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Abstract 

Inspections have been shown to be an effective means of detecting defects 
early on in the software development life cycle. However, they are not always 
successful or beneficial as they are affected by a number of technical and 
managerial factors. One important aspect is to understand what are the factors 
that affect inspection effectiveness (the rate of detected defects) in a given en-
vironment, based on project data. In this paper we look at management fac-
tors such as the effort assigned, the inspection rate, and so forth. We collected 
data on a number of analysis and code inspections, and performed a multivari-
ate statistical analysis. Because the functional form of effectiveness models is a 
priori unknown, we use a novel exploratory analysis technique: Multiple Adap-
tive Regression Splines (MARS). We compare the MARS model with more clas-
sical regression models and show how it can help understand the complex 
trends and interactions in the data, without requiring the analyst to rely on 
strong assumptions. Results are reported and discussed in light of existing em-
pirical results . 
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1 Introduction 

Inspections have been shown to be an important defect detection technology 
[9][13]. However, when one is faced with planning inspections, a number of 
decisions have to be made. For example, the following questions are consid-
ered relevant as they are deemed to have an impact on inspection effective-
ness, that is the capacity of inspections to uncover defects: 

− What overall effort to devote to the inspection? 
− What should be the inspection rate? 
− How many participants to involve? 
− How should the material to be inspected be broken down? 

 
In order to answer such questions, which will be discussed in further details be-
low, we need to develop models that relate defect detection effectiveness to 
variables such as effort, number of participants, or the amount of code in-
spected. To build such effectiveness models, data on inspections need to be 
collected and multivariate statistical analysis techniques are required to exploit 
such data and capture the complexity of the phenomena under study. 

There is, however, a problem that we face when building such multivariate 
models. We rely on such models to help us predict and understand the rela-
tionships between defect detection and the variables mentioned above. But to 
do so, common and mature approaches, such as multivariate regression analy-
sis, require that we specify beforehand the functional form of the relationships 
among model variables. Because there is little knowledge and theory about in-
spection effectiveness factors [6][2], this is difficult to do without taking the 
risk to fit an inadequate model to the data.  

We are therefore in a typical situation where we need to perform some ex-
ploratory analysis in a multivariate context. Not only we are interested in mod-
eling relationships, e.g., between defect detection and effort, but we would 
like to find out about interactions between variables, that is the way they af-
fect each other’s impact on effectiveness, e.g., effort impact on defect detec-
tion may depend on the inspection rate, that is the pace followed while in-
specting documents.  

This paper will first contribute by using a novel exploratory, multivariate analy-
sis technique (MARS [7]) to help us build a defect detection prediction model 
that is as accurate as possible. As far as we know, MARS has not been used 
before for building software engineering models. For the purpose of evaluating 
the gain of using MARS compared to conventional approaches, we will also 
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build ordinary least squares regression models following classical variable sec-
tion procedures [5]. We will compare the two types of models in terms of their 
goodness of fit, predictive power, and their capacity to help us understand the 
phenomena under study. We will then analyze the MARS multivariate models 
to gain some understanding regarding a number of common hypotheses re-
garding inspection defect detection effectiveness and its relationship to various 
factors such as effort, participants, or inspection rate. From all these results, we 
then provide general recommendations regarding the construction of such 
models in other inspection environments.  

The paper is organized as follows. We first summarize the current state of 
knowledge based on our review of the literature. Then, in Section 3, we de-
scribe the motivations, the environment in which our study was performed, 
and the data collection performed. Section 4 then introduces the main model-
ing technique used: Multivariate Adaptive Regression Splines (MARS). Regres-
sion analysis results are then reported in Section 5, followed by MARS results in 
Section 6. The latter section also performs comparisons with results in Section 
5. Section 7 then concludes the paper by summarizing findings and lessons 
learned.  
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2 Managing and Improving Inspections 

In order to improve and control inspections, it is first necessary to identify the 
factors impacting inspection effectiveness, that is the number1 of defects de-
tected. Knowingand understanding these factors will enable us to control them 
when planning and conducting an inspection, so that a maximum defect de-
tection effectiveness can be achieved.  

In this section, we summarize existing empirical results so that we can compare 
our results and discuss them in light of reported data. In the literature, several 
factors have been hypothesized and/or shown to affect the effectiveness of in-
spections. For example, several studies showed that the effort spent on 
inspecting an artifact has a major impact on the inspection effectiveness [13]. 
Christenson et al. [2] reported the preparation effort of the inspectors to be 
correlated with the density of defects found. Ebenau [6] identified the exami-
nation rate2 and the preparation rate3 as major drivers of inspection effective-
ness. In a context where defects are searched during meetings (i.e., examina-
tion), spending more effort on preparation (i.e., reading a document) yields a 
higher understanding of the document to be inspected and hence results in 
more detected defects during inspection meetings. Spending more effort on 
examining the document simply increases the thoroughness of the inspection 
and increases the chances of detecting defects.  

Characteristics of the inspected product can have an impact on the effective-
ness of inspections as well. Some studies [2] [6] reported the size of the in-
spected document to impact inspection effectiveness as a larger document 
usually contain a larger number of defects. Additionally, the “complexity” of a 
product [2] [8] [9] and its initial quality [10] can have an effect on inspection ef-
fectiveness as these factors relate to the defect content of the inspected prod-
uct. 

The characteristics of the inspection team can also show some effect on in-
spection effectiveness. Porter et al. [11] suggest that an inspection team com-
posed of several inspectors can enable the detection of a wide variety of de-
fects since each inspector is likely to rely on a different expertise. The larger 
and the more varied the team, the better the coverage of the document, thus 
resulting in an increased inspection effectiveness. Additionally, the qualification 

                                                
1 Using the proportion of defects found would be equivalent as this is the number of detected defects di-

vided by a constant: the total number of defects. 
2  Effort spent examining the document in the inspection meeting per unit of document size (e.g., LOC) 
3 Effort spent reading the document during preparation per unit of document size (e.g., LOC) 
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of the inspection participants can impact the effectiveness. Inspectors well 
versed in the application domain can already know about potential defects in 
the inspected product [11] [15] [13].  

Finally, the organization of the inspection process and its infrastructure can 
have an impact on the effectiveness as well. Porter et al. [11] identify the num-
ber of inspections sessions as another factor influencing inspection effective-
ness. Additionally, the defect detection technique chosen for an inspection 
may have an impact on effectiveness as well. For example, more systematic 
techniques may help inexperienced inspectors [12]. 
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3 Case Study Setting and Data Collection 

The work described in this paper took place in a business unit of Siemens AG, 
Germany, which is developing products and services for mobile communication 
and intelligent networks. In this particular business unit, inspections are per-
formed throughout the entire life cycle to ensure the quality of all software ar-
tifacts. Thus, inspections are performed after each of the development phases: 
analysis, design, and coding. Due to the substantial investment in software 
quality through systematic inspections, the quality assurance team’s objective is 
to continuously improve and control the defect detection effectiveness of these 
inspections.  

Because software quality is a major objective in this environment, data is sys-
tematically collected regarding the factors that have been shown to affect in-
spections’ effectiveness in the published literature: the number of inspection 
participants, the type and size of the work product (different size measures are 
used depending on the type of product), the size of the change from the last 
version of the work product, the inspection effort, the number of defects 
found (classed into major and minor defects, where major defects are those 
that would lead to a fault or failure in subsequent phases), and the estimated 
rework effort.  

Depending on the artifact to be inspected, three different kinds of inspection 
methods are applied. First, with the so-called “comment technique”, the arti-
fact is distributed to many inspectors who simply read the document and send 
their comments to the author. There is no formal, precisely defined inspection 
procedure. The second one is an inspection approach, similar to the one de-
scribed in [15], where inspectors use checklists to identify defects during 
preparation and where an inspection meeting is held to collect the individual 
inspectors’ defects. Third, there are “intensive” inspections, which are similar 
to the approach proposed in [18] and enhance the second inspection approach 
in two ways. First, during the inspection meeting, a reader reads parts of the 
document, which is then discussed by the participants. In this discussion in-
spectors also collect the defects they detected during preparation. Thus, with 
intensive inspection, there is more interaction between authors and inspectors 
on the content of the inspected document. Second, a discussion takes place on 
how to prevent the detected defects in the future as  

The data collected in this environment and used throughout the analysis is 
listed in Table 1. In addition, qualitative data regarding the type of inspection 
performed (as discussed above) and the type of document inspected was col-
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lected. The definition of these categorical variables is specific to the environ-
ment under study and only meaningful in that context.  

