Simulation für die Praxis: Effiziente Gestaltung für Beschichtungen

Forum O&S, 1.6.2016, Stuttgart Peter Schwanzer, Klaus Schmid

Die Fraunhofer-Gesellschaft Standorte in Deutschland

- mehr als 20 000Mitarbeiterinnen und Mitarbeiter
- 1,8 Mrd. Budget
- 60 Institute

Die führende Organisation für angewandte Forschung in Europa!

Institutszentrum Stuttgart IZS

Fraunhofer IPA als Teil des Forschungscampus der FhG

- Drittgrößtes Institut der Fraunhofer-Gesellschaft
- 500 Mitarbeiter I 64,2 Mio. Euro Betriebshaushalt I 20,4 Mio. Euro Wirtschaftserträge
- Kompetenz in Produktionstechnik und Automatisierung seit 1959

Hinweis: Zahlen beziehen sich auf das Gesamtjahr 2015

Organisation Fraunhofer IPA

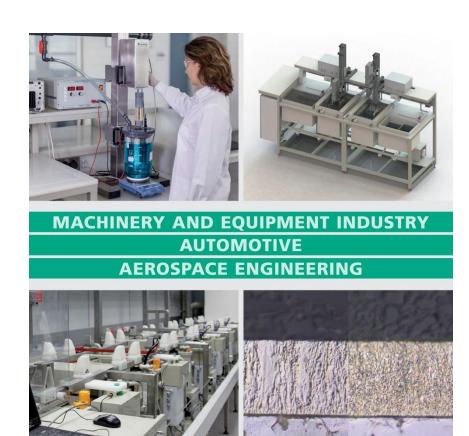
Institutsleitung Prof. Dr.-Ing. Thomas Bauernhansl Oberflächen-Produktions-Prozess-**Automatisierung** organisation technologie technologie **Automotive** Nachhaltige Produktion und Qualität Steuerungs- und Antriebstechnik Maschinen- und Roboter- und Assistenzsysteme **Anlagenbau** Reinst- und Mikroproduktion Bild- und Signalverarbeitung **Biomechatronische Systeme** Laborautomatisierung und Beschichtungssystem- und Produktionsmanagement Elektronik und **Funktionale Materialien Bioproduktionstechnik** Leichtbautechnologien Mikrosystemtechnik Fabrikplanung und Effizienzsysteme **Energiewirtschaft** Galvanotechnik Lackiertechnik Medizin- und **Biotechnik Prozessindustrie** Kompetenzzentrum digITools für die Produktion **Stuttgarter Produktionsakademie**

Weitere Standorte

Fraunhofer Anwendungszentrum Großstrukturen in der Produktionstechnik AGP, Rostock

Fraunhofer Austria Research GmbH, Wien Produktions- und Logistikmanagement Fraunhofer Projektgruppe für Produktionsmanagement und Informatik PMI, Budapest Fraunhofer Project Center for Electroactive Polymers at AIST Kansai Fraunhofer Projektgruppe für Automatisierung in der Medizin und Biotechnologie PAMB, Mannheim Fraunhofer Projektgruppe für Regenerative Produktion, Bayreuth

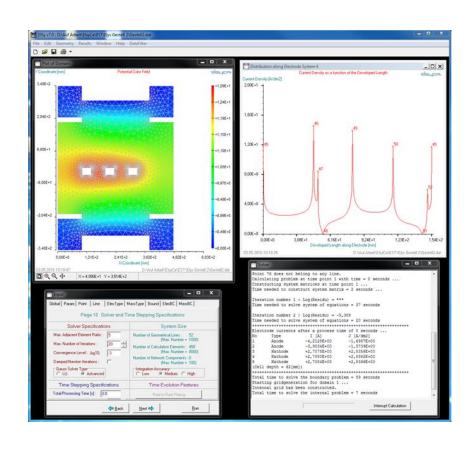
Stand: 01.2016



Galvanotechnik am Fraunhofer IPA

Abteilungsvorstellung

- Ursprünge in den 70ern
- 22 Mitarbeiter
 - Werkstoffwissenschaften
 - Chemie
 - Ingenieurswesen
- 1,6 Mio. € Budget
- 87% durch Projekte finanziert
 - 51% aus öffentlich geförderten Projekten
 - 36% durch Industrieprojekte
- 600 m² Technikum


