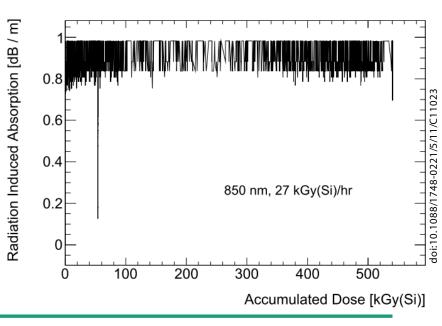
RADIATION TESTS ON OPTICAL FIBERS -GOOD AND BAD PRACTICE

<u>J. Kuhnhenn</u>


Fraunhofer INT, Appelsgarten 2, 53879 Euskirchen, Germany

- Introduction
- Overview of parameter dependencies
- Relevant test standards
- Examples of problematic test conditions
 - What is room temperature?
 - Photobleaching Long gone or worse than ever?
 - Geometry How to bend the fiber?
 - Exotic influences What does the cladding and coating have to do with the core?

Introduction

- Radiation testing of optical fibers is in principle simple but tricky when it gets to the details
- Common questions regarding optical fiber radiation test (data):
 - Will my product of choice survive conditions xyz?
 - Can I use the data I found in xyz?
 - What do I need to know and do to perform a good radiation test?
 - What is a "good" radiation test?
 - Precise
 - Known uncertainties
 - Reliable
 - Reproducible

Overview of parameter dependencies Experimental observed influences listed

Manufacturing influences

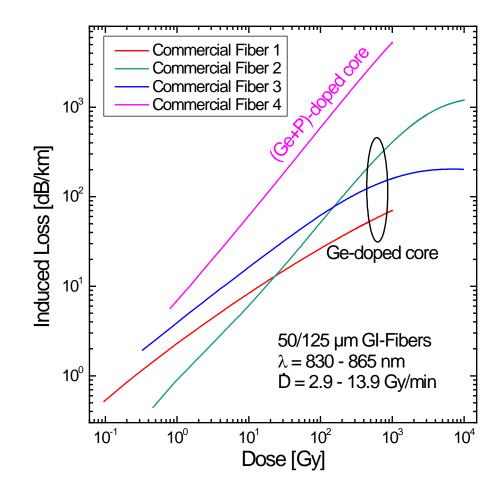
- Fibre type (Single mode, graded index, step index)
- Doping of core/ Doping of cladding (for SM fibres)
- Preform manufacturer and used processes
- Core material manufacturer
- OH Content
- Cladding core diameter ratio (CCDR)
- Coating material
- Drawing conditions

Operation conditions

- Wavelength
- Light power
- Launch conditions

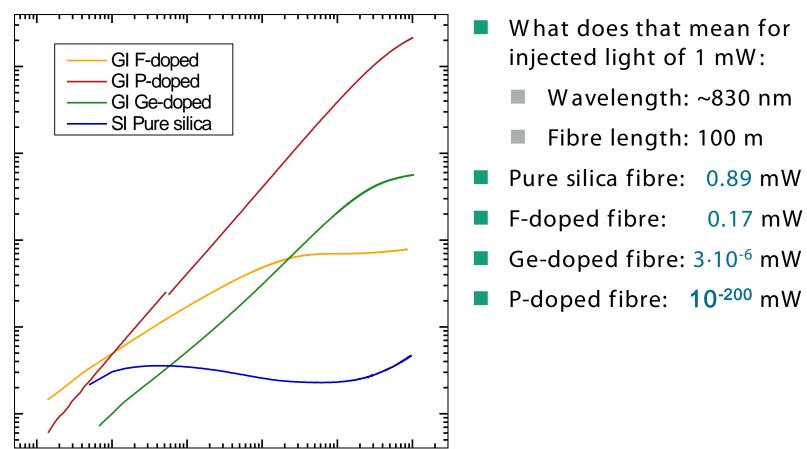
Environment

- Total dose
- Dose rate
- Annealing periods / Duty cycle
- Temperature

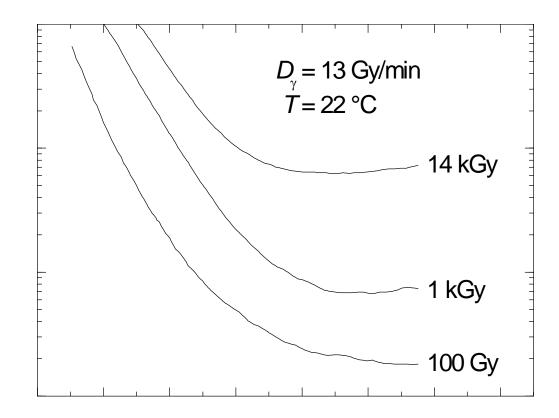

In combination with each other:

Differences of many orders of

Magnitude possible!



