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Abstract— In recent years, the usage of unmanned aircraft
systems (UAS) for security-related purposes has increased,
ranging from military applications to different areas of civil
protection. The deployment of UAS can support security forces
in achieving an enhanced situational awareness. However, in
order to provide useful input to a situational picture, sensor
data provided by UAS has to be integrated with information
about the area and objects of interest from other sources.
The aim of this study is to design a high-level data fusion
component combining probabilistic information processing with
logical and probabilistic reasoning, to support human operators
in their situational awareness and improving their capabilities
for making efficient and effective decisions. To this end, a fusion
component based on the ISR (Intelligence, Surveillance and
Reconnaissance) Analytics Architecture (ISR-AA) [1] is pre-
sented, incorporating an object-oriented world model (OOWM)
for information integration, an expressive knowledge model
and a reasoning component for detection of critical events.
Approaches for translating the information contained in the
OOWM into either an ontology for logical reasoning or a
Markov logic network for probabilistic reasoning are presented.

I. INTRODUCTION

In the last decades, the development and usage of un-
manned aircraft systems (UAS) has increased quickly, mainly
for military purposes [2]. In recent years, this technology has
also become available to the public, now being of interest,
among others, in different areas of civil protection, such as
police duties, rescue mission support, or fire fighting [3].
The deployment of UAS in distributed surveillance systems
supports security forces in achieving enhanced situational
awareness. However, in order to provide useful input to a
situational picture, sensor data acquired by UAS has to be
integrated with information about the area of operation and
objects of interest provided by other sources.

In [4], a distributed airborne surveillance system based on
UAS was proposed. The study was focused on cooperation
of UAV swarms. Still, initial thoughts on the topic of infor-
mation fusion were presented. The study at hands continues
this direction and presents details on supporting operators
through the combination of information from an airborne
surveillance system with additional information extracted
from intelligence databases. Such an automated assistance
enables human operators to improve their capabilities for
making efficient and effective decisions due to decreased
workload and increased situational awareness. The presented
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Fig. 1. System overview of a distributed surveillance system.

approach to information fusion is based on the ISR-AA
presented in [1] and entails the creation of an expressive
knowledge model for the considered domain in combination
with reasoning techniques for information integration.

Section II gives an overview of our approach to informa-
tion fusion as well as to the embedding surveillance system.
In Sec. III, the architecture of the realized Information Fusion
Component is presented, and Secs. IV, V, and VI detail the
different modules for information management, integration
and reasoning. Section VII concludes this study.

II. APPROACH

Starting point for our study is a distributed surveillance
system (cf. [4]) composed of different UAS with e.g. sensors
for video and radar data. Some of the UAS have processing
capabilities as well, e.g., for producing tracks out of radar
returns. A ground control station is in charge of controlling
the missions of the UAS and collecting their sensor data.

The collected sensor data is processed, e.g., tracks of
vehicles in the area are computed, and forwarded to an
intelligence fusion center. The intelligence fusion center is
responsible for aggregating UAS sensor data as well as
correlating and integrating it with information from intelli-
gence databases and background knowledge, using methods
of high-level data fusion with the aim of supporting a
commander’s situational awareness. Fig. 1 gives a coarse
overview of the structure of the surveillance system.

High-level data fusion is the process of integrating infor-
mation about observed real-world objects into a consistent
representation and of studying their relations [5]. According
to the well-known JDL data fusion model [6], the integration



of object-related information on JDL level 1, such as their
locations and further attributes, is the basis for situation
assessment on JDL level 2, where the existence of relations
between objects is inferred. All this information then allows
performing impact assessment on JDL level 3.

In this study, the term information fusion is used for
high-level data fusion. When developing the methodology
for fusing information delivered by heterogeneous informa-
tion sources (semi-)automatically, a top-down approach was
applied. The approach is top-down in the sense that the
requirements on information elements serving as input for in-
formation fusion tools (such as threat detection modules) are
at its basis. These requirements are e.g. in terms of semantic
scope or quantification of uncertainties. The scenario used in
this study implies the detection of possible threats, such as an
assault on a critical infrastructure. The Information Fusion
Component (IFC) to be realized has to support operators in
the information fusion center by integrating information from
different sources with general knowledge and performing
high-level reasoning on the integrated information. At the
heart of the IFC thus is an expressive knowledge model,
which represents the general and domain-specific knowledge
needed for scenarios such as threat detection, in a formalized
way suited for reasoning, and allows expressing rules that
enable integrating and correlating current sensor data and
exploitation information with this prior knowledge.

