

Asset Scoping: Identification of Reusable
Software Components
Defining Service Components

Authors:
Joachim Bayer
Theresa Lehner
Dirk Muthig

PESOA
Process Family Engineering in Service-
Oriented Applications

BMBF-Project

IESE-Report No. 125.06/E
Version 1.0
October 30, 2004

A publication by Fraunhofer IESE

Fraunhofer IESE is an institute of the Fraun-
hofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists compa-
nies in building software competencies
customized to their needs, and helps them
to establish a competitive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach (Executive Director)
Prof. Dr. Peter Liggesmeyer (Director)
Fraunhofer-Platz 1
67663 Kaiserslautern

PESOA is a cooperative project supported by
the federal ministry of education and research
(BMBF). Its aim is the design and prototypical
implementation of a process family engineering
platform and its application in the areas of e-
business and telematics.
The project partners are:

· DaimlerChrysler Inc.
· Delta Software Technology Ltd.
· Fraunhofer IESE
· Hasso-Plattner-Institute
· Intershop Communications Inc.
· University of Leipzig

PESOA is coordinated by
Prof. Dr. Mathias Weske
Prof.-Dr.-Helmert-Str. 2-3
D-14482 Potsdam

www.pesoa.org

PESOA-Report No. 12/2004

Copyright © Fraunhofer IESE 2006 v

Abstract

Software systems provide to their users a number of accessible services. For ser-
vice-oriented applications the services an application provides to its users are
the major driver for understanding the requirements on the application and
also for developing it. A service-oriented application can then be specified by
selecting required services. The application is realized by combining all required
services using a service-oriented architecture that maps services to software
components.

The goal of the PESOA project is to design and implement a platform for fami-
lies of related service-oriented applications. The envisioned platform is used to
manage process variants for families of service-oriented applications and to en-
able the process-based instantiation of such service-oriented application fami-
lies.

The goal of asset scoping is to define techniques for the development and ad-
aptation service components. Service components are components that can be
deployed on a platform for families of related service-oriented applications and
that provide a number of services. Using processes the different services that
are provided by the service components deployed on the PESOA platform are
combined.

Keywords: PESOA, Services, Service-oriented Applications, Service Components, Scoping.

Copyright © Fraunhofer IESE 2006 vii

Table of Contents

1 Introduction 1
1.1 Project Context 1
1.1.1 Goal 1
1.2 Outline 2

2 Service-Oriented Applications 3
2.1 Services 3
2.2 Service-Oriented Architecture 3

3 Service Components 6
3.1 Service Model 8
3.1.1 Service Specification 8
3.1.2 Service Realization 11
3.2 Scoping Service Components 12
3.3 Service Component Model 15
3.3.1 Service Component Specification 15
3.3.2 Service Component Realization 16

4 Conclusion and Outlook 18

References 19

Introduction

Copyright © Fraunhofer IESE 2006 1

1 Introduction

1.1 Project Context

PESOA is a cooperative project financed by the German federal ministry of edu-
cation and research (BMBF). The goal of the PESOA project is to design and im-
plement a platform for families of related service-oriented applications. The en-
visioned platform is used to manage process variants for families of service-
oriented applications and to enable the process-based instantiation of such ser-
vice-oriented application families. This goal is addressed by enhancing the ap-
proved technologies from the area of domain engineering, product line engi-
neering, and software generation with new methods from the area of work-
flow management.

1.1.1 Goal

Software systems provide to their users a number of accessible services. For ser-
vice-oriented applications the services an application provides to its users are
the major driver for understanding the requirements on the application and
also for developing it. A service-oriented application can then be specified by
selecting required services. The application is realized by combining all required
services using a service-oriented architecture that maps services to software
components.

The goal of asset scoping is to define techniques for the development and ad-
aptation service components. Service components are components that can be
deployed on a platform for families of related service-oriented applications and
that provide a number of services. Using processes the different services that
are provided by the service components deployed on the PESOA platform are
combined.