Simulation für die Galvanotechnik

Verwendung am IPA

- FEM-Software
 - Elsy2D (Fa. Elsyca)
- seit 1997
- 2 bis 4 Projekte / Jahr

Anwendung

- Primäre Stromdichteverteilung
- OptimierungSchichtdickenverteilung

Stromdichte

Begriffe & Definitionen

- Primäre Stromdichteverteilung
 - Aus Elektrostatik (Ohm'sches Gesetz) resultierenden Verteilung
 - Geometrie von Anoden, Kathoden und Reaktionsraum
- Sekundäre Stromdichte
 - Berücksichtigung von Durchtrittsüberspannungen und Elektrodenreaktionen
- Tertiäre Stromdichte
 - Berücksichtigung von Stofftransport
 Diffusionschichten → Hydrodynamische Situation relevant

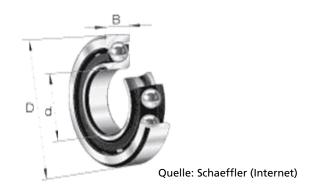
Stromdichteverteilung Zusammenhänge und Auswirkungen

- Stromdichte
 - Konzentration an Ecken und Kanten
 - Lokale Ungleichmäßigkeiten
- Faraday-Gesetz
 - Abgeschiedenes Metall ist proportional zur Ladungsmenge
- → Ungleiche Stromdichteverteilung erzeugt Schichtdickenunterschiede

Gleichmäßige Schichtdicke wichtig für effiziente Produktion

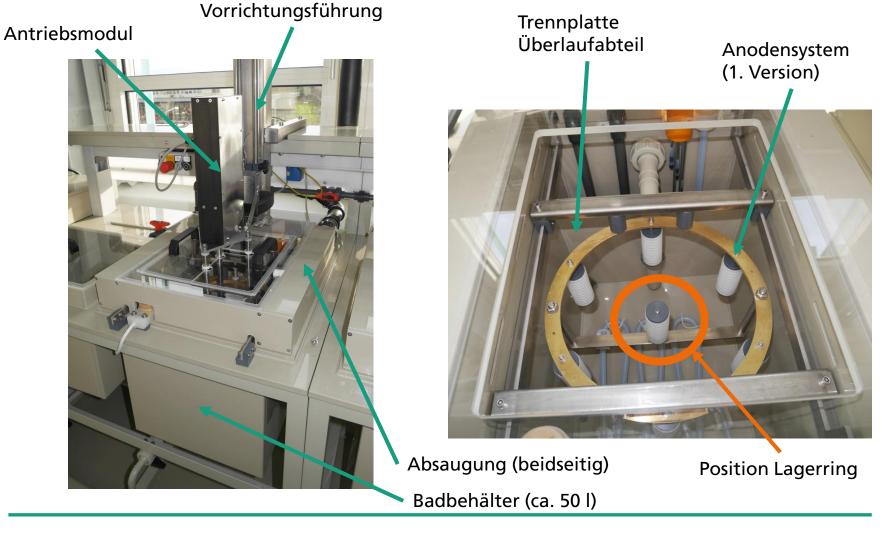
Anwendung der Stromdichtesimulation Fokussierung primäre Verteilung in 2D

- Einschränkung auf primäre Stromdichte
 - Position Anoden & Bauteile direkt beeinflussbar
 - Optimierungen durch Blenden etc. möglich
 - → Berücksichtigung mechanischer Umsetzbarkeit bereits bei Simulation
- Vorteile 2D-Berechnung
 - Vereinfachung notwendig, Schnitte
 - → Aufarbeitung der wichtigsten Zusammenhänge
 - Geringer Berechnungsaufwand
 - → Wenige Sekunden bis Ergebnis, Rechnung vieler Varianten