The contents of such a knowledge model have to be care-
fully designed. For the considered threat detection scenario,
conclusion drawing requires knowledge about general facts
(such as, what means are required to perform an assault),
background information related to these facts about the con-
sidered area of operation, its infrastructure and people (such
as, factories located in the area, roads and their conditions,
typical travel routes, known insurgents, their abilities and
facilities), current information (e.g., observing suspicious
activities) and sensor data (e.g., track data for a vehicle
possibly loaded with explosives).

All this information has to be encoded into or processed by
the IFC. General facts and background information constitute
a-priori knowledge and can be encoded into the IFC prior
to its operation. Current information and sensor data must
be integrated during operations. General facts (e.g., how
to build an explosive) can be encoded as rule templates.
Such rule templates are used in reasoning when respective
evidence, allowing to instantiate a rule, becomes available.
Relevant background information (infrastructure, facilities,
known insurgents etc.) can either be encoded manually, or
semi-automatically by extraction from sources such as ge-
ographic information systems or intelligence databases. For
integrating current information (scenario-specific, contained
e.g. in sensor data exploitation reports or open source docu-
ments), interfaces and extraction mechanisms for respective
databases are needed. The same applies to sensor data. Prior
knowledge (rules, facts) and current information (evidences)
have to be represented in the IFC in a consist way, allowing
to instantiate reasoning mechanisms for information integra-
tion and conclusion drawing.

Fig. 2. Architecture of an Information Fusion Component (IFC), based on
the ISR Analytics Architecture [1] and its layers.

III. ARCHITECTURE OF THE INFORMATION
FUSION COMPONENT

In order to realize an IFC with the previously described
capabilities, an architecture based on the ISR-AA [1] was
chosen, depicted in Fig. 2. The designed IFC consists of
two main sub-components: an Object-Oriented World Model
(OOWM) and a reasoning component. The OOWM ([7], [8],
[9], [10]) is a component for world modeling, applied e.g.
in video surveillance or autonomous systems, developed by
Fraunhofer IOSB. It serves as the main facility for integrating
and representing current information about the considered
environment in a so-called World Model part, as well as
for storing respective background information and general
facts in the Background Knowledge part. The reasoning
component provides methods for performing different kinds
of reasoning, including logical reasoning, probabilistic rea-
soning (e.g., Bayesian inference) and probabilistic relational
reasoning (e.g., using Markov logic networks). Based on the
prior knowledge contained in the Background Knowledge,
the reasoning methods are pre-configured with respective rule
templates, into which the current information, stored in the
World Model, can be inserted as evidence. The results of
reasoning are passed back to the OOWM and integrated into
the World Model. A transformation component is responsible
for mediating between the OOWM and reasoning, by trans-
lating the information and knowledge stored in the OOWM
into the representations required by reasoning methods. The
IFC provides an external interface, e.g., for components
displaying a common operational picture (COP). In this
way, threat indications, e.g., for a possible assault, or threat
levels of observed objects can be supplied for visualization
to operators. This output aims at supporting a commander
in identifying critical events more easily and enhancing his
or her situational awareness while relaying only relevant
information, preventing information overflow.

As input to the IFC, different sources of data and infor-
mation can be used. For one, information from intelligence



analysis or exploitation of reconnaissance data can be added
to the IFC by integrating respective reports contained in re-
connaissance or intelligence databases. Input to the OOWM
must be given as object-oriented observations [7], [9]. In
order to use reports as inputs for the OOWM, relevant
information contained in a report must be extracted and
adjusted to the knowledge model used in the OOWM (e.g.,
with respect to the terms employed to name entities, events
etc.). For this purpose, an information extraction component
can be employed to extract relevant facts from reconnais-
sance and intelligence reports. Extracted facts can act as
both, background knowledge or evidence, depending on their
nature with respect to the scenario and desired outputs.
In addition, the IFC shall be able to consider information
from open sources (such as newspaper, the Internet etc.) as
possible input. The information extraction component thus
shall additionally be able to at least support an operator
in extracting and preparing relevant information from open
sources for being integrated into the IFC (e.g., as evidence).

