ICAE 2021

Frabrication and Evaluation of 4H-SiC Double Trench MOSFETs on 6-inch Wafer

Minwho Lim¹, Seongjun Kim², Oleg Rusch¹, Min-Jae Kang², Min-Je Sung², Juyoung Kwak², Nam-Suk Lee², Hoon-Kyu Shin², Tobias Erlbacher¹, Anton Bauer¹

¹Fraunhofer Institute for Integrated Systems and Device Technology IISB, Germany ²National Institute for Nanomaterials Technology, Pohang University of Science and Technology, Korea

6th International Conference on Advanced Electromaterials

HYBRID CONFERENCE

November 9 – 12, 2021 Ramada Plaza Jeju Hotel, Jeju, Korea

Concept of TrenchMOS for Additional Shielding

- Trench structure compared to planar structure
 - General Higher cell density w/o JFET region
 - General Higher mobility due to vertical channels
 - \rightarrow Reduction of resistance
 - \rightarrow Saving chip area and chip cost
 - Over the second s
 - Gate oxide reliability has to be improved
 → Additional shielding required
- Double-TrenchMOS
 - Deep p-well by double trench for shielding
 - V_{block} = 1746 V demonstrated
 - $\rho_{on} = 2.8 \text{ m}\Omega \text{cm}^2 \text{ demonstrated (ROHM)}$

K. Okumura, N. Hase, K. Ino, Ultra Low On-Resistance SiC Trench Devices, www.rohm.com/eu

Fabrication Process

- Target 1200 V / 20 A
- 6 inch SiC Epi-wafers
- Design the active area and edge termination
- Fabrication and electrical characterization performed at POSTECH-NINT and Fraunhofer IISB

Reshaped Trench Patterning

- Trench patterning by using oxide hard mask
 - PECVD oxide → Photolithography → Wet etching PR
 → Dry etching hard mask and SiC
- Trench reshape by using high temperature annealing in H₂ ambient
 - Beneficial for shielding efficiency verified by TCAD simulation
 - As pre-treatment for gate oxide → Improved SiCsurface quality

Trench Patterning

Verification Ion Implantation

- TrenchMOS device modeled by
 - TCAD process- and device simulation implemented in Synopsis Sentaurus
 - Kinetic Monte Carlo (KMC) ion-implantation with various doses, energies and tilt angles of ion-beam
 - Imitated actual unit cell formation (depth, width, flanken angle etc.)
 - Device simulation for on- and off-state performd with appropriate definition of external bias, blocking model, interface density and electrode resistance
- TCAD process simulation calibrated by
 - SEM dopant contrast (quantitative)
 - SIMS measurement (qualitative)

Electrical Characteristics

- 1200 V / 20 A achieved
- Room for improvement in the electrical characteristics
- Blocking capability
 - Short channel effect: Possibility for higher blocking voltage (~ 1.6 kV) with optimized p-well implantation parameters determine the vertical channel length
- Output- and transfer characteristic
 - Design optimization: Short circuit between source and gate via → Increased leakage current
 - Misalignment of field oxide and loss of shallow n⁺ source region caused by dry etching and thermic oxidation should undergo improvement
 - Gate oxide optimization for higher mobility, dielectric breakdown field strength and improved threshold voltage shift

Electrical Characteristics

Thank You!

