitly by
constructing the coarse space basis functions.) This does not require the element sti�ness
matrices to be known, but leads to a global (constraint) minimization problem the exact
solution of which would be very expensive. However, iterative solution processes are
proposed in both papers to obtain approximate solutions, indicating that the extra work
(invested in the setup phase) is acceptable. While [58] concentrates on scalar applications,
an extension to systems of PDEs (from linear elasticity) is one major aspect in [32]. Special
attention is paid to the correct treatment of zero energy modes (e.g. rigid body modes
in case of linear elasticity): such modes should be contained in the span of the coarse
space basis functions, at least away from Dirichlet boundaries. (Note that, for typical
scalar problems, this corresponds to the requirement that constants should be interpolated
exactly away from Dirichlet boundaries, cf. (8).) It is interesting that the approach in [32]
can be regarded as an extension of the earlier work [53] on smoothed aggregation: if only
one iteration step is performed to approximately solve the energy minimization problem,
the resulting method coincides with the smoothed aggregation approach. In contrast to
the latter, however, further iterations will not increase the support of the basis functions
(i.e., the radius of interpolation). Some test examples in [32] indicate the advantages of
this new interpolation in terms of convergence speed. Unfortunately, however, this bene�t
is essentially o�set by the expense of the minimization steps.

There are various other papers with focus on the development of multigrid methods
to solve �nite-element problems on unstructured grids. Although some of them are also
based on algorithmical components which are, more or less, algebraically de�ned, most of
them are not meant to be algebraic multigrid solvers in the sense as considered in this
paper. We therefore do not want to discuss such approaches here further but rather refer,
for example, to [15] and the references given therein.

In the approach of [56], A is not assumed to be symmetric, and interpolation and
restriction are constructed separately. Interpolation, for instance, is constructed so that
a smooth error, She

h, is interpolated particularly well w.r.t. the Euclidian norm, k:k2.
More precisely, the attempt is to make

kShe
h � IhHe

Hk2 ;

where eH denotes the straight injection of She
h to the coarse level, as small as possible

(cf. (4)). In [56], this leads to certain local minimizations which are used to �nd, for each
variable, pairs of neighboring variables which would allow a good interpolation in the above
sense, and, at the same time, compute the corresponding weights (of both the interpolation
and the restriction). Based on this information, a C/F-splitting is constructed which allows
each F-variable to interpolate from one of the pairs found before. A heuristic algorithm is
used to minimize the total number of C-variables.

In this context, we want to point out that, although classical AMG has been developed
in the variational framework, it has successfully been applied to a large number of non-
symmetric problems without any modi�cation. This can be explained heuristically but no
theoretical justi�cation is available at this time. In the context of smoothed aggregation-
based AMG, a theoretical analysis can be found in [25].

An important aspect which has not been addressed in this paper is the parallelisation
of AMG. An e�cient parallelisation of classical AMG is rather complicated and requires
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certain algorithmical modi�cations in order to limit the communication cost without sac-
ri�cing convergence signi�cantly. Most parallelisation approaches investigated up to now
either refer to simple aggregation-based variants (e.g. [46]) or use straightforward domain
decomposition techniques (such as Schwarz' alternating method) for parallelisation. A
parallelisation strategy which stays very close to the classical AMG approach is presented
in [29]. Results for complex 3D problems demonstrate that this approach scales reasonably
well on distributed memory computers as long as the number of unknowns per processor is
not too small. The method discussed in [56] is also available in parallel. There are several
further ongoing parallelisation activities, for instance, at the University of Bonn and the
National Laboratories LLNL [18] and LANL, but no results have been published by now.

It is beyond the scope of this paper to also discuss the variety of hierarchical algebraic
approaches which are not really related to the multigrid idea in the sense that these
approaches are not based on the fundamental multigrid principles, smoothing and coarse-
level correction. There is actually a rapid and very interesting ongoing development of
such approaches. For completeness, however, we include some selected references. Various
approaches based on approximate block Gauss elimination (\Schur-complement" methods)
are found in [2, 3, 4, 5, 19, 36, 37, 38, 45, 55]. Multi-level structures have also been
introduced into ILU type pre-conditioners, for example, in [49]. Very recently, some hybrid
methods have been developed which use ideas both from ILU and from multigrid [6, 7, 8,
42, 43, 44]. For a further discussion, see also [57].

Summarizing, the development of hierarchically operating algebraic methods to e�-
ciently tackle the solution of large sparse, unstructured systems of equations, currently
belongs to one of the most active �elds of research in numerical analysis. Many di�erent
methods have been investigated but, by now, none of them is really able to e�ciently deal
with all practically relevant problems. All methods seem to have their range of applica-
bility but all of them may fail to be e�cient in certain other applications. Hence, the
development in this exciting area of research has to be expected to continue for the next
years.
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