As a second kind of input, sensor data acquired by UAS
can be integrated into the IFC. Special focus in the study at
hand is given to track data provided by UAS performing area
surveillance. Although such track data can originate from
different sensor types (e.g., video or ground moving target
indicator (GMTI)), it has in common that a sensor discovers
a certain plot or target at a point of time having certain char-
acteristics. The track data contains surveillance information
about time and location of a target, as well as static features
such as its color or extents (in case of video tracking). The
track data provided by UAS adds detailed information about
certain, possibly suspicious objects (like observed vehicles)
to the IFC. Based on such detailed information, the (re-
)identification of previously observed objects (e.g., in still
images) can be performed. In addition, such surveillance
information allows inferring suspicious or abnormal behavior
for a tracked object in the light of threat detection.

IV. INFORMATION INTEGRATION AND MANAGEMENT

The IFC is responsible for consistently integrating and
managing the information acquired via sensor observations,
reports, open sources etc. and relating this information to
background domain knowledge as well as historic infor-
mation. In addition, reasoning is performed based on this
integrated information, allowing to explicitly uncover addi-
tional facts. The two sub-components responsible for these
tasks, as described above, are the OOWM and the reasoning
component. In this section, the OOWM will be described.
Reasoning will be detailed in subsequent sections.

The OOWM [10] consists of a World Model part, re-
sponsible for representing the current state of an observed
domain, and the Background Knowledge part, providing a
semantic domain model as well as further domain-specific
knowledge such as rules. In the World Model, each observed
real-world object is represented by a data structure called a
representative. This data structure subsumes all the infor-
mation acquired from sensor data, reports and other sources

about the represented object. Each relevant object feature is
represented by an attribute in a representative.

In Background Knowledge, the object types relevant for
the considered domain are described by an expressive seman-
tic domain model. Each object type is represented by a so-
called concept class [10], modeling relevant features of the
object type (again, as attributes) as well as relations to other
object types. Concept classes are structured by a taxonomy
of concepts, with the higher level of the taxonomy describing
the more abstract concepts (e.g., categories such as building,
vehicle, event). In addition, relation types relevant to the
domain are modeled, describing the relationships in which
objects (or categories of objects) are assumed to participate.

In this study, furthermore, rules specified for the appli-
cation domain can be stored directly in Background Knowl-
edge. Modeling causal relationships between relevant domain
objects, such rules must refer to the concept classes and
relation types defined in Background Knowledge.

The domain model in Background Knowledge is an en-
gineering artifact created prior to operations by domain
experts. Different alternatives exists for representing such
a knowledge model. One viable choice is the use of a
formal ontology, more specifically, an ontology based on
the description logic fragment of first order logic. In this
study, the description logic (DL) profile of the Web Ontology
Language OWL is used for knowledge representation (further
details will be given in Sec. V).

The OOWM is responsible for information integration and
management. In general, probabilistic information processing
[8], [9] is employed for the tasks related to information
integration. These tasks comprise data association (assigning
newly observed information to representatives in the World
Model) and information fusion (updating representative at-
tributes with newly observed values, temporal evolution of
values). Information management concerns the creation of
new representatives and the deletion of obsolete ones, as well
as tasks such as access to and retrieval of information from
the World Model and notification services.

Probabilistic information processing is aimed at handling
uncertainties in observation data resulting from measurement
processes. Yet, not of all the information provided to the
IFC is quantified by uncertainties (e.g., information extracted
from exploitation or intelligence reports). For such informa-
tion, adequate processing methods are required which are
able to take into account unquantified uncertainties inherent
to input information (e.g., object descriptions in reports)
during processing. This is e.g. relevant when associating the
description of an object extracted from a report with sensor
data about the same object provided by UAS. The OOWM,
thus, must be able to handle deterministically provided values
(with no quantified uncertainty) as well as probabilistically
described values. Therefore, the OOWM used in this study
is able to operate in different modes: a mode for handling
deterministic values, a mode for probabilistic values, and a
mixed mode (as assumed in this study).

Information integration and management in the OOWM
is performed with the aim of making integrated informa-



tion available to other components, such as the reasoning
component or components for behavior analysis. Information
exchange with such components is designed to be event-
driven in the OOWM (e.g., events concerning specific rep-
resentatives or spatial areas [9]). In this study, a change
notification service is provided to external components. Each
component desiring to process OOWM-managed information
can register to the OOWM, specifying on with information
changes it wished to be notified. Specifiable change events
include the creation of new representatives of a given object
type, changes on a given list of representatives, updates on
attributes of a given type, as well as combinations of those.

