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Abstract: In order to robustly perform SLAM (Simultaneous Localization
and Mapping), places need to be recognized when they are visited again. In
the deep-sea environment SLAM-assisted navigation based on side-scan sonar
data benefits from using three-dimensional features of the environment as
they are much less view-dependent than classic 2D features. Obtaining these
features requires processing of the sonar data as the side-scan sonar sensor
readings contain three dimensional information only indirectly. To extract that
information the ensonification process needs to be inverted. This inversion is
an ill-posed inverse problem and therefore regularization is needed before a
unique solution can be found. Once the true seabed shape is reconstructed,
wide area SLAM techniques can be applied.

1 Introduction and Existing Work

The process of robustly navigating an autonomous underwater vehicle (AUV)
through unknown terrain using side-scan sonar data and an inertial measurement
unit (IMU) is a multi-layered process. The first stage involves transforming the side-
scan sonar data to a 3D representation of the environment. Afterwards, significant
features of the environment have to be identified. Using the extracted features and
the data of the inertial sensors a SLAM method can be employed.

The paper is structured as follows. First, related work to underwater SLAM is
presented. In Section 2] the challenge in side-scan sonar reconstruction is explained
and it is shown how data is preprocessed for the regularization steps (Section
where a state-of-the-art method to tackle the problem is explained. Section [d]shows
a hybrid SLAM concept that is suitable for deep-sea applications and gives an
outlook to further developments. In Section [5|a short peek of the used hardware is
given.



2 Philipp Woock

1.1 Loop-closing

An essential task of every SLAM system is the closing of trajectory loops, e.g.,
detecting that exactly the same spot has been visited before. Johnson-Roberson
et al. [JPWM10] perform loop closing in a shallow water environment with a stereo
camera. With the great amount of information obtained by high resolution color
camera images, the resulting loop closures are very reliable and accurate.

For a similar approach in the deep-sea it would be necessary to artificially illuminate
the environment. However, turbid water and energy constraints make classic lighting
impossible. In the future, gated viewing solutions using a very short laser pulse and
precise camera shutter timing may enable image-assisted loop-closing also in the
deep sea.

It is difficult to apply this technique to side-scan sonar data only as the side-
scan sonar provides gray level image lines which contain much less information
compared to high-resolution 2D color images.

1.2 Dead-reckoning

In order to build a robust SLAM solution one has to deal with cases where the
AUV is unable to detect features in the environment either because of sensor
error or simply because the environment is lacking significant features. Without
environmental features the dead-reckoning navigation of the vehicle is the only
source of ego-motion estimation and therefore has to be calibrated carefully.

Jakuba et al. show in [JPW10] that with sophisticated calibration methods very
small navigation errors can be achieved. To correctly calibrate the compass they
performed star-shaped test dives. The trajectory obtained through camera-based
visual SLAM served as ground truth. That way they could calibrate the compass
readings according to that ground truth. With their calibration they can bridge
several minutes without observing external features. They also investigated the
influences of the tides on the depth measurements.

1.3 SLAM in Man-made Environments

SLAM for underwater man-made environments (e.g., a marina) using sonar sensors
was investigated in [RRNOS|. They use a mechanically scanning imaging sonar
sensor (MSIS) that is rotating while taking measurements. That way the vehicle
repeatedly gains a full 360° view of the environment. Depending on the sensor
settings it takes only several seconds for a full 360° scan. Due to the sensor principle



Side-Scan Sonar Based SLAM for the Deep Sea 3

the measurements are carried out in a polar coordinate frame. Applying the Hough-
Transform to the data, they are able to detect lines that correspond to the man-made
walls. Eventually, their environment map in which the vehicle localizes itself and
navigates consists of these lines.

The approach was refined to a scan matching approach in [MRRH10] that does not
rely on line-shaped structures any more.

