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Abstract. Four construction principles that compose more complicated percep-

tual gestalts from less complex ones are defined in detail: Mirror gestalts, lattice 

gestalts, rotational mandalas, and clusters, respectively. These can be encapsu-

lated as constructions in a production system. Since any of the four construc-

tions can work on any gestalt, a recursive and very expressive scheme is set up 

with many prospective applications in image mining. Of particular interest is 

such analysis for aerial and satellite images and for façade images of buildings. 

1   Introduction 

Gestalt is ubiquitous in nature as well as in man-made artifacts. Recognition of gestalt 

goes far beyond today’s understanding of “pattern recognition”. We have to drop back 

to a naïve understanding of the word “pattern”, to forget the feature vectors we are 

used to deal with in the pattern recognition community and imagine patterns we per-

ceived occasionally in a more contemplative situation. Usually we are not aware of the 

mathematics, particularly of the implicit algebra in our intuitive understanding of 

gestalt, like symmetries, repetition, rotational mandalas, variation, etc.  Understanding 

the word “recognition” according to its Latin roots means to reconstruct the hidden 

gestalt idea, resulting, as far as possible, in the most probable explanation. The ap-

pearance of a gestalt is uncertain – there may be displacement, deletion and clutter. 

Humans still recognize the gestalt. For a machine, however, this poses a very hard 

search task which nonetheless is indispensible for real content-based image mining.     

1.1   Related Work 

For more than thirty years now automatic analysis of complex aerial images has been a 

challenge and also basic approaches to their algebraic gestalt have been attempted 

[11]. Today emphasis is more on learning of rules and stochastic modeling of con-

straints and relations [12]. Automatic understanding of buildings currently also in-

cludes façade analysis [17] including the grouping of semantically similar SIFT in-

stances in lattices [13]. The main economic motive is apparently application in the 

games industry. The computer graphics community acknowledged that a deeper un-

derstanding of gestalt principles and design customs in architecture are prerequisite to 



swift setup and detailed elaboration of cyber city models [16]. This includes work for 

archeologists as well. Up to now we are not aware of much other work on gestalt rec-

ognition in our understanding in the machine vision community. This paper continues 

work presented in [8, 10]. Here we focus on the precise construction methods.   

2   Constructions of Gestalts 

Given a set of points and corresponding assignments to orbits a new gestalt instance is 

constructed by error sum minimization. The errors are displacements between the 

actual positions of the points and the set positions given by the gestalt principle and 

the corresponding attribute values. All gestalts are given modulo the action of a par-

ticular group on the indices of the points, which do not alter the identity of an in-

stance. We distinguish the following constructions:    

2.1   Mirror Symmetry Gestalt  

Given k pairs (p1,0, p1,1), …, (pk,0,pk,1) of points in the usual 2D vector space, we are 

looking for an optimal axis a such that by a mirror mapping according to this axis the 

points pi,j are flipped into the points pi,j+1 in the least squares error manner. Here we 

have i=1…k, and j=0,1 to be understood modulo 2. We can decompose the constraint 

into two parts: 1) The axis should be incident with the k midpoints (pi,0+pi,1)/2. And 2) 

the axis should be perpendicular to the k difference vectors pi,0-pi,1. This leads to a 

linear one-step solution using singular value decomposition of the matrix 
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(upper indices x and y indicate the coordinates in 2D). The eigenspace corresponding 

to the least singular value is accepted as solution a (axis equation for the new gestalt). 

Furthermore the new gestalt obtains the center of gravity of all points as position o. 

We state here without proof that this algebraic solution approaches the desired least 

squares solution – for which according to its non-linear setting an iterative calculation 

would be necessary – provided that the coordinate system is chosen properly. For our 

preference towards one-step linear algebraic solutions we refer to [4]. Figure 1 dis-

plays such minimization and the histogram of residuals. We have used particular such 

gestalt instances in SAR-image understanding [9]. It is evident that this definition is 

invariant under action of the trivial finite group of order 2 on the second index 0↔1. 

The gestalt is understood modulo this group. 



 
Fig. 1. Left: Construction of a mirror symmetry gestalt– here with k=7 point pairs and σ=0.07; 

right: Histogram of the residuals. 

2.2   Lattice Gestalt 

Given k m-tuples (p1,0, …,p1,m-1), …, (pk,0, …, pk,m-1 ) of points, we are looking for an 

optimal common start position po and a shift vector v such that: 
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This is a linear problem and thus the one-step linear algebraic solution is indeed the 

least squared error sum solution.  It is just averaging the differences for v and taking 

the center of gravity for o is optimal. The construction of the starting points p,i,o is also 

trivial. A typical lattice gestalt is depicted below in Figure 3. 

