

FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE

## Design and Development of Solar Cell Integrated Moisture and **Temperature Sensors for Photovoltaic Modules**

Jaimin Navin Bhai Patel<sup>1</sup>, Esther Fokuhl<sup>1</sup>, Karthika Sheeja Prakash<sup>1</sup>, Andreas Beinert<sup>1</sup>, Viktor Wesselak<sup>2</sup>, Paul Gebhardt<sup>1</sup>, Daniel Philipp<sup>1</sup> <sup>1</sup>Fraunhofer Institute for Solar Energy Systems Heidenhofstr. 2, 79110 Freiburg, Germany <sup>2</sup>Institute for Renewable Energy Technologies (in.RET), University of Applied Sciences Nordhausen, Weinberghof 4, D-99734 Nordhausen, Germany

## AIM AND OBJECTIVE

- Development of solar cell integrated humidity and temperature sensors for in-situ measurement of moisture ingress and cell temperature.
- The moisture sensor measures the capacitance, which is influenced by moisture diffusion inside EVA.
- The temperature sensor measures resistive properties which is subjective to the cell temperature.
- The sensors are screen-printed on solar wafers and can be integrated into PV modules alongside other solar cells.

## **DESIGN APPROACH**

## **Moisture sensor**

- Interdigitated capacitors with combshaped electrodes
- EVA used as dielectric of capacitor

#### **Parameters**



# **PROOF OF CONCEPT**

### **Moisture sensor**

- LCR meter Agilent 4327B used for capacitance measurement
- Relative humidity controlled in steps from 20 %RH to 85 %RH (at constant temperature 85 °C)
- The test was repeated 5 times ("five-cycle test")
- Exponential behavior,  $C = m + Ae^{B\% RH}$



10 Number of fingers (N) 5 mm Length of the electrode (L) 200 µm Gap between fingers (G) 60 µm Width of the finger (W) 20 µm Thickness of the finger (t)

## **Temperature sensor**

- Design based on resistance temperature detectors with single square rod
- The resistivity of conductive materials used as a temperature detector

#### **Parameters**

| Length of the electrode (L) | 13.75 mm |
|-----------------------------|----------|
| Width of the finger (W)     | 60 µm    |
| Thickness of the finger (t) | 20 µm    |



**Figure 1**: Schematic drawing of the moisture sensor with design parameters (a) Cross-sectional view (b) Top view.





Figure 2: Schematic drawing of the temperature sensor with design parameters

**Figure 5**: Measured capacitance of humidity sensor at 1 kHz with exponential curve fit of the five-cycle test at 85 °C

### **Temperature sensor**

- Multimeter Agilent 34980A used for resistance measurement
- Temperature range: -40 °C to 85 °C
- Holding time at a constant temperature approximately 2 h
- Calibration of sensors values according to IEC 60751,  $R = R_0(1 + At + Bt^2)$



#### (a) Cross-sectional view (b) Top view.

## **SENSOR FABRICATION**

(b)



- Screen printing of sensors on the front side of solar cells
- Laser cutting of sensors wafer into horizontal strips
- The Sensors Strip is laminated between two layers for EVA with a standard lamination process

#### Figure 3:

(a) laminated screen-printed humidity sensor (b) laminated screen-printed temperature sensor (c) commercial humidity sensor laminated between the EVA sheets with a sensor strip.

#### -20 40 60 20 -40

Temperature in °C

**Figure 6**: Temperature dependent resistance measurement of temperature sensor

# SUMMARY AND OUTLOOK

- Moisture sensor provided a reproducible response in cycle test, and it gives an exponential response at constant temperature.
- Temperature sensor showed polynomial response with a high reproducibility.
- For a full calibration of the humidity sensor, investigations at various temperatures need to be performed.
- The next steps are measurements of relative humidity and temperature during operation.