In addition, based on the data collected, two composite measures are com-
puted: effort per participant (Effpart), inspection rate (Totrate and Rate as Loc 
and Iloc per effort unit, respectively). 

Variable Description 
Defects sum of major and minor defects detected in the inspection 
Particip number of participants taking part in the inspection (either in preparation or in 

the meeting) 
Effort total effort spent by the participants for the inspection (including preparation 

effort and meeting effort) in person-minutes 
Sessions number of meetings that were performed to completely inspect a document 
Dloc (for code documents) size of the change compared to the last version 
Loc (for code documents) total size of the inspected document. 
Iloc (for code documents) size of document’s part actually inspected. 
Totpage (for analysis documents) the total size of the inspected document measured in 

number of pages 
Inspage (for analysis documents) the size of the inspected part of the document in 

number of pages. (The documents were structured according to a pre-defined 
standard for analysis documents) 

Table 1: Inspection Measurement 
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4 Multivariate Adaptive Regression Splines (MARS) 

When analyzing and modeling the relationship between fault detection and in-
spection effort, as well as other potential effectiveness factors mentioned ear-
lier, one of the main issues is that relationships between these variables are ex-
pected to be complex (non-linear) and to involve interaction effects. Because 
we currently know little about what to expect and because such relationships 
are also expected to vary from one organization to another, analyzing inspec-
tion data in order to understand what affects inspections’ effectiveness is usu-
ally a rather complex, exploratory process.  

When using typical regression techniques, the risk to fit the data with models 
that may be simplistic is rather difficult to avoid. For example, we typically re-
sort to log-linear models to handle non-linear relationships [5]. But this comes 
with a number of drawbacks such as forcing the model to have a null intercept 
or making the analysis of interactions impossible (the whole log-linear model is 
a multiplicative expression). An alternative to model such complex relationships 
is artificial neural networks [16]. However, such models are difficult to interpret 
[4] as it is nearly impossible to assess the impact of individual independent vari-
ables on the dependent variables and their interactions. Interpretation is key in 
our context, as the models we build are not just used for prediction purposes 
but are also used to support decision-making and, from a more general per-
spective, gain a better understanding of software engineering processes.  

MARS is a novel statistical method presented in [7] and supported by a recent 
tool developed by Salford Systems4. At a high level, MARS attempts to ap-
proximate complex relationships by a series of linear regressions on different 
intervals of the independent variable ranges (i.e., subregions of the independ-
ent variable space). It is very flexible as it can adapt any functional form and is 
thus suitable to exploratory data analysis. One challenge though is to find the 
appropriate intervals on which to run independent linear regressions, for each 
independent variable, and identify interactions while avoiding overfitting the 
data. This is the purpose of the search algorithms proposed by the MARS 
methodology. Though these algorithms are complex and out of the scope of 
this paper, MARS is based on a number of simple principles. They are intro-
duced below in order for the reader to understand the results presented in 
later sections. It is also interesting to note that the results in [4] show that for 
datasets of sizes comparable to what we use in this study, MARS models are 
more likely to be accurate than artificial neural networks. 

                                                
4 www.salford-systems.com 
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Figure 1 illustrates a simple example of how MARS would attempt to fit data, 
in a two dimension space (where Y and X are the dependent and independent 
variables, respectively), with piece-wise linear regression splines. A key concept 
is the notion of knots, that are the points that mark the end of region of data 
where a distinct linear regression is run, i.e., where the behavior of the mod-
eled function changes. Figure 1 shows two knots: x1 and x2. They delimit three 
intervals where different linear relationships are identified. MARS search algo-
rithms identify appropriate knots in an automated way, though a number of 
search parameters have to be set by the user. Of course, in a case with higher 
dimensions and interactions between independent variables, the search be-
comes much more complex but the fundamental principles remain the same. 
The reader is referred to [7] for further details.   

X

Y

x1 x2

 

Figure 1: Example Knots in MARS 

In order to model the concept of knots and piece-wise linear regression splines, 
MARS uses the concept of basis function. These are functions of the form:  

max(0, X-c), or 
max(0, c-X) 

 
where X is an independent variable and c a constant.  
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Such basis functions re-express an independent variable X by mapping it to 
new variables, which are of the form described above. For max(0, X-c), X is set 
to 0 for all values of X up to some threshold value c and is equal to X for all 
values of X greater than c. By mixing the two types of basis functions pre-
sented above and providing adequate values for c, it is possible to approximate 
any functional shape. Determining the right knots (threshold values c) is a key 
challenge addressed by MARS search algorithms. In short, basis functions are 
used as the new independent variables of our regression estimation models. 
MARS also looks for interaction terms among basis functions, thus leading to 
the modeling of the interactions among independent variables.  

MARS also provides some insight regarding the importance of variables as pre-
dictors of defect detection effectiveness, the dependent variable. MARS refits 
the model after removing all terms involving the variable to be assessed and 
calculates the reduction in goodness of fit. All variables are then ranked ac-
cording to their impact on goodness of fit. An optimal MARS model, in terms 
of goodness of fit, is the one with the lowest generalized cross-validation 
(GCV) measure. The function f̂ is the MARS prediction model based on basis 
functions. Y is the dependent variable−the number of defects detected in our 
case−and there are N observations in the dataset. C(M) is the cost-complexity 
measure of a model containing M basis functions. 

[ ] 2

1

2 )(1)(ˆ1)( ∑
=






 −−=
N

i
ii N

MCxfy
N

MGCV  

Besides the usual computation of the squared prediction error, there is a cost 
incurred per basis function included in the model so as to avoid overfitting, 
much like adjusted R2 in least-squares regression. In other words, C(M) is used 
to penalize model complexity, prevent the overfitting of data, and promote the 
parsimony of models. This is usually defined as C(M) = M in linear least-squares 
regression and this is what we use in this paper. The function f̂ is the MARS 
prediction model based on basis functions. Y is the dependent variable−the 
number of defects detected in our case−and there are N observations in the 
dataset. The loss in GCV associated with removing all the basis functions in 
which a variable is involved is the measure used to assess its importance in a 
MARS model.  

Other measures of goodness of fit can be used to assess regression models 
from a practical standpoint. In particular, we will use four of them in this pa-
per.  

− Absolute Relative Error (ARE): |actual – estimated| 
 

− Magnitude of Relative Error relative to the actual value (MRE):  
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|actual – estimated| / actual 

 
− Magnitude of Relative Error relative to the estimated value based on a re-

gression model (MRE’): 
 

|actual – estimated| / estimated 
 

− Coefficient of determination of the regression model (R2 between actual 
and predicted defects) 

 
Looking at the above measures is relevant, especially when the models are to 
be used for prediction. However, as discussed below and in Appendix A, they 
cannot really be used to compare the plausibility of non-nested models, i.e., 
determine which model fits the closest to reality. Therefore, such goodness-of-
fit measurements should be used and interpreted with care.  

A few other technical issues need to be considered when using MARS. In [4], 
simulations and case studies show that MARS is sensitive to outliers (i.e., ob-
servations in empty parts of the sample space, , which are more difficult to de-
tect in multidimensional settings) and strong collinearities among independent 
variables5. In the analysis below, we will attempt first to remove outlying, over-
influential observations in the sample space before building any model. How-
ever, to retain the objectivity of the analysis results, outliers will be kept during 
the validation stage of the models (see cross-validation below). These outliers 
will be identified using the Jackknife Mahalanobis distance (distance from the 
sample space multivariate mean or centroid) [5]. We will verify whether obser-
vations showing a very large Mahalanobis distance have an overinfluential ef-
fect on the multivariate models that we build. If this is the case, they should be 
removed for model building. The main motivation here is to make sure that no 
one observation will distort the models being built. In the case study presented 
below, one observation was clearly outlying and hence removed for model 
building purposes. Regarding collinearity, we will use Principal Component 
Analysis (PCA) [5] to identify strongly collinear variables belonging to the same 
principal component. One variable from each principal component will then be 
allowed to enter the MARS models. In other words, all of the above will help 
us prevent, to the best extent possible, the computation of spurious results by 
MARS search procedures. This would otherwise prevent us from building sta-
ble, accurate models and understand the inspection processes.  