2 Data preprocessing

The main difficulty in performing SLAM on side-scan sonar data is the ambiguity
in the sensor readings itself: the side-scan sonar records an echo amplitude over
time, i.e., with no spatial information where that echo came from but only when it
arrived (two-way travel time). Furthermore, a certain echo tells only whether there
is a reflector or not and how strong the reflectance is. Unfortunately, the reflectance
strength is only partially linked to the reflector’s geometry. Amongst other things
the echo strength is also dependent on the sediment material, water absorption and
the grazing angle (denoted /3 in Figure [2.3). More information about this problem
and related research in that field is given in [WF10].

Before the three-dimensional reconstruction of the environment based on the side-
scan sonar data can take place the sonar data has to be pre-processed: The first
bottom return has to be found and the sonar data is mapped to ground coordinates
(slant range correction).

2.1 First bottom return

Before the side-scan sonar pulses reach the ground they propagate through the
water beneath the AUV which results in a silent period after the sending peak at the
beginning of each line as water does not produce an echo. After the silent period
the first echo is received. The time until the first echo arrives is the two-way travel
time of the sonar signal and thereby gives information about the distance to the
nearest reflecting object which is assumed to be the seabed perpendicularly below
the vehicle. That assumption does not always hold as can be seen in Figure 2.1
This fact is mostly neglected as the seafloor shape can often be approximated by a
plane and the error is usually not too large. Hence, this first echo is called the First
Bottom Return (FBR) and its detection can be seen as an additional altitude sensor
which can be combined with altitude measurements of another sensor.

Before the detection of the FBR the sonar line is filtered by a median filter to reduce
the influence of speckle noise while preserving discontinuities for a more robust



4 Philipp Woock

Sonar
source

Seafloor

Figure 2.1: The FBR is not necessarily an echo from perpendicularly below the
vehicle and therefore not always equal to the altitude of the vehicle. However, in a
deep-sea environment it is assumed to be the case most of the time.

detection. Speckle noise stems from the side-scan sonar being a coherent recording
method. Rank value filters, for example a median filter, are very effective against
this type of noise [RVRV93]].

In Fig[2.2]the FBR is detected as the first occurrence of two adjacent sonar samples
that are more than 1.7 standard deviations apart from the mean value of the sonar
line. The threshold value is determined empirically for every sensor configuration in
advance. However, an automatic derivation and adaptive behavior of the threshold
is possible and will be added in the future.

The FBR detection applied is strictly per-line. Under the assumption that the first
return always stems from perpendicularly beneath and that the surface geometry is
not changing too quickly one could also apply Kalman filtering in time to smooth
the detection and limit the influence of outliers as occasionally a stronger echo that
arrives later could be mistaken for the FBR.

2.2 Slant Range Correction

In order to obtain ground coordinates (e.g., to perform the aforementioned regular-
ization) the sonar image has to be slant range corrected when the sonar altitude is
known either from detection of the FBR or from additional sensor readings. The
geometric configuration is depicted in Figure [2.3] The original data can be thought
of lying on the r, ray (brown). The data of the water column (before the FBR) is
mapped to the height h and the part starting at the FBR until the end is mapped to
the ground r, (green).
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Figure 2.2: Per-line detection of the FBR (red) on side-scan sonar data. The plot
shows the echo intensity over time.
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Figure 2.3: Geometry of slant range correction



6 Philipp Woock

>

along track direction
along track direction

(a) Before slant range correction. (b) After slant range correction.

Figure 2.4: Sonar image slant range correction. The part containing the water
column up to the FBR has been removed.

This correction is a non-linear distortion and its effect on a sonar image is depicted
in Figure 2.4] where the signal part from the FBR to the end are shown. The
strongest effect is seen for the near-nadir parts of the sonar image (left hand side
in Figure[2.4p)). For longer ranges the difference between slant range and ground
range diminishes as the grazing angle 3 is decreasing.

All sonar lines in the image are corrected with the same depth value, derived from
the median of the FBR detections in the whole observation window, assuming
constant altitude and a flat seabed. This is necessary to apply the regularization
process of [CPLO7|] which is detailed in Section@

_ 2 _ 52
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In Figure@ and in the above equation 7, denotes the slant range, r, denotes the
ground range and h the sensor altitude.