More details about the OOWM be found in e.g. [10].

V. LOGICAL REASONING

The reasoning component of the IFC is responsible for
conclusion drawing, allowing to uncover and explicitly state
additional facts contained in the integrated OOWM informa-
tion. For this purpose, different reasoning methods can be
employed, including (and relevant to this study):

• logical reasoning,
• probabilistic reasoning, and
• probabilistic relational reasoning.

The classical approach to reasoning is based on logical
inference. In logic, there are three components to inference:
premises of an inference, conclusions of an inference, and
rules relating the conclusions to their premises. Depending
on the way these three components serve as input(s) and
output(s) of a reasoning process, different types of logical
reasoning can be differentiated: deductive, inductive and
abductive reasoning. In deductive reasoning, rules and their
premises serve as input, and the conclusions constitute the
result of a reasoning process. In inductive and abductive
reasoning, in the contrary, the conclusion is given, and rules
are to be obtained. Deductive reasoning is the kind of reason-
ing needed in the IFC for uncovering additional information
contained in a knowledge base. Based on rules (modeled
a priori by domain experts) and evidences (acquired via
sensor data and current information) satisfying the premises
of a rule, logical reasoning allows to uncover additional
information as conclusions from the knowledge base.

In logical reasoning, different types of logics can be
employed to encode the rules and evidences, such as propo-
sitional logic, first order (predicate) logic (FOL) or modal
logic. The choice of logic defines the expressiveness of the
language that can be used to model facts and rules, as well
as the kind of inferences that can be performed by reasoners.
A reasoner is a software algorithm automatically checking
which conclusions can be drawn given set of facts (acting as
evidences) and a defined set of rules. Time complexity and
termination of reasoning operations are factors depending
on the type of logic chosen, with the general rule of a more
expressive logic being more complex to reason in.

For the IFC, time of reasoning is an important constraint
since the indication of possible threats has to be performed
in near real-time to be of value. Additional constraints on
the choice of a logic type for the IFC can be derived from

the knowledge model representing the input information
(evidences) to reasoning: the OOWM. Here, the object-
oriented information representation in the OOWM can be
mapped to a restricted version of FOL. More specifically,
the DL fragment of FOL can be employed to represent the
information about observed real-world objects, contained in
the World Model, as well as the general information about
object types and categories in Background Knowledge.

Current research in the area of semantic web technologies
has produced mature tools for knowledge modeling and
reasoning in DL. The Web Ontology Languages (OWL, e.g.,
[11], [12]), a standard of the World Wide Web Consortium
(W3C), specifies several FOL fragments, including OWL DL.
In OWL DL, entities, their attributes, as well as relations
between entities and entity types can be modeled. In addition,
several efficient reasoners are available, as well as tools for
the initial creation of a domain model. Thus, OWL DL con-
stitutes a suitable choice of logic, under the aforementioned
constraints of near real-time performance and the use of the
OOWM for supplying evidential facts.

Yet, only a specific subset of rules can be represented in
OWL DL, not including general implications of the form

p1 ∧ p2 ∧ · · · ∧ pn −→ c1 ∨ c2 ∨ · · · ∨ cm , (1)

with pi, i = 1, . . . , n being premises and cj , j = 1, . . . ,m
being conclusions (n,m ∈ N). This deficit can be compen-
sated by employing the semantic web rule language (SWRL)
[13], a W3C standard proposal, which smoothly integrates
with OWL DL and (some of) its reasoners. For this study,
OWL DL, SWRL and reasoners such as Pellet [14] or
HermiT [15] are the tools of choice for performing deductive
logical reasoning in the IFC. A general drawback of purely
logical inference is that it is only able to handle deterministic
evidences. Thus, if the OOWM is operated in a mixed or
probabilistic mode, facts contained in the OOWM first have
to be converted to deterministic values, e.g., by thresholding
(for binary variables) or as expectation values.

For performing logical reasoning in the IFC, the (current,
observation-based) information in the OOWM World Model
as well as the (a priori modeled) knowledge and rules in
Background Knowledge have to be transformed into OWL
DL and SWRL, respectively. As described previously, one
alternative of representing a domain model in the OOWM is
the use of an ontology - which can be encoded using OWL
DL. In this case, the taxonomy of OOWM concepts, their
defining concept classes (represented as OWL concepts with
data property restrictions modeling the required and optional
attributes), as well their formal relations (represented as
object property restrictions) are readily available for logical
reasoning. For all the representatives of real-world objects
in the World Model, the transformation process has to create
ontology individuals as instances of the respective concepts.
For each attribute of a representative, a data property asser-
tion with the respective (converted deterministic) value has to
be created. For each relation of the representative, an object
property assertion linking it to the individual representing the
related representative has to instantiated. Finally, the rules



defined in OOWM Background Knowledge have to be ex-
pressed in terms of ontology concepts, object properties, data
properties, and individuals, as well as normalized according
to the form given in (1).