                                                
5 Note that these problems also affect the reliability of variable selection procedures used to build least 

squares regression models. MARS may, however, be more sensitive to it because of the automated com-
putations of optimal knots.  
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5 Multivariate Regression Analysis 

As mentioned above, we will first use conventional procedures for investigating 
the inspection data by applying ordinary least squares regression [5]. Our goal 
is to use the least-squares regression results as a comparison baseline to assess 
the benefits of using MARS. We will use stepwise regression procedures to se-
lect significant covariates and try different functional forms to fit the best re-
gression model possible. Like for MARS models, we will remove the same out-
lier and make sure we do not allow strongly correlated variables to enter the 
model6. 

We first identify the factors, among the ones that are measured, which have a 
significant impact on inspection effectiveness in the studied environment. Fol-
lowing a procedure similar to the one used in previous studies [6] [2], we per-
formed a multivariate regression analysis on data from both analysis and code 
inspections. Data for design inspections were not investigated as the size of the 
data set was too small to obtain meaningful results. The total number of de-
tected defects (i.e., the sum of major and minor defects) was chosen as de-
pendent variable for the effectiveness of inspections. Independent variables 
are: the number of inspection participants (Particip), the inspection effort (Ef-
fort), the number of inspection sessions (Sessions), the size of the change from 
the last version (Dloc, for code only), and the size of the inspected document. 
For analysis documents, the total size of the inspected document (Totpage) 
and the size of the document actually inspected (Inspage) were roughly meas-
ured in number of pages. Note that the number of pages may be an accept-
able measure as analysis documents tend to have a consistent structure. For 
code documents, the following measures were collected: the total size of the 
artifact in lines of code (Loc), the size of the change compared to the previous 
release (Dloc), and the number of lines of code actually inspected (Iloc).  

We performed a stepwise multivariate regression to identify which factors, 
among the ones presented above, have a significant impact on the number of 
defects detected. In building the regression models two common functional 
shapes, namely the linear and log-linear relationships, were investigated. Be-
low, we present only the log-linear models because they showed to be more 
plausible based on goodness of fit values (median MRE) and a standard plausi-
bility test to compare functional forms: the J-Test [3]. Though certainly not per-
fect, the log-linear model allows us to model non-linear relationships while still 
using linear regression analysis. Because of its practicality, this functional form 

                                                
6 As this tends to make stepwise variable selection procedures unreliable 
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is commonly used in software engineering data modeling, such as in cost esti-
mation [17].  

In the analysis we only considered inspections in which at least one defect was 
found. The rationale for this selection was that, based on our discussion with 
the quality management team, we suspected that some of these zero-defect 
inspections might not have been thoroughly performed. In particular the ones 
performed according to the rather loose “comment technique” represented 
77% of all zero-defect inspections and were particularly suspect. Since we 
could not collect information regarding the inspection process conformance or 
the initial quality of inspected documents, we decided it would be more pru-
dent to eliminate these observations from the analysis. To perform such quality 
checks and decide on the validity of the data for the analysis at hand is usual 
when collecting data in industrial settings. Our goal here is to make sure we 
use relatively clean, valid data to identify significant inspection effectiveness 
factors. The heuristic we used is rough but appeared to be effective at getting 
cleaner relationships. These inspections detecting zero defects should be care-
fully investigated as they may be the symptom of a problem.  

5.1 Code Inspections 

Table 2 provides common descriptive statistics of the investigated variables: 
mean, standard deviation, maximum value, 75% percentile, median (i.e., the 
50% percentile), 25% percentile, minimum value. Data was collected for 237 
observations (code inspections) but, as discussed above, one outlier was left 
out during the statistical analysis. Regarding our categorical variables, 27% of 
the code inspected was in assembler and the remainder in the programming 
language CHILL. The proportions for “comment”, “intensive”, and default 
(standard checklists) inspections were 43%, 40%, and 17%, respectively. This 
data, however, was deemed unreliable by the quality management team. This 
may also explain why we did not find that variable significant in the analysis.  

Measure Mean StdDev Max P75 Med. P25 Min 
Defects 11.7805 17.6198 130 13 6 2 1 
Particip 4.66244 2.42427 17 5 4 3 1 
Effort 1221.77 1670.65 14100 1560 630 270 30 
Effpart 255.365 303.202 3000 310 180 75 7.5 
Loc 13197.9 65962.4 94500 10000 3200 1236 30 
Dloc 1567.89 3403.83 25029 1624 300 90 4 
Iloc 2971.73 5442.24 39188 2830 806 300 10 
Rate 7.19578 21.3471 130.626 3.33333 1.251 .4166 .0059 
Sessions 1.4641 0.9135 6 1 1 1 1 

Table 2: Descriptive Statistics for Code Inspections 
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As discussed above, in order to prevent the use of independent variables being 
strongly collinear, we run a Principal Component Analysis (PCA) on all the vari-
ables in Table 2. Table 3 presents six principal components (PC1 –PC6) that ex-
plain 97% of the variance in the data set. In each principal component, the co-
efficients associated with each variable (loading), represents its contribution to 
the principal component. Variables showing high loadings in the same principal 
component tend to be strongly correlated and may be seen as capturing the 
same underlying “concept” or dimension. The reader is referred to [5] for 
more details.  

From these principal components, we can see that Effort and Effpart are 
strongly correlated (high loadings in PC1). This is also the case of Iloc and Rate 
(high loadings in PC2). In the model below, we will only allow Effort and Rate 
to enter and leave Effpart and Iloc out. The selection of one high loading vari-
able over the other in PC1 or PC2 does not strongly affect the goodness of fit 
of the regression model to be built.  

 PC1 PC2 PC3 PC4 PC5 PC6 
Eigen-
Value 

2.6398 2.0142 1.0601 0.8361 0.7115 0.5263 

Percent 32.9976 25.1775 13.2514 10.4512 8.8933 6.5792 
CumPerc 32.9976 58.1751 71.4265 81.8776 90.7710 97.3502 
       
Particip -0.099985 -0.098317 -0.974378 0.0236156 -0.124721 -0.036022 
Effort -0.851037 -0.020853 -0.42085 0.1048765 -0.175142 -0.074648 
Effpart -0.955408 -0.014007 0.0962267 0.1030884 -0.075809 -0.169734 
Loc -0.137135 0.0642781 -0.030225 0.9807216 -0.026941 -0.115147 
Dloc -0.195486 0.2713266 -0.050201 0.1308865 -0.047655 -0.927875 
Iloc -0.142954 0.8857935 0.0472498 0.1201449 -0.126869 -0.312002 
Rate 0.1514296 0.9613718 0.0776791 -0.013592 -0.004964 -0.050908 
Sessions -0.15739 0.0894070 -0.135046 0.0271967 -0.972457 -0.045606 

Table 3: Rotated Principal Components for Code Inspections 

Using the variables selected based on PCA, a multivariate regression analysis 
was run, using a backward variable selection procedure. The obtained (log-
linear) regression model for code inspections has the following form 

)ln()ln()ln( 21 rateaeffortaadefects o ++=  

Since Effort is selected as a covariate, using Iloc instead of Rate would have led 
to a fully equivalent model and identical goodness of fit7. Using Effpart instead 
of Effort would have lead to a moderately lower fit. So we are confident to 
have achieved the best fit possible with the data available. Estimation statistics 

                                                
7 This is due to the fact that Rate is defined as Iloc over Effort. Thus, the equivalence is easy to demonstrate. 
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for the estimated coefficients a
i
 are shown in Table 4. For each coefficient, we 

provide: its estimate, the standard error of the estimate, the t-ratio of the coef-
ficient, the statistical significance of the coefficient (i.e., the probability that the 
coefficient is equal to zero), and the standardized beta coefficient. The stan-
dardized beta coefficient characterizes the change in the dependent variable in 
terms of standard deviations, if the corresponding independent variable is 
changed by one standard deviation and all other variables are held constant 
[5]. Thus, the relative impact of the independent variables can be assessed.  