Services must be packaged as components, that is, in a form that they can be
deployed and thus invoked. Each service could be packaged in a single compo-
nent. This would, however, lead to unnecessary effort for developing, maintain-
ing, and deploying the components. Additionally, the fact that services are simi-
lar could not be exploited using product line techniques. For these reasons ser-
vice components are developed that provide a number of services. The problem
addressed by asset scoping is the definition of service components that provide
a number of services in a way that they provide a number of coherent and self-
contained services.

Introduction

Copyright © Fraunhofer IESE 2006 2

In this report, we propose an approach to scope service components based on
well-established existing practices.

1.2 Outline

The remainder of this report is structured as follows. In chapter 2, the context
of this work is presented in detail. To this end, we first discuss services and ser-
vice-oriented architectures to understand the requirements posed on service
components. In chapter 3, we present a technique to develop and document
services, propose an approach for scoping service components, and, finally,
present our approach to develop and document service components.

Service-Oriented Applications

Copyright © Fraunhofer IESE 2006 3

2 Service-Oriented Applications

2.1 Services

There are numerous definitions of the term service, a widely used one is the fol-
lowing: an act or performance offered by one party to another. Although the
process may be tied to a physical product, the performance is essentially intan-
gible and does not normally result in ownership of any of the factors of produc-
tion [Lovelock96].

To us, a service is some functionality that can be invoked using a well-defined
interface. A service can be situated anywhere in the world. In order to be visible
and accessible from everywhere, service providers generally enroll their services
at a service broker that registers and publishes the services. Web services are a
typical form of this type of service provision, where web-based protocols and
mechanisms are used by software elements to enable a standardized communi-
cation with these services.

2.2 Service-Oriented Architecture

Figure 1 shows the typical pattern for service-oriented architectures. It consists
of three components. A service provider offers a number of services. These ser-
vices are published at a service broker component that collects services from a
number of service providers, registers and publishes them in a service registry.
The service registry can be used by a service consumer to find an appropriate
service. If the consumer finds a service, a direct connection between the service
consumer and the service provider is established and the requested service is
bound to a provided service.

Service Brokerbind

publish

find

Service Provider

Service Consumer

Figure 1: Service-Oriented Architecture

Service-Oriented Applications

Copyright © Fraunhofer IESE 2006 4

For process-based service-oriented applications, multiple services are combined
to processes at the service consumer side. An interaction control component
thereby coordinates the execution and combination of the different services.
Workflow or process execution engines can for example be used as interaction
control components. Additionally, context information can be taken into ac-
count in the interaction control component. This context information includes
information about the user’s location for mobile applications or information
about the user’s device and the device’s capabilities. The interaction control
component is also responsible for providing a user interface.

Service providers usually provide multiple services that are packaged as compo-
nents to bring together and provide at once a number of related services. A
prominent reason for doing this is to reduce communication overhead since
services that are located in the same (non-distributed) component require less
communication overhead than services that are located in different compo-
nents. Another reason for packaging services is that the development, mainte-
nance, and deployment of the services are simplified when several services are
handled together. Product line engineering approaches can be used to exploit
the commonalities among related service and to reuse large portions of the de-
veloped, maintained, and deployed artifacts.

Service Broker

Service Registry

Service Broker

Service Registry

Service
Component

S1 S1‘

Service
Component

S4 S5

Service
Component

S2 S2‘
S2‘‘ S3

Service Provider

Service
Component

S1 S1‘

Service
Component

S1 S1‘

Service
Component

S4 S5

Service
Component

S4 S5

Service
Component

S2 S2‘
S2‘‘ S3

Service
Component

S2 S2‘
S2‘‘ S3

Service Provider

Service Consumer

bind

publish

findInteraction Control Component

S1 S2
S3

S4
S5S1 S2

S3

S4

S3

S4
S5

Figure 2: Service-Oriented Architecture for Process-Based Service-Oriented Applications

Service-Oriented Applications

Copyright © Fraunhofer IESE 2006 5

The next chapter presents how service components that provide a number of
services in a service-oriented architecture can be developed.