This transformation process basically allows the integra-
tion of deductive logical reasoning with (deterministically
represented) OOWM information in the IFC. The results
of such reasoning include the additional classification of
individuals as belonging to (further) concepts (e.g., more
specific ones) or their participation in additional relations
to other individuals. Updated classifications and additional
relations have to be propagated back and integrated into the
OOWM after reasoning (using reverse transformations).

An aspect special care should be paid to is the fact that
it is not possible to add new individuals to an ontology
by reasoning. If a domain model allows specifying rules
which can detect additional concept instances in the given
data (e.g., instances of abstract concepts such as events,
activities, alarms), it is thus not possible to express these
rules in SWRL. To mitigate this fact, a workaround can
be employed (to some degree). This workaround is based
on splitting those ontology concepts for which instantiation
by reasoning shall be possible into an abstract version of
the concept and an actual version, being a sub-concept of
the abstract version. Instances of the abstract version then
constitute virtual instances and serve the sole purpose of
being promoted (i.e., classified by reasoning) as instances
of the actual concept, when indicated by sufficient evidence.
This way, e.g., an assault event can be derived from obser-
vation data, by promoting an instance of an abstract assault
concept, which was created prior to reasoning, to an instance
of the actual assault concept. For such promoted instances,
a new representative has to be created in the OOWM by the
transformation component.

VI. PROBABILISTIC REASONING

In logical reasoning, each conclusion is necessary in the
sense that when the premises of a rule are known to hold
(e.g., given by observations), the conclusions follow with
absolute certainty. This trait of logical reasoning can be
desirable, e.g., as it facilitates the interpretation of concluded
information, ensuring that the results hold with certainty. Yet,
it also makes modeling inference rules a more complicated
endeavor. For such rules, it has to be ensured that all the
necessary prerequisites for an inference are explicitly stated
in the premises of the rule. This, in turn, allows applying the
rule only if and when all necessary premises are given as ev-
idences (i.e., have been observed). In surveillance scenarios
aimed at supporting situational awareness of operators, this,
in its pure form, is rarely the case, since often e.g. only
partial information can be acquired. In such cases, a purely
logical inference is insufficient.

A related drawback of hard logical reasoning is that each
of the premises of a rule either has to hold (i.e., be 100%
true) or not (100% false). Thus, uncertainties in the facts
constituting the premises of a rule can neither be considered
nor be propagated to the conclusions of a rule by hard logical

reasoning. In many scenarios, however, evidences as well as
the causal relationships modeled by rules are considered to
be true only with a certain probability.

In consequence, a reasoning approach accounting for and
being able to handle incomplete and uncertain information
and as well probabilistic rules is required for the IFC.

Many approaches to probabilistic reasoning exist for
tackling these shortcomings of logical reasoning. Bayesian
networks (BN) are one of the most prominent examples
of the more general class of probabilistic graphical models
devised to perform reasoning under explicit consideration of
uncertainties. In BNs, evidences as well as conclusions are
represented by random variables, and their interconnection is
represented by the joint probability distribution of these ran-
dom variables. Causal relationships between evidences are
used to simplify the structure of the network via conditionally
independent random variables. As degrees of freedom, the
network structure as well as the conditional probabilities have
to be provided when specifying a BN model. A drawback
of BNs is that their design and maintenance can be rather
tedious and costly for complex domain - at least when
structure and probabilities of a BN cannot be learned due to
lack of example data. A model-based approach relying on a
formalized domain model is advantageous in such situations.

Probabilistic relational domain modeling is an area of
research suited for such situations by, at the same time,
handling a complex domain with a relational structure as
well as handling probabilistic reasoning with uncertain in-
formation. For this purpose, two components are combined:
a logical description or model of the considered domain,
e.g., given in FOL, and a probabilistic reasoning approach,
for example, a probabilistic graphical model. Examples of
respective approaches are multi-entity BNs (MEBN) [16],
which enable the construction of complex BNs on the
basis of a relational domain description, and Markov logic
networks (MLN) [17], which combine a FOL domain model
with probabilistic reasoning by specifying the importance of
each FOL formula in reasoning in terms of weights.