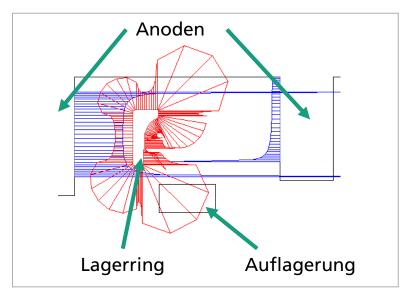

Aufwand / Nutzen optimal

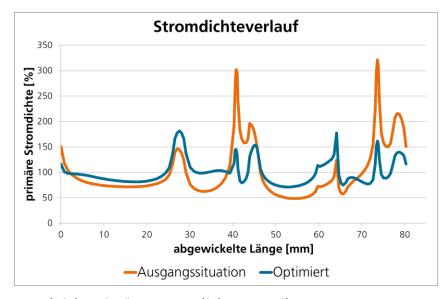
Aufgabenstellung

- Aufgabe
 - Schrägkugellager
 - Korrosionsschutz (Meerwasser)
- Anforderungen
 - Endmaßgenau (25 μm)
 - Passungen auf Wellen- / Gehäusedurchmesser:
 Zielschichtdicke +/- 5 µm
 - Enge Formtoleranz Lauffläche Zielschichtdicke +/- 2 µm
 - Keine Nacharbeit
 - Korrosive Belastung
 - Vollflächige ohne Fehlstellen



Nickel-Wolfram-beschichtete Ringe: Außenring (links) und Innenring (rechts)


Beschichtungssituation - Technikumsanlage


Simulation (Beispiel Innenring)

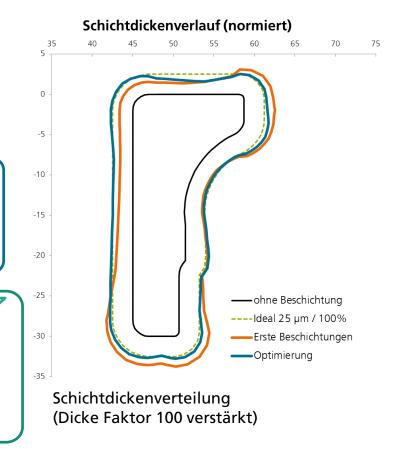
Querschnitt Simulationsmodell

- Stromdichte normiert auf 100%
- Modellierung Querschnitt

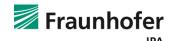
Vergleich primäre Stromdichteverteilung

Ergebnisse (Beispiel Innenring)

Ausgangslage: Gut

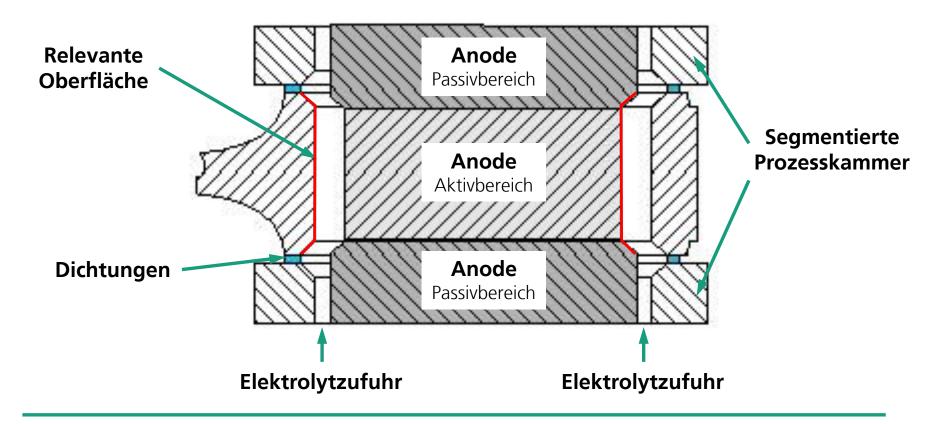

- Gute Streufähigkeit
- Anlage f
 ür Lagerringe konstruiert

Optimierung


- Blenden
- Anoden
- Eintauchtiefe

Erreichung Zielwerte

- Messwerte Lauffläche +/- 1,5 μm
- Werte Innendurchmesser +/- 3µm
- Gleiche Schichtdicke Lauffläche & Innendurchmesser