Service Components

Copyright © Fraunhofer IESE 2006 6

3 Service Components

To develop service components, the software development strategy must be
adapted to reflect service-orientation. A service component can be defined as a
component that provides a number of services via standard interfaces and that
is deployable in a component infrastructure. An approach for developing ser-
vice components should be an extension of existing practices. In the following,
we adapt the widely used V-Model [Broehl95] towards service-orientation to
yield a principal development strategy and combine it with the KobrA method
[Atkinson01], a component based software development approach, to develop
service components. The resulting approach is described in the following.

According to the V-Model, software systems are described at different levels of
abstraction: at the highest level of abstraction, the problem is described, fol-
lowed by the user and developer requirements, respectively. The next level of
abstraction is the system design describing the solution by breaking down the
functional requirements into sub systems and components. For each of the
components, a design is given, as well as an implementation using some im-
plementation technology.

Service-orientation changes the product model of the V-Model. The service-
oriented V-Model is depicted in Figure 3. The first two levels of adapted, ser-
vice-oriented V-Model are, like in the original V-Model, also problem descrip-
tion and user requirements. At these levels, the processes, as well as the ser-
vice-oriented applications to be supported are elicited and documented as
problem description and user requirements. These are used to validate the used
and the usable service-oriented application, respectively.

The next two levels of abstraction incorporate services into the model. Services
are described at two levels of abstraction, service specification and service reali-
zation. These terms stem from the KobrA method. The KobrA method is a
component-based method for product line development that we use as a basis
to capture service components and consequently also for services. The service
specification captures the externally visible characteristics of a service, that is,
especially the functionality the service provides and the interface to invoke the
service. The service realization captures the internal characteristics of a service,
for example internal data structures or other sub-services that are used to pro-
vide a service. The service specification is used to validate the usable service that
is bound to a requested service.

Service Components

Copyright © Fraunhofer IESE 2006 7

User

Req.s

Service

Specification

Service

Realization

Service-
Oriented

Architecture

Service
Component
Specification

Service
Component
Realization

Useable
service-

oriented App

Usable

Service

Executable
Service

Component

Service
Component

Code

Verification

Development

Construction

Validation

Problem

Description

Used service
oriented

Application

Figure 3: Service-Oriented V-Modell

The next level of abstraction in the service-oriented V-Model is the service-
oriented architecture that describes how the services are used in processes at
the service consumer side and how the services are distributed onto service
components at the service provider side.

The identified service components are then specified, realized, and imple-
mented as component code. We use a slightly adapted version of the KobrA
component model to capture service components. Since the KobrA method
supports the model-driven architecture approach, the component code can be
developed using MDA techniques [MDA]. The service component specification
is used to validate executable service components.

The focus of this report is on the packaging of services as service components.
That is, the focus is on addressing the following problem: once the services to
be provided are elicited, specified, and realized, which services should be pack-
aged together in service components? To address this question, the following
three sections present the service model to capture services, the scoping of ser-

Service Components

Copyright © Fraunhofer IESE 2006 8

vice components, and the transformation of the scoped logical components to
technical components, respectively.

3.1 Service Model

A service is some functionality that can be invoked using a well-defined inter-
face. Service can be either atomic, simple services or they can be composed of
other services. Composed services are services as well and thus simple and
composed services are modeled similarly. As described above we use compo-
nent-based techniques to develop service-oriented applications. Therefore,
component specification techniques are used to specify services. To this end, a
service is considered a component with exactly one method. This approach
makes services concrete software development entities and also enables the us-
age of component-based software engineering approaches to specify and de-
sign them. Additionally, the composition and integration of services can be
handled by component-based techniques. We use an adapted version of the
KobrA method to specify and design services [Atkinson01]. The KobrA method
supports the principle of encapsulation by modeling components in terms of a
specification, describing the requirements that the component is expected to
fulfill and the expectations that the components places on its environment, and
a realization that describes the design by which a component fulfills these re-
quirements. The specification and realization of a KobrA component is com-
posed of several inter-related models, describing complementary aspects of the
component. For the specification, the separately modeled aspects are the com-
ponent’s functionality, its structure and behavior, for the realization aspects are
the components internal structure, as well as its dynamic aspects.