Examples of typical parameter influences Gl fibers from different manufacturers



Examples of typical parameter influences Different fiber types and core dopands

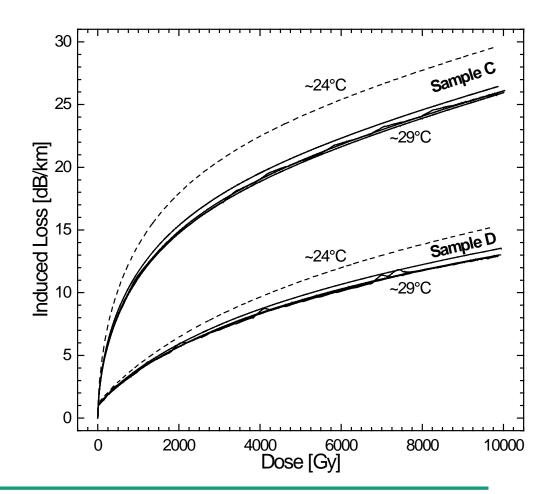
Examples of typical parameter influences Wavelength dependence

Relevant test standards for optical fiber radiation tests

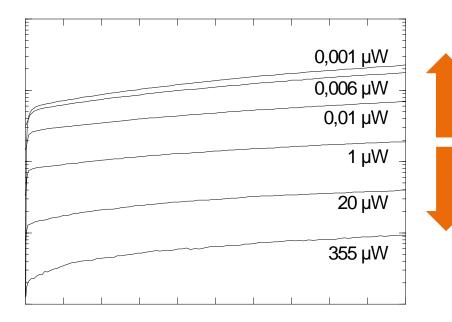
List of test standards for radiation tests on optical fibers

- IEC 60793-1-54 ed. 2.0 (2012)
- ASTM E 1614 94 (2013)
- TIA/EIA-455-64: FOTP 64 (2002)
- IEC 62283 TR ed. 2.0 (2010) no standard
- DIN EN 61300-2-31 (1998) not active
- IEEE Std. 1682 (2011) general description
- NATO Nuclear Effects Task Group: NRL/MR/6505-92-6963 outdated
- ESCC 22900 Issue 4 (2010) Not intended for fibers

Overview of some key standards Differences in specifications

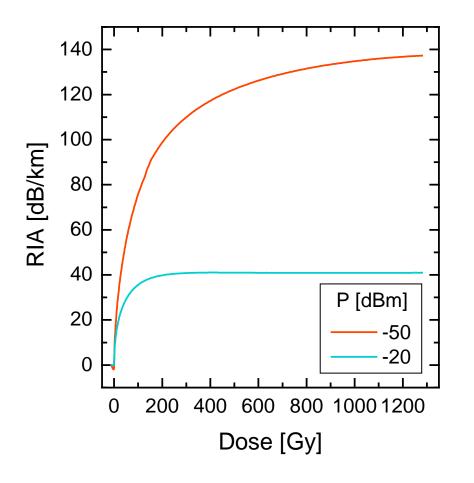

Parameter	FOTP-64	IEC 60793-1-54	ASTM E1614
Wavelength [nm]	850,1310,1550±20	x±20, 3 dB width	250 – 2100
Light power	1 μW	1 μW (avoid PB)	n. a.
Irradiation Source	γ, n, X, e⁻	Co-60	α, β, γ, p >500 keV
Irradiation Time	7.7 min – 100 min	1000 h	77 min – 167 h
Dose rate	0.05 Gy/s – 1.6 Gy/s	0.27 Gy/s	0.2 Gy/s – 1.6 Gy/s
Annealing	> 1000 s	> 15 min	> 3600 s
Sample length	100 m	250 m (or shorter)	50 m

Problematic test conditions What is room temperature?