MLNs have the advantage of basically employing a set of
weighted formulas (including rules) as domain model, with
the weights corresponding to a kind of (inverse) uncertainty
specification. Information given in the form of an OWL
ontology, such as a taxonomy of defined concepts as well
as relations, can be easily converted into FOL formulas
and integrated into an MLN model. Also, reasoners (e.g.,
Tuffy [18]) for MLNs are readily available. The integration
of MEBNs with the OOWM is, however, more complex.
For these reasons, this study follows the MLN approach for
integrating probabilistic relational reasoning into the IFC.

In the IFC, relevant information including rules is stored
in the OOWM. As described earlier, this information can
be converted into an OWL DL ontology. For integrating
MLN reasoning, two alternatives are possible: transforming
OOWM information directly into a MLN, or using the DL
ontology as an intermediate artifact. Since the transformation
to DL was already available in this study, the second alterna-
tive was chosen. However, certain extensions of this ontology



are necessary towards MLN reasoning. As mentioned ear-
lier, only deterministic values (for attribute values, concept
membership, existence of relations etc.) can be specified in
OWL DL. As uncertainties are essential for probabilistic
reasoning, the uncertainty quantification originally given for
each value in the OOWM has to be reflected in the intermedi-
ate representation. For this purpose, OWL annotations were
used for adding uncertainties to OWL values (transparent
to logical reasoning). Likewise, annotations for SWRL rules
were added, specifying the weight for each rule.

For the transformation component, a toolchain was im-
plemented, able to generate a MLN model based on the
information given in the OOWM. The first step of this
toolchain is as previously to generate the ontology model,
but now including annotations for uncertain values. The next
step is to transform this extended ontology model into a
set of weighted FOL formulas as well as probabilistic evi-
dences. In this step, ontology concepts and object properties
(relations) are converted into unary and binary predicates,
respectively, and taxonomy relationships are reformulated in
terms of rules. This step was performed with the help of the
Incerto [19] tool. In the final step, the transformed model
has to be converted into an input form suitable for MLN
reasoners, e.g., by separating evidences from formulas as
well as representing formulas in conjunctive normal form.

MLNs address the drawbacks of logical reasoning (no
incomplete, inconsistent or uncertain information, no prob-
abilistic rules) by introducing weights for formulas and
evidences. The weight of a formula roughly corresponds to
the penalty incurred if a formula does not exactly hold during
reasoning. The results of MLN reasoning crucially depend
on these weights, which are usually learned from examples.

In this study, no learning data can be assumed for the
considered scenarios. Thus, a heuristic approach based on
expert domain knowledge had to be devised for specifying
the weights of inference rules. The developed approach has
two steps: first, each (SWRL) rule is assigned an a priori
probability of being true in the real world by an expert. Then,
this value is scaled with a pre-defined factor, determined
heuristically during optimization. For hard facts such as
taxonomic relations, weights are determined in the same way,
assigning them a probability value of 1 in the first step.

Using the described approach, this study allowed to in-
tegrate MLNs into the IFC as a proof of concept. For
considered example use cases, this approach allowed rea-
soning (e.g., threat detection) in the light of incomplete and
uncertain information. In comparison the logical reasoning,
yet, MLN are only able to answer pre-stated inquiries (e.g.:
“given these evidences, how likely is the following fact?”),
whereas logical reasoners derive all inferable conclusions for
an evidence set. Furthermore, the generalization performance
of MLN reasoning in the IFC is improvable, since a set of
weights seems to enforce a very specific MLN behavior.

VII. CONCLUSION AND FUTURE WORK

In this study, an architecture and details of an information
fusion component for a distributed ISR system integrating

sensor data and intelligence information has been presented.
The component is aimed at enhancing the situational aware-
ness of operators. Special focus was on integrating different
reasoning methods linked to an object-oriented world model.

As future work, the integration of probabilistic reasoning
based on relational models is intended (e.g., MEBNs, prob-
abilistic relational models). First concepts for such an inte-
gration exist, similar to the integration of MLNs: The results
of transforming object-oriented information and rules are
used to define and ground a probabilistic reasoning model.
Details of such a grounding as well as the specification of
probabilities are subject to future work.
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