Biomethane and Power-to-Gas: Teaming up for the energy transition

European Biomethane Conference 2016, Berlin, 20.06.2016

Ramona Schröer

Foto: Fraunhofer IWES | Volker Beushausen

Content

- 1. The role of Power-to-Gas in the future energy system
- 2. The principles of Power-to-Gas
- 3. Combination of biogas and Power-to-Gas plants
- 4. Demonstration and research projects
- 5. Opportunities and challenges
- 6. Summary

The role of Power-to-Gas in the future energy system

Transformation of the energy system till 2050

Source: Nitsch, Sterner et al. 2010; UBA Energy goal 100% electricity from RE

100% Renewable electricity in 2050

Source: IWES-calculation for UBA Energy goal 100% electricity from RE © Fraunhofer IWES

Capacity and discharge time of different storage technologies

Storage capacity of different storage systems

The principles of Power-to-Gas

Power-to-Gas

Methanation must be a part of the Power-to-Gas concept

- Injection of hydrogen in natural gas grid is limited up to 5 Vol.-% (partially 2 Vol.-% e.g. filling station)
 - → It's not possible to store enough energy in the form of hydrogen and to ensure the future demand of chemical energy sources as long-term storages
- Biologic and catalytic methanation to convert hydrogen into methane
- Injection of methane into the existing natural gas network or direct use
- Almost no limit for injection of methane into the natural gas infrastructure
- Gas use for electricity, mobility, heat, or industrial usage
- CO₂ sources are needed for methanation
- Biogas is a suitable CO₂ source
- The biogas plants in Germany provide enough CO₂ for the production of about 60 TWh methane
 - \rightarrow it is possible to provide large amounts of renewable CO₂ by biogas
 - \rightarrow Biogas is essential for the future energy system and as an inexpensive CO_2 source for PtG

Combination of Biogas and Power-to-Gas plants

Biogas upgrading process and injection into natural gas grid

CO₂ from biogas upgrading process reacts with hydrogen to methane

- Surplus electricity can be used instead of wasting
- Unused CO₂ becomes energy source
- Energy carrier can be stored over long time within existing infrastructure

New biogas upgrading process by direct methanation of the biogas with hydrogen to methane

- Bypassing the upgrading process is possible
- Power-to-Gas plant can replace the conventional upgrading process

Conventional biogas plant with electicity production

Direct methanation of biogas, storage of the methane and electricity production

- PtG increases the methane concentration in biogas
- Storage of the methane at site
- Biogas plants are developed to energy storages

Direct methanation of biogas, injection of the methane into natural gas grid

Construction of gas grid connection possible for large biogas plants

Demonstration and research projects

Power-to-Gas plants in Germany (excerpt)

International projects (examples)

Denmark / Electrochaea

- Pre-commercial field trial in Foulum with 50kW system with biological methanation reactor with biogas input; running time until 2013
- Commercial-scale field trial planned with 1 MW_{el} plant in Copenhagen to demonstrate process at commercial scale using optimized reactor, 2014-2016

Switzerland:

- First pilot and demonstration plant with 25 kW in Rapperswil, operation since 2015
- PostBus Project in Brugg with 5 FC busses; hydrogen filling station with alcaline electrolyser with 300 kW

Horizon 2020: STORE&GO (2016-2020):

- 1 MW catalytic methanation plant in Falkenhagen, Germany
- 700 kW biologic methanation plant in Soluthurn, Switzerland
- 200 kW catalytic methanation plant in Puglia, Italy

IWES technology R&D Roadmap for Power-to-Gas

- IWES focuses on direct methanation of biogas
 - Concept has been demonstrated in a first attempt
 - Technological development of an innovative methanation reactor
 - Laboratory scale testing of the new dynamic reactor
- The following steps are necessary for testing and further development of the technology
 - Scaling of the system from laboratory in a pilot plant system with 50 kW_{el}
 - Integration at a biogas plant and use of real biogas

Systematic, step by step development and scaling from lab to demonstration

IWES 50 kW pilot plant

- Scaling from laboratory to a technically relevant scale
 - \rightarrow Investigation of the innovative reactor concept
- PtG plant consists of
 - PEM electrolysis (commercial electrolyser), capacity 50 kW_{el}
 - Methanation of hydrogen in a innovative reactor by means of the direct methanation of biogas CO₂
 - components and interfaces within the system such as gas supply, measurement and control technology, and the coupling with the electrolysis.
- Integration into the experimental biogas plant of IWES
 - \rightarrow Investigation of the combined operation of the biogas plant and PtG plant
- Development of plant-specific details and investigation of operation
- Investigation of the coupling behavior of electrolysis and methanation
- Proof of the dynamic operation mode of the PtG plant

Opportunities and challenges

Advantages of PtG for the entire power supply system

- Increase the flexibility of the energy system
- Use of existing infrastructure
- Potential for temporal and spatial balancing
- Supports to achieve high climate change policy targets
- Key role as long-term storage within the future energy system

Challenges for PtG Currently, there is no business model for PtG plants

Reasons

- High investment costs
- Low full-load hours
- Electricity purchase

Challenges for PtG Business model development

- Optimization of the electricity procurement
- Network load management and system service
- Combined operation of PtG and biogas plants

Summary

- PtG necessary as long-term storage
- High storage capacity of natural gas grid
- Methanation must be a part of the PtG concept
- Biogas plants are suitable CO₂ sources
- Large amounts of renewable CO₂ by biogas
- Direct methanation allows the use of all biogas plants
- Combination of biogas and PtG plants has advantages
- Flexibility of biogas plants in connection with Power-to-Gas possible

→ Biogas and PtG are required for the implementation of the energy transition

Thank you for your attention!

Dr.-Ing. Ramona Schröer *Project leader Power-to-Gas Division Energy Process Engineering Fraunhofer Institute for Windenergy and Energy System Technology*

Phone: +49-561-7294-1744 E-Mail: ramona.schroeer@iwes.fraunhofer.de

Hessian Biogas Research Center HBFZ, Bad Hersfeld

eMikroBGAA – Efficient micro biogas upgrading plants

Background

- High costs for biomethane injection in Germany: In average ca. 2-3 cents/kWh
- By now not recognized (by policy and society) because of allocation mechanism at least not noticeably discussed
- Problem:
 - Too low (economic) incentives to reduce full costs of biomethane grid injection
 - Potentially wrong incentives due to allocation mechanism
- The German Gras Grid Access ordinance (GasNZV) has successfully decreased obstacles for grid injection but caused in parallel (unwanted) increased costs for grid injection.

Project system boundaries: costs

 \rightarrow Evaluation of full cost optimized variations: upgrading - grid inj. - grid

Objective 1:

Under which framework conditions will upgrading and grid-injection of comparatively small biogas amounts - especially by repowering of already existing biogas plants using CHP with low heat utilization factors - from an economic perspective (regarding full costs of upgrading and grid-injection) make sense?

Project system boundaries: costs

→ Evaluation of biogas- und natural gas grid potentials for identified full cost optimized injection variations

Objective 2:

What will be the potential of sites with this constellation in Germany?