Coefficient Estimate Std Error t Ratio Prob>|t| Std Beta 
a0 -3.1360 0.3112 -10.07 <.0001 0 
a1 0.7522 0.0470 15.99 <.0001 0.7759 
a2 0.2445 0.0332 7.37 <.0001 0.3573 

Table 4: Estimation Statistics for Code Inspections’ Regression Model 

The fit of the model is characterized by the statistics shown in Table 5. This ta-
ble provides the coefficient of determination (R2), the adjusted R2 (which ac-
counts for the increased number of independent variables in a multivariate re-
gression model [5]) for the multivariate model described above. We can also 
compute the R2 and adjusted R2 in the normal domain, that is considering De-
fects instead of ln(Defects). This is obtained by performing a regression be-
tween the number of defects and the predicted number of defects and then 
adjusting the resulting R2 by using standard adjustment formula [5]. The results 
tell us that our regression model explains little more than 50% of the variance 
in number of defects. This means that important effectiveness factors are still 
not captured by our data collection.  

R2 Ad-justed R2 R2 Normal Domain Adj. R2 Normal Domain 
0.5258 0.52 0.56 0.56 

Table 5: Goodness of fit for Code Inspections 

The relative error of the model is shown in Table 6. We report the mean and 
median values of both the magnitude relative error (MRE) and the absolute er-
ror (ARE). This tells us that 50% of the predictions show a relative error of 
50% or above and an absolute error of approximately 3 defects or more.  

 MRE MRE’ ARE 
Mean 0.78 0.76 6.59 
Median 0.51 0.51 2.72 

Table 6: Relative Error for Code Inspections 

In this model, the inspection effort and rate (or inspected size as they cannot 
be differentiated) of the document show a significant impact on the number of 
defects detected. Estimated regression coefficients are significantly lower than 
one and thereby confirm that the relationships are not linear and show dis-
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economies of scale for effort. A straightforward interpretation is that more ef-
fort or a higher rate is spent on inspections allows the inspectors to obtain a 
more thorough understanding of the document, thus resulting in the detection 
of more defects. The impact of the inspected document size can simply be ex-
plained by the fact that, if more of the document is inspected, assuming a 
somewhat constant defect density, more defects are to be detected. It is im-
portant to note that the log-linear model suggests that the number of defects 
detected does not grow proportionally to effort, rate or inspected Locs. There 
are several possible interpretations for this. For example, as reported in [18], 
when inspected document size grows there are fatigue effects resulting in 
lower effectiveness to find defects.  

To compare the relative impact of Effort and Iloc (or Rate) we consider the 
standardized beta coefficients. They show the change, in terms of standard 
deviation, of the number of defects when the independent variable changes by 
one standard deviation. Since the standardized beta coefficients for (log)Effort 
is the highest (even when taking into account standard estimation error), effort 
is clearly the most important driver for the code inspection effectiveness. As a 
first priority, we therefore recommend making sure a sufficient amount of time 
is scheduled for the inspections in order to reach adequate inspection effec-
tiveness. We will see below that further analysis with MARS will allow us to be 
more precise in determining optimal inspection rates.  

5.2 Analysis Inspections 

Table 7 provides the descriptive statistics for each variable based on 177 obser-
vations (analysis inspections). However, in the remainder of the analysis, and as 
discussed above, one outlier will be left out. As previously mentioned, theclas-
sification of inspections as “comment”, “intensive”, and default (standard 
checklists) was deemed unreliable by the quality management team and did 
not show to be a significant factor. We also tried to classify the documents in-
spected according to different types but, again, it did not turn to be a signifi-
cant effectiveness factor.  

Measure Mean StdDev Max P75 Median P25 Min 
Defects 18.0451 19.5197 111 22 12 5 1 
Particip 12.1299 8.37949 54 17 10 6 1 
Effort 1305.59 1840.35 12600 1500 720 360 12 
Effpart 111.147 128.651 900 127.5 72.2699 45 2 
Totpage 39.5480 57.7933 526 56 15 9 2 
Inspage 37.7457 57.1706 510 45 13 9 2 
Rate .116130 .299292 2.349 .06666 .0238 .010569 .000971 
Sessions 1.22598 1.23159 10 1 1 1 1 

Table 7: Descriptive Statistics for Analysis Inspections 
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Like for code inspections, we run a Principal Component Analysis (PCA) on the 
variables in Table 7. Rate and Totrate are strongly correlated, as well as Effort 
and Effpart (Like for code inspections), and Totpage and Inspage. As for code 
inspections, we will allow only a subset of these variables to enter the model to 
prevent strong collinearities among model covariates: Rate, Effort, and Inspage.  

 PC1 PC2 PC3 PC4 PC5 
EigenValue 2.9897 1.9903 1.3025 0.8915 0.6947 
Percent 37.3718 24.8785 16.2816 11.1433 8.6837 
CumPercent 37.3718 62.2503 78.5319 89.6751 98.3588 
      
Particip -0.018065 0.0841435 0.9635523 -0.157381 0.1664413 
Effort 0.0225728 0.9061068 0.3686147 -0.079799 -0.036491 
Effpart 0.0808347 0.9621043 -0.157936 -0.117316 -0.02408 
Totpage 0.9555919 0.0771264 -0.072025 0.2205918 -0.036388 
Insppage 0.9540065 0.0320833 0.0454971 0.2454602 0.0071750 
Rate 0.2402744 -0.103891 -0.097406 0.9592561 -0.015228 
Totrate 0.2473356 -0.103609 -0.113568 0.9554223 -0.019016 
Sessions -0.020249 -0.044734 0.1491591 -0.021114 0.9871586 

Table 8: Rotated Principal Components for Analysis Inspections 

Using the variables selected based on PCA, we run again a multivariate step-
wise regression, using a backward selection procedure. This yields a (log-linear) 
regression model with the following form 

)ln()ln()ln()ln( 321 participainsppageaeffortaadefects o +++=  
 

Using Totpage instead of Insppage would have lead, as expected, to a very 
similar goodness of fit and model. Like the model for code inspections, the fit 
statistics for the estimated coefficients a

i
 in the analysis model are shown in 

Table 9. All the model covariates show to be strongly significant. 

Term Estimate Std Error t Ratio Prob>|t| Std Beta 
a0 -2.1555 0.3246 -6.64 <.0001 0 
a1 0.5017 0.0575 8.72 <.0001 0.55 
a2 0.1498 0.0551 2.72 0.0072 0.14 
a3 0.3548 0.0956 3.71 0.0003 0.23 

Table 9: Estimation Statistics for Analysis Inspections’ Regression Model 

Table 10 and Table 11 characterize, respectively, the goodness of fit and the 
relative error of the model for analysis inspections. We report the mean and 
median values of both the magnitude relative error (MRE) and the absolute 
relative error (ARE). Those results tell us, once again, that we manage to ex-
plain little more than 50% of the variance in number of defects. We can also 
see results that are comparable to code inspections in terms of predictive accu-
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racy. 50% of predictions show a relative error of 46% or worse and an abso-
lute prediction off by 5 defects or more.  

R2 Adjusted R2 R2  

Normal Domain 
Adj. R2 

Normal Domain 
0.5494 0.5415 0.5374 0.5348 

Table 10: Goodness of fit for Analysis Inspections 

 MRE MRE’ ARE 
Mean 0.7687 0.6931 8.9848 
Median 0.4555 0.5242 5.290 

Table 11: Relative Error for Analysis Inspections 

In this model, inspection effort, the total (or inspected) number of pages, and 
the number of inspection participants show a significant impact on the number 
of detected defects. Once again, using a J-test [3], it can be shown that the 
most plausible model is log-linear. Similar to the results in code inspections, 
higher inspection effort and larger (inspected) documents show larger number 
of defects detected. 

Interestingly, as opposed to code inspections, the number of inspection partici-
pants is a significant driver for analysis inspection effectiveness. This may be 
explained by the fact that in analysis inspections, a larger variance in the num-
ber of participants can be observed. As a consequence, this variable shows an 
impact that is not visible in code inspections. This is visible when looking at 
Table 2 and Table 7. One tentative explanation, confirmed by the quality man-
agement team, is that analysis inspections cover a broader scope and involve 
many more interfaces with other documents that code artifacts. A higher 
number of inspectors increases the probability that the right expertise is pre-
sent and results in a significant impact on inspection effectiveness. 