Anwendungsbeispiel 2: Innenbeschichtung

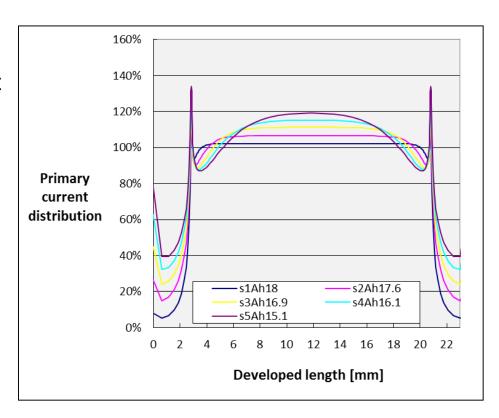
Aufgabe: Prototyp und Machbarkeitsprüfung

Anwendungsbeispiel 2: Innenbeschichtung Umsetzung

Versuchsanlage (inkl. Gleichrichter, Bäder etc.)

Prototyp Beschichtungsvorrichtung

Anwendungsbeispiel 2: Innenbeschichtung


Optimierungsziel

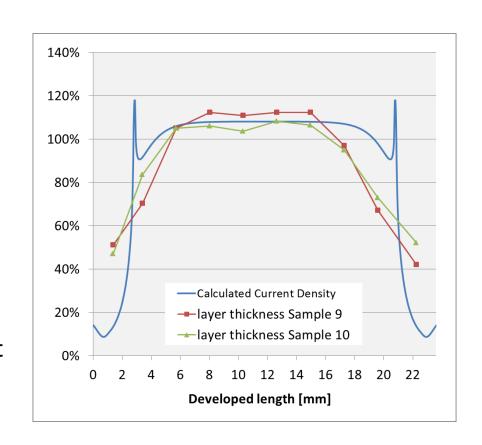
Hauptziel

- Konvexer Schichtverlauf
- Kein signifikanter Kanteneffekt

Weitere Ziele

- Hohe Abscheiderate
- Gleichmäßige Schichtdicken
- Homogene Legierungszusammensetzung (Kupferlegierungsschicht)

Anwendungsbeispiel 2: Innenbeschichtung


Ergebnisse

Was wurde erreicht?

- Konvexer Schichtverlauf
- Toleranzen gerade noch i. O.
- Abscheiderate bis 20 µm/min

Ungünstige Effekte

- Asymmetrischer Schichtverlauf
- Unterschiede in der Legierungszusammensetzung
- Tertiäre Stromdichtverteilung mit wichtigem Einfluss

Anwendungsbeispiel 3: Gestellbeschichtung (Nickel) Aufgaben

Bauteile

Stahl mit Cu-Ni-Schicht

Probleme

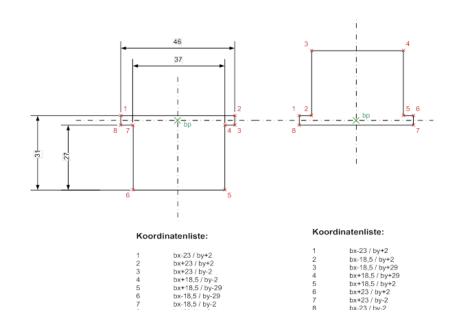
- Korrosion auf der Rückseite
- Dünnere Schicht auf der Rückseite
- Hohe Schwankungen

Lösungsansatz

Überarbeitung und Vereinheitlichung der Gestelle

(Teile vertraulich)

Anwendungsbeispiel 3: Gestellbeschichtung (Nickel)