2.3   Rotational Gestalts 

Given k m-tuples (p1,0, …,p1,m-1), …, (pk,0, …, pk,m-1 ) of points, we are looking for 

an optimal common center point o such that by rotation with angle 2π/m the points pi,j 

are mapped onto the points pi,j+1 in the least squares error manner. Here we have 

i=1…k, j=0…m-1. This leads to a sum of squared errors reading 
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to minimized, where o and the vectors pi,o are varying. Mα denotes the usual turning 

matrix for angle α in 2D. Already from this definition can be seen that the gestalt has 

to be understood modulo the finite rotation group of order m. I.e. a cyclic shift on the 

indices j does not change the identity of the gestalt. The vector pi,o that results from 

the minimization has to be understood as giving a radius for the ith orbit with its 

length and a phase modulo 2π/m. Figure 2 shows the situation. Minimization of (3) is 

a non-linear problem closely related to circle fitting.  

We are not aware of a direct linear algebraic setting for it (such as is presented for 

mirror gestalts above). We refer to the closely related circle fitting problem [6], and 

initialize o by the center of gravity of all observed points and pi,o by pi,0 . The iteration 



is performed using the Jacobian displayed in (4). Entries to the matrix are the partial 

derivatives ρ for the current iteration. As above the lower indices denote i (the index 

inside the orbit), and j (the index of the orbit) respectively. Upper index x or y denotes 

the direction in the plane. The parameter vectors pi,o are treated with radius r and 

phase p. These are the other upper indices. 
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The columns of this matrix correspond to the parameters o
x
, o

y
, r1, p1, …, rk, pk and the 

rows to the current residuals. For iteration this matrix has to be squared and inverted 

in each step. For the rotational gestalt we observed that convergence is quick. Usually 

three or four steps are sufficient. 

 
Fig. 2. Left: Construction of a rotational symmetry – here of order m=6 with k=4 orbits and 

σ=0.25; right: Histogram of the residuals. 



 

2.4 Cluster Gestalts 

 

A very important principle in gestalt perception is proximity. This clusters a set of 

adjacent points into a new gestalt by constructing the center of gravity as new position 

o. Also the eigenspace corresponding to the larger eigenvector may be used as orienta-

tion attribute v. Clustering also yields a sum of squared residuals. The parts are added 

to the cluster gestalt as set – i.e. the full permutation group acting on the indices of the 

parts does not alter identity of the cluster gestalt instance. Clusters are the least signif-

icant gestalt. If any of the gestalt constructions listed above applies better, they will be 

preferred. 

3   Testing for Equality and Similarity 

When entering a newly constructed gestalt instance into the database care has to be 

taken that this gestalt has not yet been constructed in a different order or manner. 

Actually, this is the part where algebraic knowledge is required most of all. In fact, 

almost for any gestalt construction trees there are very many other possible construc-

tions. The same object may be described in different ways. Here we need canonic 

representatives allowing swift tests for equality – and more important: A metric or 

similarity measure that does not require extensive computational effort. For gestalts 

with uncertainty care has to be taken, that all construction principles use the same kind 

of residuals – here squared error sums – so as to compare two different descriptions 

for the same set of primitives and decide for the simplest description with minimal 

squared error sum. 

3.1   Sub-lattices and lattices of lattice gestalts 

Any lattice of size m can also be understood as lattice using -v as translation vector 

and replacing j by m+1-j. Moreover, if m is not a prime number and thus can be de-

composed m=pq a lattice gestalt of order m can also be understood as lattice of size p 

containing sub-lattices of size q (and vice versa). According to the Helmholtz prin-

ciple of the “maximal meaningful element” as claimed by A. Desolneux [3] the max-

imal gestalt is the preferred canonic description, in which the gestalt is to be stored in 

the database. Particular lattice gestalts – of bright spots, i.e. salient scatterers - have 

been investigated in [9] as well. This includes the preference for maximal gestalts 

(scatterer rows).  

 

Occasionally, we have coded a production system grouping rows of rows where the 

outer gestalt has a different direction than the inner ones (preferably perpendicular) 

[15]. This can be seen as a practical step towards gestalt algebra. Columns of objects 

which form again a row are one of the main examples, ubiquitous in facades and re-

motely sensed industrial sites. Again, the situation is different with angle between the 

inner and the outer vector: Vectors of π/3, π/4 or π/6 difference in orientation and of 



equal length construct a 2D-lattice (triangular, orthogonal or hexagonal). There is an 

elaborated theory on these wallpaper lattices [5] and also practical work of recognition 

of such lattices [1]. We also refer to the investigations on 2D and 3D lattices going on 

in Physics [14] and in particular in cristallography. In aerial images or images of fa-

cades, in particular, orthogonal 2D lattices are not rare. However, we do not introduce 

these as a special gestalt. Instead, the equality test has to take care of the different 

possibilities. If the angle is not very close to one of the three wallpaper possibilities, or 

if the length of the vectors v is different there will be a preferable canonic representa-

tion: The classical gestalt principle proximity demands that the closer objects are 

grouped first into the inner lattice, after that these columns are grouped into rows – 

with longer distance vector v. Moreover, we are not treating infinite lattices here. 