The standardized beta coefficients show, consistent with the result for code in-
spections, that the inspection effort is the main driver for the number of de-
tected defects. Based on this result we can recommend, once again, that man-
agement ensure a sufficient amount of time to be scheduled and was used for 
the preparation and execution of Analysis inspections. This confirms the well-
known observation that inspection planning is key to the success of introduc-
ing systematic inspections in an organization. Using predictive models may help 
making such a planning more accurate. This recommendation will be made 
more precise in the next section, using the MARS analysis technique.  
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6 MARS Analysis 

We present below the results obtained when performing a MARS analysis to 
our inspection data. We first start with code inspections and then present simi-
lar results for analysis inspections.  

6.1 Code Inspections 

We will allow the same predictor variables as in the log-linear models to enter 
the MARS models, making sure no strong collinearities are present among 
variables that can enter the MARS model. We will first provide the models built 
by the MARS procedures and their validation results. Then, we will provide an 
interpretation of the modeling results.  

6.1.1 Model Building and Validation 

The basis functions identified by MARS search algorithms are described in 
Table 12.  We can right away identify a number of interaction effects and, in 
particular, interactions between effort (as captured by basis function BF1) and 
a number of other variables. Such interactions can be seen in the table when 
basis functions are part of the definition of other basis functions, e.g., BF1 in 
BF4. Because of many such interactions, Table 12 suggests that the model is 
far from being additive and that interactions will play an important role in 
building an accurate model for code inspections. Models and interactions will 
be further discussed below.  

Basis Functions 
BF1 = max(0, EFFORT - 30.000); 
 BF4 = max(0, PARTICIP - 10.000) * BF1; 
 BF9 = max(0, DLOC - 3000.000) * BF1; 
 BF11 = max(0, SESSIONS - 4.000) * BF1; 
 BF14 = max(0, 0.250 - RATE ) * BF1; 
 BF19 = max(0, EFFORT - 3600.000); 
 BF21 = max(0, EFFORT - 2100.000); 
 BF24 = max(0, 4200.000 - EFFORT ); 
 BF25 = max(0, PARTICIP - 9.000) * BF24; 
 BF27 = max(0, LOC - 29.999) * BF19; 
 BF28 = max(0, DLOC - 4.000) * BF21; 
 BF30 = max(0, 0.433 - RATE ) * BF21; 

Table 12 MARS Basis Functions for Code Inspections 
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Table 13 provides a ranking of the variables by order of importance. Variables 
with no impact at all are not shown. As described above, this is computed 
based on the reduction in goodness of fit when the variable is removed (i.e., all 
the basis functions involving the variable are removed). The loss in GVC is de-
noted as “-gvc” in Table 13. The column “Importance” shows the relative im-
portance (percentage) of variables as compared to the best one (i.e., effort 
here). Confirming the regression analysis results, we can see that Effort is by 
far the most important variable determining defect detection effectiveness. To 
a lesser extent the change delta in terms of lines of code (Dloc), the number of 
lines of code of the artifact inspected (Loc), the rate at which inspections are 
taking place (Rate), and the number of sessions (Sessions) have also a signifi-
cant effect on defects detected. These results are rather intuitive as the larger 
the amount of code modified and inspected, the larger the number of defects 
detected. The impact of inspection rate has been mentioned in a number of ar-
ticles [1] [6] [2] and is confirmed by our analysis. We will get back to these is-
sues later in this section.  

Variable Importance - gcv 
EFFORT 100.000      312.942 
DLOC 62.006      178.804 
LOC 45.308      139.755 
PARTICIP 39.235       128.567 
RATE 38.770       127.775 
SESSIONS 12.632       98.497 

Table 13: Relative Variable Importance for Code Inspections 

Table 13 shows that the two significant defect detection predictors (Effort, 
Rate) were already selected in the log-linear regression model. The MARS 
model is essentially a richer model in the sense that it models additional effects 
(Dloc, Loc, Participants, Sessions) and automatically identifies relevant interac-
tions. This is what we would expect from such a data mining procedure: to un-
cover additional information from the data as no restrictive assumptions are 
made regarding the model’s functional form or interactions. We will see below 
how the goodness of fit and predictive capability improved as a result from us-
ing additional covariates and a different functional form for the regression 
equation. Though the regression model presented in Table 14 is more complex 
than the log-linear regression model, the number of covariates (9) is still very 
reasonable as compared to the number of observations (236). We want to en-
sure that the model generated is stable and will be accurate over other data-
sets. A typical rule of thumb is to have 10 data points minimum for each co-
variate in a regression model. MARS parameters have to be set to avoid overfit-
ting with a too large number of covariates, i.e., basis functions. As mentioned 
in [4], this is relatively easy with the recent MARS tool but is outside the scope 
of this paper. 
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N 236 R2 0.793 
Mean Dep. Variable 11.754 R2 Adjusted 0.785 
     
PARAMETER ESTIMATE S.E. T-RATIO P-VALUE 
Constant 2.218 0.807 2.748 0.006 
Basis Function 1 0.008 .71E-03 11.453 .99E-15 
Basis Function 4 0.003 .29E-03 10.435 .99E-15 
Basis Function 9 .34E-05 .22E-06 15.282 .99E-15 
Basis Function 11 -0.005 0.001 -4.400 .16E-04 
Basis Function 14 -0.037 0.007 -5.441 .13E-06 
Basis Function 25 -0.003 49E-03 -5.375 .19E-06 
Basis Function 27 .91E-06 .82E-07 11.051 .99E-15 
Basis Function 28 -.46E-05 .42E-06 -10.786 .99E-15 
Basis Function 30 -0.033 0.006 -5.549 .80E-07 
     
F-STATISTIC 96.085 S.E. OF REGRESSION 8.194 
P-VALUE 999E-15 RESIDUAL SUM OF SQUARES 15172.826 
[MDF,NDF] [ 9, 226 ] REGRESSION SUM OF SQUARES 58056.920 

Table 14: Results from Ordinary Least Squares Regression 

We can see from Table 15 that the coefficient of determination R2 (or rather 
the adjusted R2, which is adjusted for the number of covariates) of the MARS 
regression (0.785) significantly outperforms the log-linear regression model 
(0.559). Table 15 summarizes the comparison of goodness of fit of the two 
models. Several measures are presented as all provide valid insights into good-
ness of fit. R2 is informative about the percentage of defect variance explained 
by the regression models. Table 15 also shows the results regarding the relative 
error of the model.  

 R2 (adjusted) Mean ARE Mean MRE Mean MRE’ 
MARS model 0.78 5.33 1.05 0.58 
Log-Linear 
model 

0.56 6.49 0.78 0.76 

Table 15: Comparison of goodness of fit for code inspection models 

The R2 clearly shows that the MARS model yields a better goodness of fit. A 
log-linear model gives more weight to observations with smaller actuals (due to 
the log transformation), i.e., they weigh more on the estimation of regression 
coefficients. Since smaller actuals tend to yield higher MREs, lower MREs result-
ing from log-linear models are in fact more of a mathematical artifact than an 
evidence of better goodness of fit. Furthermore, regression models optimize 
R2, not relative error, and they should be compared on that basis. But it is also 
a well-known fact that comparing non-nested regression models with R2 may 
be misleading [3]. A better way of comparing the plausibility of non-nested re-
gression models is the J-test (See Appendix A for relevant details, [3] for a 
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complete description, and  Appendix B for the results on our data set). This test 
confirms very clearly that the MARS model is more plausible than the log-linear 
model and is therefore more appropriate for interpretation purposes.  

We also evaluated the predictive power of the log-linear model and the MARS 
model using cross-validation [16]. We randomly divided up the dataset (includ-
ing the outlier as discussed before) into 10 subsets. Each subset was in turn 
used as a test set and the complementary set was used to refit both models. 
Thus, each observation in each subset was predicted using a model that was 
built on the other subsets. The goal is to obtain a more realistic picture of the 
predictive power of the models as the goodness of fit tends to give optimistic 
results.  

Cross-validation yields a R2 of 0.532 and 0.647 between actual and predicted 
defects, for the log-linear and the MARS models, respectively. It is clear that a 
better goodness of fit is obtained with MARS, based on the exact same data. 
However, we can see that the MARS R2 is, as expected, significantly lower that 
the goodness-of-fit R2 (0.785) when running a cross-validation. This is not the 
case of the log-linear model, probably because it is based on less covariates (2 
and 9, for the log-linear and MARS models, respectively) and therefore yields 
more accurate estimated regression coefficients. In general, we have to expect 
that MARS models show more covariates and this may be a significant draw-
back, depending on the data set size.  