3 Estimating Seabed Shape from Side-Scan Sonar
Data

To obtain the seabed shape that created a particular echo one has to invert the
ensonification process. As it is known how sonic waves propagate in water and how
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they are reflected on objects, inverting that process means estimating what kind
of shape may be responsible for a certain echo. This is done through a so-called
forward model that performs a simulation of the ensonifying process and the echo
generation.

However, there is a multitude of environmental parameters that alter a sonic echo,
e.g., sediment type, water temperature, salinity, sonar beam form, etc. It is not
feasible to incorporate all of them into such a forward model as there are only
few measurements and infinitely many possibilities to adjust parameters. Besides,
computation time restrictions call for a simple but sufficiently accurate model.

An overview over different sonar simulation models is given in [[CPLO7].

3.1 Iterative Optimization

Incorporation of a priori knowledge or assumptions about the seabed to make the
problem invertible are called regularization. Coiras et al. proposed a powerful
method for the inversion process, where they investigated different regularization
strategies ([CPLO7] and [CGO9]).

Their inversion method is an iterative approach, the basic principle is shown in
Figure Initially, in [CPLO7|] a flat seabed is assumed and the sonar data is
slant range corrected (see Section before the estimation starts. Within an
Expectation-Maximization (EM) framework they optimize the seabed shape to be
close to the truth. With a forward model they simulate an echo response for a given
seabed shape and compare it to the measurements taken. The difference between
simulation and measurement indicates whether the model represents reality already
correctly and where it needs further adaptation. Then, parameters are adjusted
accordingly. Then, the simulation with the forward model is done with the updated
parameter set and the difference is examined again. This is repeated until the
difference between the simulated echo and the measured echo falls below an error
threshold or until the model is unable to diminish the difference further.

3.2 Regularization techniques

In this iterative cycle the regularization is performed after each iteration step: For
example in [CPLO7] it is assumed that the sensor’s beam form is constant over
time. That means that every surface patch pointing to the sensor at a certain angle
is subject to the same beam form model parameter even across sonar scan lines.

In [Wool10] it was illustrated that no information about the surface shape is obtained
in areas that are not reached by the sonic waves (so-called sonar shadows). It is
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assumed that in such areas the seabed does not behave differently than in the directly
adjacent areas. It is therefore plausible to assume the model parameters describing
the reflectance properties of the sediment are similar both in the shadowed areas
and the surrounding non-shadowed areas.

Additionally, as another regularization restriction it could be assumed that sediment
composition in general changes rather slowly and not with each sonar sample which
corresponds to smoothing the reflectance map.

It is also possible to introduce smoothness constraints to be imposed on the recon-
structed surface. The rationale is that between two scan lines and two sonar samples
the changes of the surface height are assumed to be minor (i.e., no needle-shaped
seafloor). Thus, the connection between the surface points should also be contin-
uous and may have matching derivatives (first and higher derivatives, depending
on the level of intended smoothing). However, this method is prone to smooth
out interesting surface details. Coiras et al. try to avoid this effect using different
surface constraints, e.g., based on a deformable mesh with forces between the mesh
points [CGO9].

Further, Coiras et al. achieved much better reconstruction results with a hierarchical
approach using an image pyramid. That way, the coarser surface parts are recon-
structed first while the details are recovered later in the stages with finer resolution.
This helps to avoid local minima in the optimization process. In addition, the sub-
sampling reduces the image noise which helps the optimization process to converge
quicker in the low resolution stages.

Using synthetic aperture sonar (SAS) data the method can be modified [CG09]
to work in polar coordinates. With SAS it is not necessary to estimate the beam
form of the sonar sensor in contrast to the side-scan approach [[CPL0O7]| as it can be
assumed as being uniform. In the procedure for SAS data the surface is modeled
as a deformable elastic mesh where forces between the grid points make sure that
smoothness requirements are met.

The method in [CPLO07] is related to [LH91|] who worked their way from nadir
towards the peripheral areas by summing up differential surface patches. A detailed
description of this Propagation Shape-from-Shading and a comparison to a Fourier-
based approach is done by [DBLO4].