 

3.2   Sub-rotations of rotational gestalts 

In analogy to the lattice gestalts we have to take care here also whether m is a prime 

number. If not it can be decomposed m=pq and the rotational gestalt can also be un-

derstood as rotational gestalt of order p or also q (in accordance to the decomposition 

of the finite cyclic groups of order m). Again obeying the Helmholtz principle the 

maximal gestalt is the preferred canonic description, in which the gestalt is to be 

stored in the database, provided it yields no significantly larger error sum.    

3.3   Equality of lattice and mirror gestalts 

It is easily verified that a lattice of symmetric gestalts can also be understood as mirror 

symmetry provided that the symmetry axes of the parts ai are perpendicular to the 

generating vector v. For an even m there will be k·m/2 mirror orbits created by flip-

ping i,j↔m-i,j and simultaneously switching the internal mirror indices. Figure 3 

shows such a case. According to gestalt principles the simplest model is again pre-

ferred as canonic description – which is here of course the lattice.  

 

  
Fig. 3. A lattice with m=5 and k=4 orbits (traces); it can also be understood as mirror gestalt 

with the axis displayed dotted 

 



3.4   Equality of rotational and mirror gestalt 

Provided that the axes of symmetric parts of a rotational gestalt all are incident with 

the center of this rotational gestalt it can also be understood as a symmetry gestalt with 

respect to any of axes of its parts. Here we have to change the rotation direction of the 

indices in the orbits and also flip the internal mirror indices around. Rotational sym-

metry is regarded as stronger than mirror symmetry. Thus such a gestalt will be stored 

as rotation in the database, provided it yields no significantly larger error sum 

4   Coding the Search for Gestalts as Production System 

Searching for gestalt instances in measured image data using the algebraic struc-

tures outlined above poses a non-trivial challenge. We recommend using the produc-

tion system interpreter as outlined e.g. in [9]. It has any-time performance, avoids 

complete search, is quality driven bottom-up per default and allows sophisticated top-

down acceleration. The class Gestalt is inherited from the class CImageObject and 

may thus be handled by this interpreter. All other classes listed in Table 1 below are in 

turn inherited from the class Gestalt. 

 
Table 1. Productions coding the gestalt constructions above 

Right side  comment construction Left side 

MirrorGestalt ← only 2 instances Sect. 2.1 Gestalt, Gestalt 

LatticeGestalt ← starting a row Sect. 2.2 Gestalt, Gestalt 

LatticeGestalt ← continuing “ LatticeGestalt, Gestalt 

RotatGestalt ← starting a row Sect. 2.3 Gestalt, Gestalt 

RotatGestalt ← cont. until full “ RotatGestalt, Gestalt 

ClusterGestalt ←  Sect. 2.4 Gestalt, …, Gestalt 

  

Productions for this interpreter usually have not only a construction function for the 

right hand side but also a condition on the left hand side objects in order to avoid any 

object to be combined with any other (constrained set grammar). This is omitted here, 

because our approach attempts to construct a gestalt algebra – where indeed any 

member should be a possible partner for any other member. In practice, however, a 

threshold should be set on the residual error sum (which of course sets the quality 

assessment driving the search). The constraint resulting from such a threshold can be 

transformed into a search region setting a focus where to look for prospective partner 

gestalts.  

The productions listed in the table can construct arbitrarily complex gestalt algebra 

instances such as sketched in [10]. First parts of this coding endeavor have already 

been accomplished. But there remain some questions which have to be answered be-

fore the whole system can be set up. These are discussed below.   



5   Discussion and Conclusion 

This contribution introduced in more detail the constructions necessary for setting up 

gestalt algebra as indicated earlier in [8, 10]. It is our goal to add more precision and 

detail on the way to the implementation of this structure for practical applications.  

As long as the set of equality and similarity relations and canonical forms for ges-

talts, as listed in chapter 3, is not complete there is little sense in starting the coding 

endeavor. While for infinite 2D lattices there is an elaborated mathematical theory at 

hand for more than hundred years [2], we have no proof for completeness of the list of 

Section 3 indicating possible different appearances of the same finite gestalt with 

respect to all our gestalt constructions yet. 

As indicated in Section 3 in the description of a composed gestalt simplicity in the 

tree structure (flatness of hierarchy) has to be balanced against the achieved squared 

residual sum. Another open problem concerns the scale: Gestalt instances with a deep 

tree composed from many objects distributed on a large area should be assessed on a 

different scale. But the common displacement error measure is a prerequisite of mu-

tual comparison for the gestalts. We are looking forward to interesting future work. 
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