In addition, looking at the distributions of the difference between actual and 
predicted defects (Figure 2) shows clearly that the log-linear model is biased in 
the sense that it tends to underpredict the number of defects. For the log-
linear model, residuals tend to be more often positive and larger in the upper 
part of the residual plot, as suggested by the distribution mean (3.47). This bias 
comes from the log transformation of the dependent variable8. The MARS 
model, on the other hand, does not show such a bias and clearly has smaller 
residuals. Depending on the application context of the models, bias may have 
serious practical consequences. For example, if defect predictions are used to 
plan the overall correction effort resulting from inspections, by summing up 
defect predictions across many analysis and code artifacts, then a biased model 
will result into an overall, grossly underpredicted effort and budget.  On the 
other hand, with an unbiased model, artifact prediction errors would tend to 
cancel each other over all inspections and still result in an overall defect predic-
tion of reasonable accuracy at the project level.  

Regarding the difference between actual and predicted defects detected, the 
box plots in Figure 2 shows the 25th and 75th quantiles, also called quartiles. 

                                                
8 Jensen's inequality: For any random variable X, E(X) beings its expected value,  if g(X) is a convex function, 

then E(g(X)) ≥ g(E(X)) 
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The line across the middle identifies the median sample value. The brackets 
along the edge represent the most dense 50% of observations. The diamond 
identifies the mean and the 95% confidence interval about the mean. We can 
easily see that a number of predictions are really far off and further investiga-
tion would be required to determine the cause of such inaccuracies. This could 
lead to the identification of new factors affecting inspection effectiveness.  
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Figure 2: Quantile Box Plots: actual – predicted defects for (a) log-linear model and (b) MARS model 

Based on the discussions above, the MARS model seems to provide a better 
basis for interpreting the impact of various factors on code inspection effec-
tiveness. This is discussed below where we focus our attention on interactions 
between factors, as modeled by the MARS model, and their implications in 
terms of decision making and gaining a better understanding of the code in-
spection process.  

6.1.2 Model Interpretation 

To help interpreting the models, we visualize 2-way interactions between inde-
pendent variables. Figure 3 is a typical example of two-way interactions that 
can be observed by graphical means from a MARS model. This figure repre-
sents the model predicted surface for the dependent variables (i.e., number of 
defects detected) when only considering the interaction effect of two variables. 
In other words, the 3-D graph captures only part of the model’s effect, i.e., the 
interaction effect of two variables that contributes to the final model defect 
prediction. More precisely, in Figure 3, the “contribution” axis is in this case -
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0.037*BF14 - 0.033*BF30 and the other axes are simply the variables involved 
in the interaction terms: Rate and Effort. Values on the contribution axis are 
shifted by the MARS tool, so that the minimum value is 0. Color codes repre-
sent different contribution value intervals. Though the absolute values on the 
contribution axis are not easy to interpret and of interest here, the shape of 
the surface modeling the interaction allows us to better understand how the 
effectiveness factors interplay. Note that the MARS tool only displays the part 
of the space that is populated by observations and some surfaces may appear 
truncated.  

 
Figure 3: Interaction between Rate and Effort 

A grid is also drawn to help the reader get a better sense of the modeled sur-
face in three dimensions. Higher-level interactions may be present in the data, 
but they are difficult to visualize and interpret. We will not investigate them 
here. From Figure 3, we can see that the interaction of Rate and Effort indi-
cates an interval (roughly between 25 and 50 lines per hour) on the inspection 
rate measurement scale that is optimal, i.e., an increase in effort provides a 
higher pay-off in that interval. It would therefore be desirable that inspection 
rates remain in that interval for maximum return on investment. However, in 
practice, other factors may come into play, like the time and people actually 
available to perform an inspection on an artifact to be certified before a dead-
line. 

It is now interesting to compare our optimal rates with the existing literature. 
Ebenau [6] reports an optimal rate of 150 lines per hour. It is however reported 
that the rates were not planned and the smallest observed rates were slightly 
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above 50 lines per hour. Moreover, he simply used a linear regression between 
rate and defect density to estimate this “optimal” rate. It is worth noting that 
the resulting correlation coefficient of this regression was really weak and its 
significance mainly due to two outliers. Another major difference with our in-
spections is that the programming language inspected was C.  Gilb et al [18] 
found, based on numerous experiences, that effective individual inspections of 
software development task products usually lies between 0.5 to 1.5 pages an 
hour, where a page is roughly around 50 lines. He writes that, though such 
slow rates shock people initially, we have to remember that inspections include 
cross-checking against check-lists and other documents and may involve sev-
eral passes where inspectors focus on different types of faults. In light of the 
existing reported rates, and considering their level of uncertainty, the optimal 
rate determined by the MARS analysis is within plausible range. 

Ebenau [6] notes that we should expect optimal rates to vary across organiza-
tions and inspections as the type of work products, their complexity and size, 
and the expertise of the inspectors vary significantly. It is therefore important 
for organizations not to rely on published rates to plan their inspection but to 
identify their own, optimal rates. MARS can be of assistance in doing this.  

 
Figure 4: Interaction between DLOC and Effort 

In Figure 4 we can see that for a given effort value, the higher DLOC (i.e., LOC 
changed, added, or deleted), the more defects, and therefore the higher the 
impact of effort on defect detection. This is visible by observing how the col-
ored contours change as DLOC increases. This is a plausible trend: the larger 
the change, the higher the number of defects introduced, the more defects 
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detected for a given effort value. This result reinforces the evidence that the 
MARS model is a plausible one. Also, one may predict, based on the amount of 
change in the code, the number of resulting defects to be expected and derive 
the resulting correction effort. Decisions to implement changes and plan 
change effort can be based on impact analysis (to estimate Dloc) and the use 
of the MARS model.  

Another interesting observation is that as effort increases, the impact of DLOC 
on the number of defects increases up to a point, and then decreases. Though 
not everything can be explained in such an exploratory data analysis, this might 
reflect the fact that when a certain amount of effort−which is strongly related 
to effort per participant in our case− goes below or over a certain threshold 
(roughly below or above 2000 or 6000 man minutes, respectively), inspections 
tend to be less effective. In the former case, people may not have the time to 
really understand the documents they are inspecting and find fewer defects. 
The latter case is somewhat more complex to understand (e.g., may be due to 
fatigue effects in reported in [18]), is based on fewer observations, and should 
be the object of further enquiry. A strange surface shows up for high effort 
values and low DLOCs, but it very likely spurious as we have relatively few ob-
servations in that area. That might be, for example, the result of poor quality 
data collection or an idiosyncrasy of the MARS method, but it is hard to say. In 
general, regardless of the method used for exploratory analysis, we cannot ex-
pect to explain all observed trends at the smallest level of detail.  

 
Figure 5: Interaction between Sessions and Effort 
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Figure 5 shows that when the number of sessions goes beyond a certain point, 
holding the effort constant, effectiveness starts to decrease. In this environ-
ment, an inspection is often broken down into several sessions that focus on 
different parts of the code to be inspected. It is then possible that, below a cer-
tain level, the break down affects the effectiveness of the inspection. From this 
figure, a maximum of three sessions should probably be recommended to be 
on the safe side.  

From Figure 6, we see that when the number of participants increases, more 
defects are found at a constant effort level. This is visible from looking at how 
the color contours bend downward as the number of participants increases. 
On the range we can observe in our dataset (1 to 17), increasing the number 
of participants seems to increase inspection effectiveness. As mentioned be-
fore, this is likely due to the fact that with a larger number of participants, the 
inspection is more likely to include people with the right expertise. Now, a 
cost-benefit analysis, including the cost of additional participants in the equa-
tion, would be necessary to make useful recommendations. 