Following the approach the KobrA method takes for modeling components, we
describe services at two levels of abstraction as well. The two levels are the ser-
vice specification that captures the externally visible characteristics of services
and the service realization that captures the internal characteristics of a service.
The service specification and the service realization are presented in more detail
in the following two subsections.

3.1.1 Service Specification

The service specification describes the functionality a service provides and the
interface by which the service’s functionality can be invoked. Consequently, a
service is also specified by means of at least two related models. A third model
is optional and not always necessary. An interface model captures the interface
of the service and the respective signature. We use simplified UML class dia-
grams as interface models. For simple services, the class diagrams contain only
one class that in turn only contains one method (i.e., the service). A stereotype
<<service>> is used to depict a service in the class diagrams containing the in-

Service Components

Copyright © Fraunhofer IESE 2006 9

terface model. The reason for using UML class diagrams for describing simple
services is that services composed from multiple simple services and also service
components can be described similarly.

<<Service>>
HotelReservation

ReservationNumber : HotelReservation (no. of people, arrival, departure)

<<Service>>
HotelReservation

ReservationNumber : HotelReservation (no. of people, arrival, departure)

Figure 4: Example Service Hotel Reservation

Figure 4 presents an example. It specifies the interface of the HotelReservation
service that takes the number of people, the arrival date, and the departure
date as input uses and returns a ReservationNumber.

The second model used to specify services is the functional model that de-
scribes the functionality by means of describing the externally visible effects of
using the respective service. In the KobrA method, operation schemata are used
to capture functional models. Applied to services, operation schemata capture
the pre conditions and post conditions of a service, as well as manipulated
data. The following table shows the attributes for service operation schemata.

Service Name of the service

Description Informal description of the functionality the service provides

Receives Information input to the service

Returns Information returned by the service

Reads Information accessed by the service

Changes Information changed by the service

Assumes Weakest pre-condition on the state of the service and on the inputs
that must be true to guarantee the post-condition

Results Strongest post-condition that becomes true after service execution
with true assumes clause

The second table presents the operation schema for the example service Hotel
Reservation. In this example we use an informal textual description to describe
the attributes. Other description languages, like WSML as used in WSMO
[WSMO] or XML as used in WSDL can be used as well [WSDL].

Service Components

Copyright © Fraunhofer IESE 2006 10

Service Hotel Reservation

Description Reserve a hotel room for a given number of people and period of
time

Receives no. of people
arrival date
departure date
hotel name
max price

Returns Reservation number

Reads -

Changes -

Assumes - no of people > 0
- departure date > arrival date
- max price > 0

Results If there is a room available in hotel hotel name that is free from
arrival date to end date and that costs less than max price then a
reservation number is sent back to the service requester.
Otherwise a message “no such room available” is sent back to the
service requester.

There is sometimes a third optional model used in the specification of services.
This third model is a behavioral model that captures externally visible state
changes that occur when a service is consumed. Since single services are usually
stateless, the behavioral model is not always necessary. For services that have
states, state chart diagrams are used to capture the respective behavioral
model.

Figure 5 presents the behavioral model using state chart diagrams of a Travel
Booking service that reserves the fight, the hotel, as well as a rental car; thereby
it traverses the states Flight Booked, Hotel Booked and Rental Car Booked.

Service Components

Copyright © Fraunhofer IESE 2006 11

Flight
Booked

Hotel
Booked

Rental Car
Booked

Flight Reservation

Hotel Reservation

Rental Car Reservation

Flight
Booked

Hotel
Booked

Rental Car
Booked

Flight Reservation

Hotel Reservation

Rental Car Reservation

Figure 5: Example State chart diagram for Service Travel Booking

3.1.2 Service Realization

The service realization is required to develop deployable components that im-
plement and this way provide the possibility to invoke the service. The service
realization describes the internal design of a service and thus captures how the
service fulfills its specification and what other services it requires. Again, we use
the models used in the KobrA method to realize components. Therefore, a ser-
vice is realized by means of three different models.