Standards:

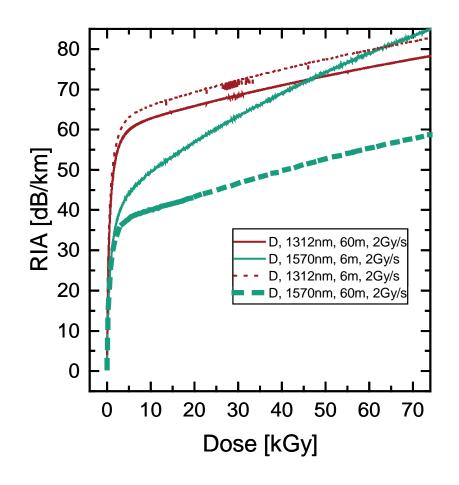
- FOTP: 21°C 25°C
- IEC: 20°C 30°C
- ASTM: 21°C 25°C
- ESCC: 10°C 30°C
- From this it seems that a wide range is possible, but does it make sense?
- No, because already small variations (5°C) lead to significant variations of RIA (15%)

Problematic test conditions Photobleaching – Long gone or worse than ever?


Henschel showed strong effect of photo-bleaching in puresilica core step-index fibers more photo-bleaching for light powers < 1 μW!

"Classical" photo-bleaching for light powers > 1 μW

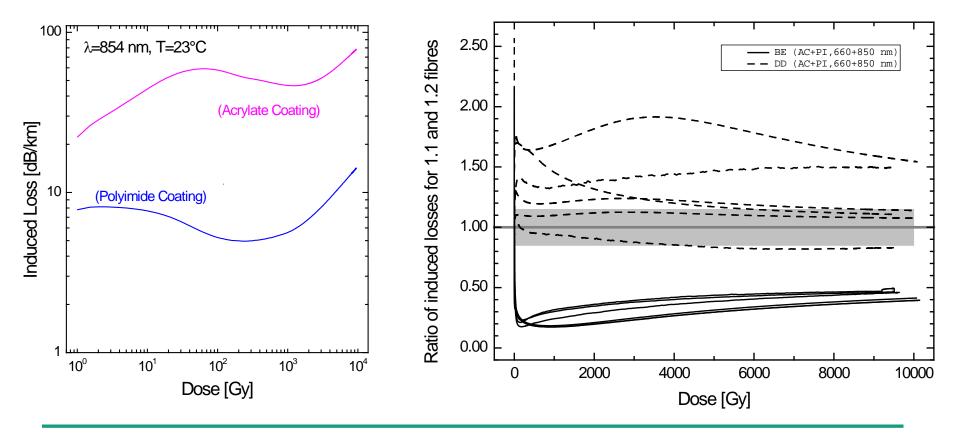
- Using light powers of ~1µW does not avoid photobleaching!
- One reason named was the quality of the fibers in the 90s.
- So no problem any more?


Problematic test conditions Photobleaching – Long gone or worse than ever?

- The graph shows results obtained with a commercial optical fiber
- Light power was varied between 10 μW and 0.001 μW
- Strong photo-bleaching effect is observed which would underestimate the radiationinduced loss in low-power applications dramatically
- Problem still exists and needs careful attention while designing a test

Problematic test conditions Geometry – How to bend the fiber?

- Corning SMF28e
- 1 Gy/s \Leftrightarrow Spool \varnothing 6 cm
- 2 Gy/s \Leftrightarrow Spool \varnothing 4 cm


- Strong effect of bending radius on RIA as a function of wavelength
- OTDR-Measurements showed no noticeable bending loss!

Problematic test conditions Exotic influences – What does the cladding and coating have to do with the core?

Influence of coating material

Influence of core-cladding ratio

Condusions

- Well known and not so well known influences on the radiation-induced loss in optical fibers were presented
- Overview of relevant standards and their differences was given
- Not covered (but possible topics for panel discussion):
 - Evaluation of uncertainties
 - Influences of experimental equipment
 - Quality assurance
 - Comparison of different laboratory test data
 - Testing of speciality fibers (photonic crystal, PM, active)
 - Take-home message: Radiation testing of optical fibers is not simple, but experience and careful planning and design leads to reliable and useful test results

Thank you for your attention!

Contact:

- Jochen Kuhnhen Fraunhofer INT Appelsgarten 2 53879 Euskirchen Germany
- Tel.: +49(0)2251/18-200
- Email: jochen.kuhnhenn@int.fraunhofer.de