 

Figure 6: Interaction between Participants and Effort 

For looking at the interactions in the figures above, we can first conclude that 
interactions seem to be key in modeling the effects of typical inspection factors 
on code inspections. A model that does not account for such interactions, such 
as log-linear regression models, is likely to be inadequate, as supported by the 
cross-validation results above. Common sense can also provide us with rela-
tively straightforward explanations for many of these interactions.  
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It is interesting to note that our MARS model for code inspections supports 
some previous empirical results and hypotheses in the inspection literature. As 
expected and reported by Christenson et al [2], inspection effort plays also a 
very important role. Both the document and change size of the code (Loc, 
Dloc) plays here a significant role and this is similar to what both Christenson 
et al. and Ebenau [6] reported. Ebenau estimates inspection size by considering 
new and changed material and the interfaces to other work products. That lat-
ter attribute is missing in our dataset and should probably be part of our future 
data collection. The number of participants and sessions also shows a signifi-
cant impact as in the work by Porter et al [11]. The inspection rate shows to be 
a significant factor as reported by Ebenau [6] and Gilb et al [18].  

We have seen above that many of the interactions modeled by MARS may be 
extremely useful to gain understanding about the inspection process and pro-
vide decision support, e.g., to decide about the number of sessions (Sessions), 
the inspection rate (Rate), or the number of participants (Particip). Such a 
model is therefore not only useful for planning purposes (e.g., inspection and 
correction effort planning) but also to help management decisions regarding 
inspections’ effectiveness. The results presented here cannot be systematically 
generalized to other environments. But similar data collection and analysis pro-
cedures should help every organization make its own, optimal decisions.  

6.2 Analysis Inspections 

Like for the log-linear model, we only allow a subset of the variables to enter 
the model in order to prevent strong collinearities among them. We first pro-
vide the resulting MARS models, their validation results, and provide an inter-
pretation of the results.  

6.2.1 Model Building and Validation 

We present in this section the MARS results for analysis inspections. Results are 
reported in an identical fashion to code inspections. From Table 16, we can see 
that, like for code inspections, inspection effort and rate are key predictors. But 
their respective importance shows a different pattern from what we observed 
for code inspections. One possible explanation is that, when reading analysis 
documents, one will be more likely to miss defects than when reading code if 
preparation is performed at a too high rate. The quality management team 
confirmed that analysis documents were more complex and involved numerous 
interfaces with other documents. As Ebenau [6] reported, interfaces play a sig-
nificant role in the complexity of inspections.  

Rate shows the highest importance rank whereas Effort is second to last. 
Number of sessions and participants are also among the main predictors of de-
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fect detection, like for code inspections. The number of inspected pages has 
also an important impact. Since this is strongly correlated to the total number 
of pages, this result is therefore comparable to the high impact of LOC in code 
inspections. Overall, results are similar across the code and analysis models in 
terms of the variables selected, though the ranking of variables is sometimes 
different.  

Variable Importance -gcv 
RATE 100.000       384.534 
INSPAGE 63.146       279.110 
PARTICIP 59.626       271.531 
EFFORT 45.534       245.549 
SESSIONS 36.528       232.590 

Table 16: Relative Variable Importance for Analysis Inspections 

Basis Functions 
 BF1 = max(0, EFFORT - 2970.000); 
 BF2 = max(0, 2970.000 - EFFORT ); 
 BF3 = max(0, RATE - .970883E-03) * BF1; 
 BF4 = max(0, SESSIONS - 1.000) * BF1; 
 BF5 = max(0, INSPPAGE - 42.000); 
 BF6 = max(0, 42.000 - INSPPAGE ); 
 BF9 = max(0, PARTICIP - 22.000); 
 BF11 = max(0, PARTICIP - 23.000) * BF2; 
 BF13 = max(0, PARTICIP - 7.000) * BF5; 
 BF17 = max(0, PARTICIP - 5.000) * BF2; 
 BF26 = max(0, 0.100 - RATE ); 
 BF30 = max(0, PARTICIP - 1.000) * BF26; 

Table 17: MARS Basis Functions for Analysis Inspections 

Based on Table 18, we can see that the MARS regression fit for analysis inspec-
tions is not nearly as good as for code inspections (adjusted R2: 0.645 versus 
0.785). One plausible reason is that precise size measures do not currently exist 
for analysis documents. There is, therefore, some size effects that are very 
plausible but not accounted for in our model. The fact that the dataset is 
smaller for analysis inspections than for code inspections may also partly ex-
plain why MARS does not perform as well. Simulations in [4] have shown that 
complex modeling techniques such as MARS and neural networks reach their 
full potential when larger datasets are being used9. For smaller datasets10, be-
cause the sample space is sparsely populated, these techniques have difficulties 

                                                
9 In [4], Deveaux et al. used datasets of 250 and 1000 observations 
10 That is 50 observations in the study of Deveaux et al, which is significantly smaller than our dataset for 

analysis inspections. But 176 observations is still lower than the dataset sizes (250, 1000) where they show 
MARS to perform well.  



MARS Analysis 

Copyright © Fraunhofer IESE 2001 29

identifying complex patterns in the data, and a simple log-linear regression 
model may be a good enough approximation.  

The regression model based on the basis functions shown above is presented 
in Table 18. Again, one can notice that we set up the MARS tool tuning pa-
rameters so that we have a number of covariates (9 basis functions) that is rea-
sonable when compared to the number of observations (176). Recall a typical 
rule of thumb when fitting a regression model is to have 10 data points mini-
mum for each covariate. 

For the reasons discussed above, the MARS model for analysis inspections 
shows a more moderate improvement in goodness of fit than for code inspec-
tions: adjusted R2 of 0.645 versus 0.532, for the MARS and log-linear models, 
respectively. Fit statistics comparing the two models for analysis inspections are 
provided in Table 19. Running a J-test shows (cf. Appendix B) that the MARS 
model is more plausible than the log-linear model. The MARS model is there-
fore more appropriate for interpretation.  

N 176 R2 0.663 
Mean Dep. Variable 18.125 R2 Adjusted 0.645 
     
PARAMETER ESTIMATE S.E. T-RATIO P-VALUE 
Constant 19.58 2.268 8.635 .47E-14 
Basis Function 3 0.835 0.177 4.727 .48E-05 
Basis Function 4 0.028 0.005 5.464 .16E-06 
Basis Function 5 -0.088 0.024 -3.643 .36E-03 
Basis Function 6 -0.506 0.074 -6.834 .15E-09 
Basis Function 9 -6.970 1.005 -6.937 .85E-10 
Basis Function 11 0.005 .93E-03 4.886 .24E-05 
Basis Function 13 0.032 0.004 7.397 .65E-11 
Basis Function 17 -.53E-03 .10E-03 -5.013 .13E-05 
Basis Function 30 19.244 1.953 9.852 .99E-15 
     
F-STATISTIC 36.3 S.E. OF REGRESSION 11.649 
P-VALUE 0.99E-15 RESIDUAL SUM OF SQUARES 22526.5 
[MDF,NDF] [ 9, 166 ] REGRESSION SUM OF SQUARES 44334.6 

Table 18: Results from Ordinary Least Squares Regression 

 R2 (adjusted) Mean ARE Mean MRE Mean MRE’ 
MARS model 0.65 8.16 1.07 0.80 
Log-Linear model 0.53 8.98 0.77 0.69 

Table 19: Comparison of goodness for analysis inspection models 

A cross-validation, identical to the one presented for code inspections, shows 
that the difference in predictive ability between the two models is negligible. 
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Using a non-parametric correlation measure between predicted and actual de-
fects, Spearman Rho is 0.68 and 0.67 for the log-linear and MARS models, re-
spectively. Furthermore, differences in ARE are small.   

The predictive power is expectedly worse than for code inspections. The MARS 
model, as for code inspections, shows a larger decrease in goodness of fit 
when running a cross-validation. The most plausible explanation, as mentioned 
above, is the larger number of covariates of the MARS model (9 and 3, for the 
MARS and log-linear models, respectively). Consequently, MARS is expected to 
yield less accurate estimated regression coefficients on a data set of this size. 
To conclude, the MARS model is not likely to be of much help in terms of 
building a more accurate predictive model for smaller data sets, unless the 
number of covariates is significantly smaller, i.e., less significant basis functions.  

6.2.2 Model Interpretation 

Let us now turn our attention to the interpretation of the MARS model for 
analysis inspections. Figure 7 shows the effect of number of participants (Par-
ticip) for different effort levels. The main result is that beyond a certain number 
of participants (roughly 20), inspection effectiveness falls sharply. This seems 
contradictory with code inspection results. However, the range for the number 
of participants is very different here as compared to code inspections, where 
the maximum of participants was 17. Such a graph can be used to limit the 
number of participants to reach optimal effectiveness.  