The realization structural model refines the interface model by adding informa-
tion on internal data structures and on services that are acquired to provide the
service under consideration in the case of a composed service. Being a refine-
ment of the interface model, the realization structural model is a UML class
diagram as well.

As shown in Figure 6 the example service Hotel Reservation uses the data struc-
ture Reservation to perform the reservation.

Service Components

Copyright © Fraunhofer IESE 2006 12

<<Service>>
HotelReservation

ReservationNumber : HotelReservation (hotel, no. of people, arrival, departure, max price)

arrivalDate
1

Reservation

Hotel
Beds
Prize
ReservationNo

departureDate
1Date

<<Service>>
HotelReservation

ReservationNumber : HotelReservation (hotel, no. of people, arrival, departure, max price)

<<Service>>
HotelReservation

ReservationNumber : HotelReservation (hotel, no. of people, arrival, departure, max price)

arrivalDate
1

Reservation

Hotel
Beds
Prize
ReservationNo

Reservation

Hotel
Beds
Prize
ReservationNo

departureDate
1DateDate

Figure 6: Example Service Realization Structural Model

The two other models used to realize services both describe the dynamic as-
pects of the service from different perspectives. The activity model uses activity
diagrams to capture the sequence of activities performed during service provi-
sion. The interaction model on the other hand uses collaboration diagrams to
capture the interaction between a service and its acquired services. Usually, it is
sufficient to use only one of the two models.

Figure 7 specifies the interaction of the example service Travel Booking using a
collaboration diagram. Travel Booking acquires the Flight Booking service, the
Hotel Reservation service and the RentACar service.

3.2 Scoping Service Components

<<Service>>
Travel Booking

Confirmation : Travel Booking
(start Date, endDate,
persons, dep-city,
arr-city, max-price)

<<Service>>
Flight Booking

<<Service>>
Hotel

Reservation

<<Service>>
RentACar

1: ConfirmationNo : Flight Booking
(start Date, endDate,
persons,dep-city, arr-city)

2: ReservationNumber:
Hotel Reservation
(hotel, no. of people, arrival,
departure, max hotel price)

3: RentalNo : RentACar
(no. of people,
arrival, departure)

<<Service>>
Travel Booking

Confirmation : Travel Booking
(start Date, endDate,
persons, dep-city,
arr-city, max-price)

<<Service>>
Flight Booking

<<Service>>
Hotel

Reservation

<<Service>>
RentACar

1: ConfirmationNo : Flight Booking
(start Date, endDate,
persons,dep-city, arr-city)

2: ReservationNumber:
Hotel Reservation
(hotel, no. of people, arrival,
departure, max hotel price)

3: RentalNo : RentACar
(no. of people,
arrival, departure)

Figure 7: Example Service interaction/activity model

Service Components

Copyright © Fraunhofer IESE 2006 13

Once services are specified and realized, the service-oriented architecture de-
termines how the services are used in processes at the service consumer side
and how the services are distributed onto service components at the service
provider side. In this report, we concentrate on the service provider side and,
therefore, address the issue of defining service components that provide multi-
ple services. Service providers package a number of services as components to
bring together and provide at once a number of related services. A prominent
reason for doing this is to reduce communication overhead since services that
are located in the same (non-distributed) component require less communica-
tion overhead than services that are located in different components. Another
reason is a simplification in the development, maintenance, and deployment of
the services that is achieved since several services are handled together. Often
service providers provide a number of similar services, for example similar, re-
lated services that have different prices and functionality. In these cases, prod-
uct line engineering approaches can be used to exploit the commonalities
among related service and to reuse large portions of the developed, main-
tained, and deployed artifacts.

Service components provide a number of services. In order to benefit from the
common handling of multiple services in one component and from reuse, the
components must be defined in a way that the services fit well together. The
obvious question is how to achieve that. We propose to base the decision on
whether a number of services should be packaged in a service component on
coupling and cohesion. This means that the goal of scoping service components
is to find for a number of specified and realizes services the set of service com-
ponents for which the cohesion within the different service components is as
high as possible and the coupling among the service components is as low as
possible. The coupling among services can be measured by measuring the in-
teraction between services (i.e., the invocation of one service by another) and
the common usage of data structures by multiple services.