3.3 Extension

In order to perform SLAM with the reconstructed seabed surface, the mentioned
inversion methods need to be extended so that curved trajectories and varying AUV
altitudes may be also considered as AUVs drive turns and are unable to perfectly
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Figure 3.1: Iterative estimation process of the seabed surface shape.

maintain a constant flying altitude. With an ego-motion estimation based on inertial
sensors the reconstruction may be modified accordingly to obtain an undistorted
map.

4 SLAM concept

4.1 3D features

SLAM approaches that use higher-level landmarks opposed to plain point cloud
data feature a more robust recognition and distinction. Spline features ([PDM™ Q7]
[PRLM™Q9]) are an example for such landmarks. They are more robust because
formulated as a spline one landmark comprises multiple points and as a result small
variations of the input points in general do not alter the overall shape of the spline
much. Three-dimensional landmarks may be compiled of several one-dimensional
splines in space that have one point in common or may even consist of full spline
surface patches.

A comprehensive overview of other features that may be used for three-dimensional
SLAM applications is given in [Runl10].
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4.2 Hybrid SLAM Concept

In order to achieve long underwater mission durations, the used SLAM algorithm
needs to be carefully chosen. Furthermore, it is important to balance computing
requirements and the stability of the SLAM solution.

In [BBOS] Brooks and Bailey propose a combined EKF/FastSLAM framework
termed HybridSLAM. It tries to retain the best of both SLAM approaches while
mitigating their respective weaknesses. FastSLAM works by approximating the true
probability distribution of the vehicle paths and maps by particles and can therefore
inherently track multiple hypotheses about the path taken and the respective map of
the environment. However, the approach suffers from so-called particle depletion
which means that the longer the filter runs the more certain it becomes about the
beginning of the path trajectory and the oldest parts of the map. It more and more
‘forgets’ about other possibilities in the past. On the other hand, the EKF can only
maintain a single hypothesis and wrong associations between measurements and
landmarks are ‘remembered’ forever and may eventually lead to divergence of
the filter. The idea is to use a FastSLAM front-end and an EKF back-end. The
rationale behind the concept is that for the most recent measurements the FastSLAM
algorithm can deal better with wrong associations by maintaining multiple path
and map hypotheses. The parts of the map about which the FastSLAM filter has
become ‘more confident’ over time are placed inside an EKF as submaps. Until
then the risk of wrong submap associations has become very low and the EKF will
most probably remain stable.

Other submapping approaches that tackle the same problem are Fairfield’s
SegSLAM [FaiQ9] and Bosse’s ICP-based map matching [[BZ0S]].

5 Hardware

The computing devices are placed inside a glass sphere that can withstand water
pressure up to 10000 m. The main difficulty is to integrate a powerful processing
unit while at the same time managing heat transfer and placing all components in
the small volume of the sphere. For the on-board sonar data processing, feature
extraction and the SLAM algorithm we will use an embedded PCI/104 board using
an Intel Core2Duo™ SP9300 processor. The inertial measurements are provided
by an Xsens MTi. Data logging is done with an Intel 1,8"” Postville SSD as SSD
technology provides high speed and shock resistance. The hardware is pictured in
Figure[5.1] Not shown are the two side-scan sonar sensors that are connected via
USB.
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(a) View from below: (b) Top view: inertial mea- (c) Pressure hull made
PCI/104-Module with surement unit and SSD of glass resistant to
heat spreader baseplate. data storage. 10000 m water depth.

Figure 5.1: Hardware of the sensor data processing module.

The cooling solution consists of an aluminum baseplate that serves as heat spreader
to conduct the heat to the titan flange of the sphere which in turn is cooled by the
surrounding seawater. All metal-metal connections have thermal grease applied to
feature better thermal conductance.

6 Conclusion

The systematic process of creating an underwater SLAM solution that is suitable
for deep-sea applications has been shown using inertial measurements and side-
scan sonar. The challenge to invert the side-scan sonar image creation into a 3D
representation has been discussed. A suitable SLAM architecture for long deep-sea
missions and the chosen hardware layout have been outlined.
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