 
Figure 7: Interaction between Effort and number of participants 
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Figure 8: Interaction between Rate and Effort  

From Figure 8, we can see that, like for code inspections, inspection rate (i.e., 
pages inspected per hour) has a strong effect on the impact of effort on defect 
detection. For analysis inspections to show an optimal pay-off, the inspection 
rate must be around one page inspected per hour. In the literature, Ebenau [6] 
reports a rate of 5 pages per hour for analysis documents and Gilb et al. [18] 
report effective rates to be between 0.5 and 1.5 pages per hour. Our MARS-
computed optimal rate is therefore not implausible considering reported rates.  
But again, for the reasons discussed above, optimal rates are likely to be con-
text-dependent and they should be determined within each organization and 
for each type of document.  
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Figure 9: Interaction between Sessions and Effort  

Similar to code inspections, there seems to be, based on Figure 9, an optimal 
range in terms of number of sessions. In that range, 5 to 6 sessions, inspection 
effort has a higher pay-off.  
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7 Conclusions 

This paper has focused on investigating the impact of a number of inspection 
factors such as effort or inspection rate and their interactions. We investigated 
two kinds of inspections: analysis and code inspections. A substantial amount 
of data was collected and a recent, novel exploratory modeling technique was 
used to improve our understanding of the underlying structures in the data: 
Multivariate Adaptive Regression Splines (MARS). Additionally, this novel tech-
nique was compared to more conventional ways of building regression models. 

The results have shown consistently, across the two types of inspections, that 
inspection effort and rates were very important defect detection drivers. Their 
effect is, however, interacting. That is, the impact of effort on effect detected 
is optimal within a certain code inspection rate (roughly 25 to 50 lines of code 
an hour) and analysis inspection rate (roughly one page an hour). In addition, 
for code inspections, we have seen that the size of changes, the size of in-
spected artifacts, and the number of participants all interact with effort and 
are also important to predict defects detections.  

From a more general standpoint, MARS has helped us better understand and 
uncover the complex relationships and interactions that exist in inspection 
data. The MARS model turned out to be a richer model, accounting for more 
factors, than the linear model we developed. In most cases, simple intuitive ex-
planations could be given for interactions. Though not every result can be 
readily explained, MARS has nevertheless shown to be a useful exploratory 
data analysis tool in our context. MARS also seems to be a potentially useful 
technique to obtain more accurate models than with standard linear regression 
analysis. However, the dataset has to be large enough and the underlying 
structure in the data has to warrant such an analysis: strong non-linearity and 
interactions must be present. For code inspections, the goodness of fit and 
predictive capability improvements brought by the MARS model are significant. 
There is, however, no gain in predictive capability for the analysis model. The 
analysis inspection dataset is significantly smaller than the code inspection 
dataset. Thus, in this case, a simpler log-linear model may be a good enough 
approximation. In summary, the ability of MARS to improve model building 
strongly depends on (1) having a dataset of sufficient size and (2) the presence 
of non-linear structures in the data. In the context of inspection data, intuition 
tells us that condition (2) is realistic (see results and discussions above). But ful-
filling (1) depends on how many inspections take place in a given organization 
and its capability to collect data at a sufficient pace. Existing studies, as well as 
this paper, report thresholds in the realm of 200 observations or so, for MARS 
to bring a predictive advantage. Though informative, this should be only con-
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sidered as an initial rule of thumb or an order of magnitude, until more empiri-
cal results are available in the specific context of inspections.   

In terms of applications, the models we have presented here can be used for a 
number of purposes. First, with respect to planning, the number of defects can 
be predicted for a project’s planned inspections. Change effort can then be de-
rived and planned for. Second, in terms of quality control, management may 
use MARS results to determine reasonable inspection resources and numbers 
of participants, and rates, thus maximizing inspection effectiveness. Third, such 
models can help determine the importance of various factors, such as the read-
ing technique employed or the inspection process followed. For example, we 
have seen, in our case study, that the inspection process followed did not have 
an impact once inspection effort was accounted for. Since intricate relation-
ships exist between inspection factors and effectiveness, an exploratory tech-
nique such as MARS can help better exploit project inspection data.  

Though some of the results here are common with other reported studies, they 
cannot be readily generalized to other environments. However, the type of 
data collection and analysis that was performed in this study can be reused in 
any environment where inspections need to be better understood and con-
trolled. Our study, performed in a representative development environment, 
has shown that it was practically feasible to undertake such measurement and 
obtain useful, interpretable models. Furthermore, from a practical and subjec-
tive standpoint, the feedback we received from practitioners and quality engi-
neers was clearly positive. 
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then the alternative model is not needed to explain variations in effort. This 
test can be performed using the usual two tailed t-test based on the λ estimate 
and its standard error in order to determine whether the λ estimate is signifi-
cantly different from zero. To test the plausibility of ig , the two functions just 
have to be substituted in the formula above and the t-test performed again. If 
the two t-tests, for the two alternative models, tell us that λ is not significantly 
different from zero, then both models are plausible. If one t-test shows an λ 
value significantly different from zero, whereas the t-test for the alternative 
model does not, then the former model is less plausible than the latter one.  
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11 Appendix B: J-test Results 

In this appendix the results for the J-Test are presented. The λ value discussed 
in Appendix A is highlighted. It can be easily observed that both for analysis 
and code, a t-test shows, when f is the log-linear model, an λ value signifi-
cantly different from zero, whereas the t-test for the alternative model does 
not. Thus, in both cases the MARS models are more plausible than the log-
linear ones.  

11.1 Analysis Inspections 

f = log-linear, g = MARS, Parameter Estimates 
 

Term Estimate Std Error t Ratio Prob>|t| 
Intercept -1.583685 0.385636 -4.11 <.0001 
lnparticip 0.3261522 0.097406 3.35 0.0010 
lneffort 0.3379471 0.082834 4.08 <.0001 
lninsppage 0.0891194 0.060165 1.48 0.1404 
lnMarsPred 0.2910245 0.114523 2.54 0.0119 

 
f = MARS, g = log-linear, Parameter Estimates 

 
Term Estimate Std Error t Ratio Prob>|t| 
Intercept 22.666649 3.550067 6.38 <.0001 
BF3 1.0046601 0.232042 4.33 <.0001 
BF4 0.0302259 0.005446 5.55 <.0001 
BF5 -0.090794 0.024299 -3.74 0.0003 
BF6 -0.582178 0.100219 -5.81 <.0001 
BF9 -7.632173 1.163235 -6.56 <.0001 
BF11 0.0049638 0.000997 4.98 <.0001 
BF13 0.0348562 0.005122 6.80 <.0001 
BF17 -0.000605 0.000127 -4.78 <.0001 
BF30 23.094062 3.934433 5.87 <.0001 
Log-linearPred -0.262961 0.233303 -1.13 0.2613 
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11.2 Code Inspections 

f = log-linear, g = MARS, Parameter Estimates 
 

Term Estimate Std Error t Ratio Prob>|t| 
Intercept -1.617007 0.436092 -3.71 0.0003 
lneffort 0.3188617 0.101216 3.15 0.0018 
lnrate 0.1454935 0.037463 3.88 0.0001 
lnPredMars 0.6394232 0.132604 4.82 <.0001 

 
 

f = MARS, g = log-linear, Parameter Estimates 
 

Term Estimate Std Error t Ratio Prob>|t| 
Intercept 1.7286707 1.02576 1.69 0.0933 
BF1 0.0072715 0.00145 5.01 <.0001 
BF4 0.0030065 0.000292 10.31 <.0001 
BF9 0.0000033 2.71e-7 12.11 <.0001 
BF11 -0.005123 0.001166 -4.39 <.0001 
BF14 -0.035416 0.007389 -4.79 <.0001 
BF25 -0.002669 0.000497 -5.37 <.0001 
BF27 0.0000009 8.727e-8 10.23 <.0001 
BF28 -0.000004 4.738e-7 -9.38 <.0001 
BF30 -0.031581 0.006453 -4.89 <.0001 
Log-linearPred 0.1869056 0.241503 0.77 0.4398 
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