As described in the last section, services are specified in isolation, that is, the
functionality a service provides, as well as its interface are defined without tak-
ing into account other services. The realization of a service covers three differ-
ent aspects the behavior of the service, its internal structure, and the interaction
of the service with other services. The behavior of the service describes the al-
gorithm by which a service provides its functionality. The internal structure de-
scribes the data structures the service requires and the interaction of the service
with other services determines the sub-services a service requires. Both are
given in an isolated way meaning that required services and data structures are
defined for each service in isolation without taking into account the require-
ments of other services. The key idea of our approach for scoping service com-
ponents is to take the isolated information from a number of services and in-
vestigate it in a global way.

Service Components

Copyright © Fraunhofer IESE 2006 14

Service components are scoped by optimizing the cohesion within a service
component and the reducing the coupling among the different service compo-
nents of one service provider. The starting point for scoping service compo-
nents is a number of services that are specified and realized as described in the
previous section. This especially means that for each service the data structures,
as well as the interaction with other services are documented. The scoping of
service components then encompasses the following two activities:

• Structural optimization: Services use data structures internally to store and
retrieve information manipulated by the services. In the service realization,
the data structures are documented in the structural realization model. The
data structures are, however, given for each service in isolation.
The goal of the structural optimization is to consolidate the data structures
for a number of services in order to make an informed decision on how to
distribute the service onto service components. The underlying idea here is
to put together services that work with the same data to reduce the need to
send data between different service components.
The result of the structural optimization is a distribution of services onto ser-
vice components that collect services that work on the same data structures.

• Interaction optimization: Services often delegate certain aspects of their task
to other services. In the service realization, these delegations are docu-
mented, again only in an isolated way.
The goal of the interaction optimization is, therefore, to collect services in
service components in a way that reduces the service interaction among
components and thus keeps the service interaction within a service compo-
nent. This reduces communication overhead.

The two activities are not meant to be conducted in a sequential way but rather
in a way that they provide input to the other since the structure of the compo-
nents as well as their interaction need to be optimized at the same time and
the two influence each other.

It is important to note that for providing services it is not necessary to distribute
the service to components in a way that each service is put in exactly one com-
ponent. Rather replication of services is no problem since it is possible to have
one service in multiple components.

Service Components

Copyright © Fraunhofer IESE 2006 15

3.3 Service Component Model

The scoped components are modeled using the KobrA component model [At-
kinson01]. The KobrA method is an approach for developing component-based
applications. In the KobrA component model components are described at two
levels of abstraction, a specification, which defines the component's externally
visible properties and behaviors, and thus serves to capture the contract that
the component fulfils and a realization, which describes how the component
fulfils this contract in terms of contracts with other, possibly lower level com-
ponents. Figure 8 shows the KobrA component model. In the following, the
specification and realization of components is described in more detail.

Figure 8: KobrA Component Model

3.3.1 Service Component Specification

A service component collects a number of services and provides them. There-
fore, the different services are modeled as operations in the respective service
component specification. The service component specification comprises a set
of models that collectively describe the externally visible properties of a service
component. As such, the specification can be viewed as defining the interface
of a service component and describing the services a component provides. The
specification of a service component is comprised of the following four models:

Service Components

Copyright © Fraunhofer IESE 2006 16

• Structural Model: Captures the nature of the classes and relationships by
which a component interacts with its environment, as well as any structure
of the component that is visible at its interface. The structural model consists
of a number of UML class diagrams that captures the externally visible struc-
tural elements a subject component interacts with and a number of UML ob-
ject diagrams that capture the externally visible parts of run-time configura-
tions of a component and the components it acquires.

• Behavioral Model: describes the reaction of the component to external stim-
uli using UML statechart diagrams. The behavioral model is optional for ser-
vice components.

• Functional Model: addresses the functionality of a component by describing
the externally visible effects of the services provided by the component. The
behavioral model contains an operation schema for each of the services a
service component provides.

