

4BO.2.6

^{1,2}Nils Klasen, ¹Florian Lux, ¹Julian Weber,
¹Daniel Weißer, ¹Torsten Rößler, ¹Achim Kraft

¹Fraunhofer Institute for Solar Energy Systems ISE

²Karlsruhe Institute of Technology KIT, Institute of Applied Materials – Materials and Biomechanics

38th European Photovoltaic Solar Energy Conference and Exhibition EUPVSEC Lisbon / online, 07.09.2021

www.ise.fraunhofer.de

Shading of Serial Interconnected Solar Cells Bypass Diodes and the *I-V* curve

Shading of serial interconnected solar cells

Shading of Serial Interconnected Solar Cells Bypass Diodes and the *I-V* curve

Shading of serial interconnected solar cells

I $I_{op} = I_{sh} \rightarrow$ (reduced) power generation in both solar cells

Shading of Serial Interconnected Solar Cells Bypass Diodes and the *I-V* curve

Shading of serial interconnected solar cells

- I $I_{op} = I_{sh}$ (reduced) power generation in both solar cells
- $I_{op} = I_{MPP} \rightarrow$ power dissipation in shaded solar cell

- Problem: current mismatch between solar cells
- State of the art measure:
 - Implementation of bypass diodes

Reduction of Shading Losses Adapted Solar Module Topologies

- Investigated solar module topologies
 - Conventional full cell
 - Butterfly half cell
 - Shingle string
 - Shingle matrix ^[1]
- LTspice shading simulations ^[2,3]

[1] A. Mondon et al., 2018 [2] N. Klasen et al., submitted to IEEE Journal of Photovoltaics, 2021 [3] N. Klasen et al., accepted Progress in Photovoltaics, 2021

Reduction of Shading Losses Adapted Solar Module Topologies

- Investigated solar module topologies
 - Conventional full cell
 - Butterfly half cell
 - Shingle string
 - Shingle matrix ^[1]
- LTspice shading simulations ^[2,3]
 - Module topologies
 - *I-V* data: extended two-diode model ^[4]
 - Shading scenarios
 - Criterion for comparison

[2] N. Klasen et al., submitted to IEEE Journal of Photovoltaics, 2021 [3] N. Klasen et al., accepted Progress in Photovoltaics, 2021

[4] H. S. Rauschenbach, Solar cell array design handbook, 1980

full sized solar cells half-cut solar cells 1/5th shingle solar cells 1/5th shingle solar cells 60 Pcs 120 Pcs. 300 Pcs. 300 Pcs.

Shingle String

Shingle Matrix

Butterfly

Conventional

[1] A. Mondon et al., 2018

[2,3]

Shading Scenarios Rectangular and Random Shading

- Shading is arbitrary
 - **Rectangular:** Poles, antennae, chimneys, other PV modules, ...
 - **Random:** Leaves, bird droppings, branches / trees, ...

Shading Scenarios Rectangular and Random Shading

Shading is arbitrary

- **Rectangular:** Poles, antennae, chimneys, other PV modules, ...
- **Random:** Leaves, bird droppings, branches / trees, ...

Rectangular shading

- 4 parameters (w_{sh} , α_{sh} , $C_{sh}(x, y)$)
- Evaluation of A_{sh} from parameters
- Scenarios: 2000 combinations, Latin Hypercube Sampling ^[1,2]

$$A_{sh} = \frac{A}{A_0}$$

 A / m^2 : shaded area A_0 / m^2 : module area

Shading Scenarios Rectangular and Random Shading

- Shading is arbitrary
 - **Rectangular:** Poles, antennae, chimneys, other PV modules, ...
 - **Random:** Leaves, bird droppings, branches / trees, ...