Geometrieerstellung

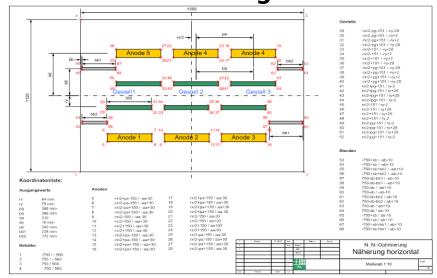
Vereinfachung

- …ist NICHT einfach
- ...ist notwendig für gute Ergebnisse

Fragestellungen

- Welches sind relevante Oberflächen?
- Welche Bereich sind unwichtig?
- Wo liegen die Grenzen der Berechnung?
- Welche Ergebnisse sind zu erwarten?

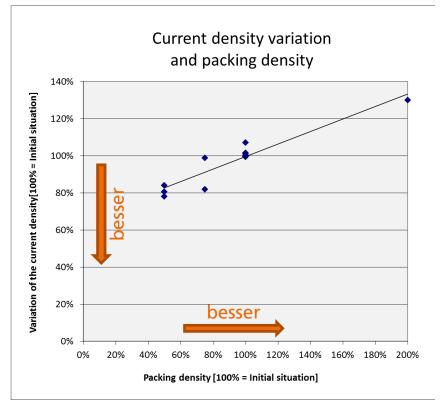




Anwendungsbeispiel 3: Gestellbeschichtung (Nickel) Abbildung des Bads

Bereich eines Gestells für Detailbetrachtung

Gesamtes Bad mit 3 Gestellen in 2 Richtungen

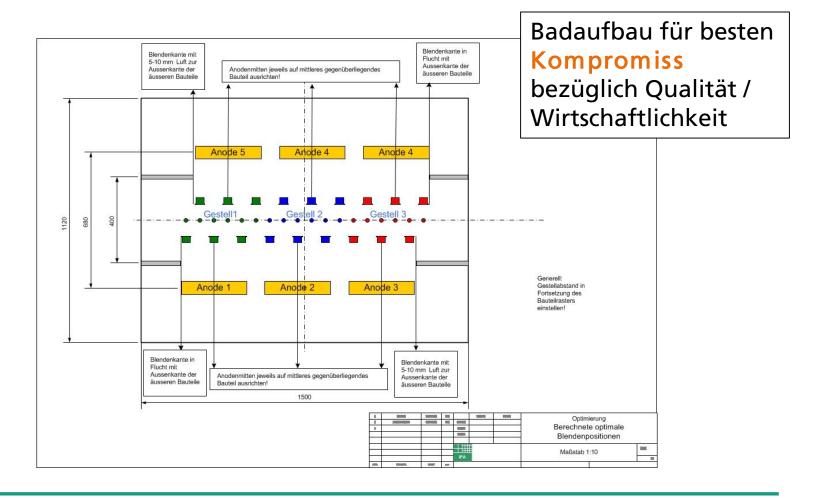

Anwendungsbeispiel 3: Gestellbeschichtung (Nickel)

Ergebnisse

Technische Sicht

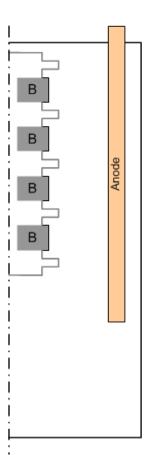
Average of parts 1-3-5 22 Inital situation 20 18 16 Best calculation Primary distribution [A/dm²] 10 Rückseite 20 60 100 Developed length [mm]

Wirtschaftliche Aspekte



Anwendungsbeispiel 3: Gestellbeschichtung (Nickel)

Nutzen für den Anwender



Anwendungsbeispiel 4: Mehrfachbeschichtung Ausgangssituation

- Mehrere Bauteile übereinander
- Blenden
- Schicht auf einer Seite
- Hohe Schichtdicken
 - Zwischen Bauteilen unterschiedlich
- Höhere Kapazität benötigt
 - Bestehende Anlagen und Vorrichtungen
 - Erweiterung Fertigung standortbedingt nicht möglich