• Decision Model: The structural, behavioral and functional models constitute
the specification models for a component. If the component is a generic
product line component, an optional decision model contains information
about how the models change for the different instances of the product line
component.

3.3.2 Service Component Realization

The goal of component realization is to create a set of models that collectively
describe the private design of a service component. As with all design, the basic
requirement is that the realization must realize the service component's specifi-
cation. A service component’s realization is comprised of the following four
models:

• Structural model: captures the classes and relationships from which the
component is realized, as well as its architecture. The realization structural
model is a refinement of the specification structural model. It consists of a
number of UML class diagrams that capture the structural elements a service
component interacts with and a number of UML object diagrams that cap-
ture the run-time configurations of the service component and the services
components it interacts with.

• Activity model: covers the realization of the functional aspects by describing
the algorithms by which the services of the component are realized using
UML activity diagrams.

• Interaction model: provides different aspects on the algorithms used to real-
ize operations, from the perspective of instance interactions rather than flow
control (as in the execution model). UML collaboration diagrams are used in
the interaction model.

Service Components

Copyright © Fraunhofer IESE 2006 17

• Decision model: as in the specification, the optional decision model de-
scribes the model changes for the different instances of a product line com-
ponent.

Conclusion and Outlook

Copyright © Fraunhofer IESE 2006 18

4 Conclusion and Outlook

This report presented one part of a development approach for creating service-
oriented applications. This part of development is the scoping that supports the
packaging of services in deployable service components. Our scoping approach
is based on the reduction of communication overhead by optimizing the com-
mon use of data structures and by reducing the interaction among service
components.

We also presented techniques for modeling the input of scoping, that is, the
services and the resulting service components. These techniques are based on a
well-established approach to component-based application development, the
KobrA method.

As mentioned above, scoping is a step in the development of service-oriented
applications and needs to be integrated in a complete software development
life-cycle. The life-cycle model we propose is based on the V-Model. The ser-
vice-oriented customization of the V-Model has been presented as well.

There are, however, a number of issues that need to be addressed. The pro-
posed scoping technique needs to be integrated in a method for developing
process families of service-oriented applications. Especially, the interplay be-
tween service components and process families must be investigated in this
context.

Additionally, case studies should be conducted to empirically validate the bene-
fits and drawbacks of the proposed scoping strategy. In this context also ap-
propriate measures for analyzing the coupling and cohesion between service
components should be developed.

References

Copyright © Fraunhofer IESE 2006 19

References

[Atkinson01] C. Atkinson, J. Bayer, C. Bunse, E.Kamsties, O. Laitenberger, R.
Laqua, D. Muthig, B. Paech, J. Wüst, and J. Zettel. Component-
based Product Line Engineering with UML. Component Software
Series. Addison-Wesley, 2001.

[Bennett00] K. Bennett, P. Layzell, D. Budgen, P. Brereton, L. Macaulay, and
M. Munro. Service-Based Software: The Future of Flexible Soft-
ware. In Proceedings of the Asia-Pacific Software Engineering
Conference, Singapore, December 2000.

[Broehl95] A.-P. Broehl and W. Droeschel (eds.). Das V-Modell. Der Stan-
dard fuer die Softwareentwicklung mit Praxisleitfaden (2nd ed.),
Oldenbourg Verlag, 1995.

[Lovelock96] C. Lovelock, S. Vandermerwe, and B. Lewis. Services Marketing.
Prentice Hall, 1996.

[MDA] Model-Driven Architecture (MDA) Homepage, Object Manage-
ment Group (OMG). http://www.omg.org/mda/

[WSDL] Web Services Description Language (WSDL) Homepage.
http://www.w3.org/TR/wsdl

[WSMO] The Web Service Modeling Ontology (WSMO) Homepage.
http://www.wsmo.org

Document Information

Copyright 2006, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or
transmitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Title: Asset Scoping: Identification
of Reusable Software Com-
ponents
Defining Service Compo-
nents

Date: October 30, 2004
Report: IESE-125.06/E
Status: Final
Distribution: Public