Random shading

- 2 parameters ($A_{\rm sh}$, $n_{\rm sh}$)
- 25x25 pixel per shingle solar cell
- $n_{\rm sh} = 10$
- Scenarios: 1250 equidistant steps in A_{sh} from 0 to 1
- All scenarios are transferable between topologies

- Limit functions
 - Assumption: electrically ideal interconnection
 - $\square P \propto I \propto A \Rightarrow P_{\max} = P_0(1 A_{sh})$

[1] M. A. Sattler and S. Sharpies, "FIELD MEASUREMENTS OF THE TRANSMISSION OF SOLAR RADIATION THROUGH TREES", 1988

- Limit functions
 - Assumption: electrically ideal interconnection
 - $P \propto I \propto A \Rightarrow P_{\text{max}} = P_0(1 A_{\text{sh}})$
 - $P \propto I \propto E_{\rm sh} \twoheadrightarrow P_{\rm min} = P(A_{\rm sh} = 1) = P_0 E_{\rm sh}$

- Limit functions
 - Assumption: electrically ideal interconnection
 - $P \propto I \propto A \Rightarrow P_{\text{max}} = P_0(1 A_{\text{sh}})$
 - $P \propto I \propto E_{\rm sh} \twoheadrightarrow P_{\rm min} = P(A_{\rm sh} = 1) = P_0 E_{\rm sh}$
- Performance function $P(A_{sh})$
 - Obtain by LTpsice simulations

- Limit functions
 - Assumption: electrically ideal interconnection
 - $P \propto I \propto A \Rightarrow P_{\text{max}} = P_0(1 A_{\text{sh}})$
 - $P \propto I \propto E_{\rm sh} \twoheadrightarrow P_{\rm min} = P(A_{\rm sh} = 1) = P_0 E_{\rm sh}$
- Performance function $P(A_{sh})$
 - Obtain by LTpsice simulations
- Shading resilience SR = "how close is a topology to the ideal shading behavior?"
 - Integration from $A_{\rm sh} = 0$ to 1

$$SR = \frac{2}{(1-\hat{\imath})P_0} \int_0^1 P(A_{\rm sh}) \, dA_{\rm sh} - \frac{2\hat{\imath}}{1-\hat{\imath}} \quad [1] \qquad \qquad \hat{\imath} = \frac{E_{\rm sh}}{E_0}$$

[1] N. Klasen et al., submitted to IEEE Journal of Photovoltaics, 2021

Results Rectangular Shading

	Shading Resilience SR	
Topology	Rectangular	Random
Conventional	0.213	
Butterfly		
Shingle string		
Shingle matrix		

- Horizontal lines:
 - Conductive bypass diode at shaded module part
 - Remaining part of module unshaded

Results Rectangular Shading

	Shading Resilience SR	
Topology	Rectangular	Random
Conventional	0.213	
Butterfly	0.461	
Shingle string		
Shingle matrix		

- Horizontal lines:
 - Conductive bypass diode at shaded module part
 - Remaining part of module unshaded

Results Rectangular Shading

	Shading Resilience SR	
Topology	Rectangular	Random
Conventional	0.213	
Butterfly	0.461	
Shingle string	0.602	
Shingle matrix	0.692	

- Horizontal lines:
 - Conductive bypass diode at shaded module part
 - Remaining part of module unshaded
- Shingle solar modules
 - Produce power output up to $A_{\rm sh} = 1$
 - Many data points close to P_{max}

[1] N. Klasen et al., submitted to IEEE Journal of Photovoltaics, 2021

Results Random Shading

	Shading Resilience SR	
Тороlоду	Rectangular	Random
Conventional	0.213	0.207
Butterfly	0.461	0.319
Shingle string	0.602	0.409
Shingle matrix	0.692	0.554

- Lower *SR* in random scenarios for all topologies
 - Less data points close to P_{max}
 - Reduced MPP currents ^[2]
 - Less distinct horizontal "diode"-lines
 - Overall reduced SR
- Reason: Distribution of shading on entire module surface

N. Klasen *et al.*, submitted to IEEE Journal of Photovoltaics, 2021
Conference Proceedings

Summary

- Definition of the **Shading Resilience** *SR*:
 - Valid for arbitrary shading
 - Applicable on arbitrary module topologies
 - Summarizes response to shading in one value

- Investigation of four module topologies:
 - Shingle PV modules yield up to 3.5 times more energy compared to the conventional reference.

Thank You for Your Attention!

DBU

Bundeset ftung Umy