Qualität und Kapazität in bestehenden Anlagen steigern

Anwendungsbeispiel 4: Mehrfachbeschichtung Potenzialanalyse

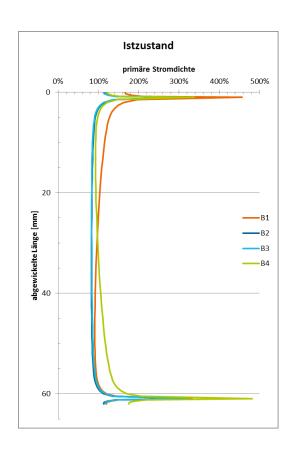
- Bessere Schichtverteilung
 - → Geringere Beschichtungsdauer
 - → Höhere Stromdichten?
- Bauteilanzahl ändern
 - → Auswirkungen Schichtverteilung?

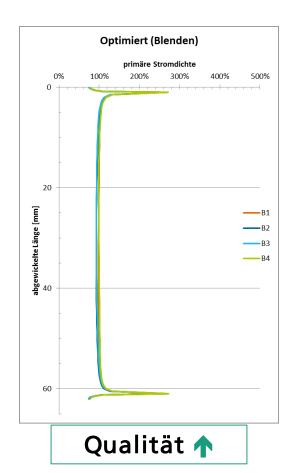
Anoden

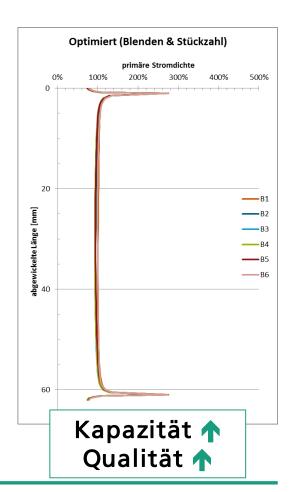
Machbarkeit Vorrichtungen?

Wechselwirkungen

Machbarkeit bezüglich Schichtverteilung?


→ Simulation zur Abschätzung und Optimierung





Anwendungsbeispiel 4: Mehrfachbeschichtung

Simulationsrechnungen

Anwendungsbeispiel 4: Mehrfachbeschichtung Ergebnisse

- Auslegung von Vorrichtung und Blenden
 - → Gleichmäßigere Stromdichteverteilung über alle Bauteile erreichbar
- Gleichbleibende Stromdichteverteilung bei mehr Bauteilen umsetzbar
- Berücksichtigung der mechanischen Aspekte während Simulation
 - → praktische Umsetzbarkeit gegeben
 - → mechanisches Konzept mit erarbeitet

Potenziale in bestehenden Anlagen werden nutzbar

Zusammenfassung & Fazit Simulation als effektives Werkzeug einsetzbar

- Aufwand / Nutzen für primäre Stromdichteverteilung am besten
 - Verringerung von Praxistests
 - Kosteneinsparungen, effizientere Beschichtungen
 - Neue Lösungsansätze
- Aber: Grenzen vorhanden
 - nur modellierte Aspekte werden berücksichtigt
- Praxisbezug essenziell
 - Optimierungen müssen umsetzbar sein
 - → Realisierungskonzept Hand-in-Hand mit Simulation erstellen

Vielen Dank für Ihre Aufmerksamkeit

Noch Fragen?

Ansprechpartner

Dipl.-Ing. Peter Schwanzer +49 (0)711 / 970 – 1209 peter.schwanzer@ipa.fraunhofer.de

Gruppenleiter
Dipl.-Ing. (FH) Klaus Schmid
+49 (0)711 / 970 – 1760
klaus.schmid@ipa.fraunhofer.de

Besuchen sie uns: Halle 9, Stand B28, 07

Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA Abteilung Galvanotechnik

Nobelstraße 12 70569 Stuttgart

http://www.ipa.fraunhofer.de/galvanotechnik.html

