
EFFICIENT REDUNDANCY THROUGH A GENERIC AUTOSAR FAILOVER-SERVICE: FROM MODEL TO IMPLEMENTATION

safe.tech (TÜV Süd) 28th & 29th of April 2015, Munich, Germany

Trends in the Automotive Industry

■ Multi-Domain Controllers

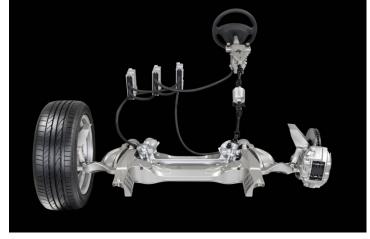
- AUTOSAR: platform independent design & reuse of software
- Reduction of dedicated units
- Automated driving & increase in software

E-Vehicles

- More reliable electric power & 42V
- Missing v-belt (e.g. for hydraulic pumps)
- Potential for X-by-Wire?

Topic: Example of Demanding Requirements (Steer-by-Wire)

Topic: Support for Redundancy Management in AUTOSAR


History of Steer/Brake-by-Wire

■ Steer-by-Wire (Infinity Q50)

- Mechanical fallback with power steering
- Probably 2003(D) design
- Safety function: activate clutch
- Return to conventional design in sports edition

■ Brake-by-Wire

- More common (e.g. Mercedes-Benz, Toyota, ...)
- Safety function: Connect master cylinder
- Additional functionality (e.g. brake drying)
- Trend: return to conventional design

Source: Nissan

Premium Features – Why not Mass Marketed?

Requirements & Limitations of Inexpensive X-by-Wire

- 1002D Safety Architecture & Graceful Degradation
- **Efficient Product Development Process**
- No Mechanical Backup
 - 70/311/EEC
 - 2.2.2.1: It must be **possible to steer** the vehicle even in the event of **total** or partial **failure** of the hydraulic, pneumatic or **electrical components** of the steering gear
 - 92/62/EEC
 - 4.1.6: Steering equipment with a purely pneumatic, **purely electric** or purely hydraulic transmission or with hybrid transmissions other than those described at item 1.6.4.1 are **prohibited** until specific requirements are added to the requirements of this Directive.

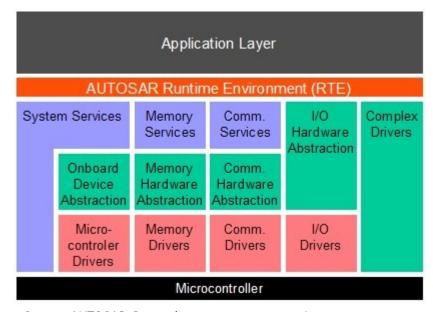
Implications of Steer-by-Wire w/o Mechanical Fallback

■ Reliable Power Supply for Steering

■ E.g. starter battery is insufficient

■ What is the Safety Function?

- Inform the driver?
- Halt immediately?
- Prevent continuation of mission?
- Reconfigure E/E architecture?


■ Effects of False Trips

Stop and restart vehicle?

Generalised Software Requirements

- Short Failover Times
- Reconfiguration (Graceful Degradation)
 - No dedicated backup units
 - Deterministic behaviour
- **Status Quo**
 - Manual failure management
 - No native support for redundancy in AUTOSAR

Source: AUTOSAR Consortium, www.autosar.org/

Support Redundancy from Model to Implementation in AUTOSAR

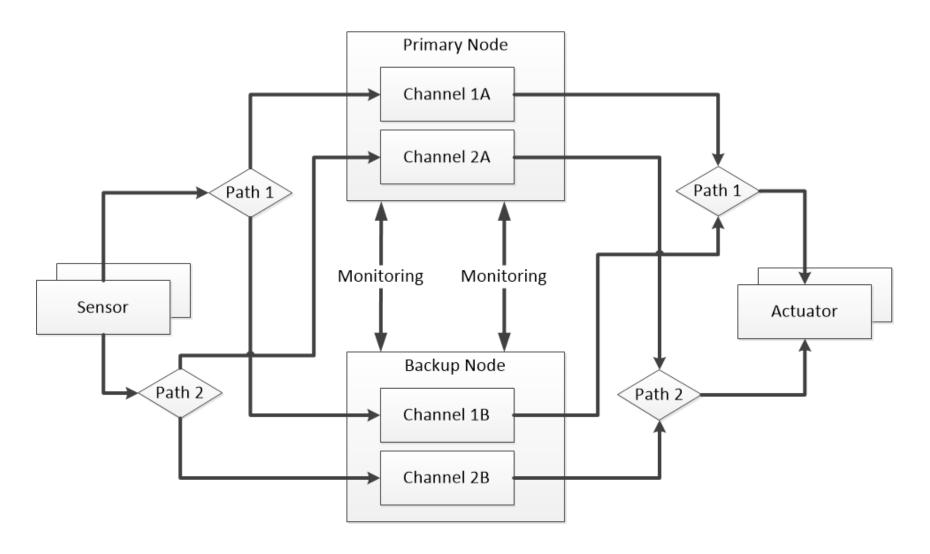
■ Research

- Redundancy management in AUTOSAR
- Modelling system architecture
- Tools & development environment
- Evaluation of applying ISO26262

Prototype E-Vehicle

- Two steering engines
- Time-triggered network

Source: Siemens

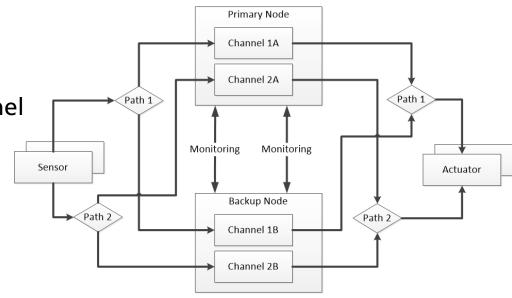

■ Duration: July 2013 - June 2016

SafeAdapt is a European research project under the Seventh Framework Programme – Grant agreement No 608945.

Generalised Safety Architecture

Properties of Safety Architecture

Distributed Safety Function


- Passivate primary node
- Detect passivation & reconfigure backup node
- Warn driver

1002D Design

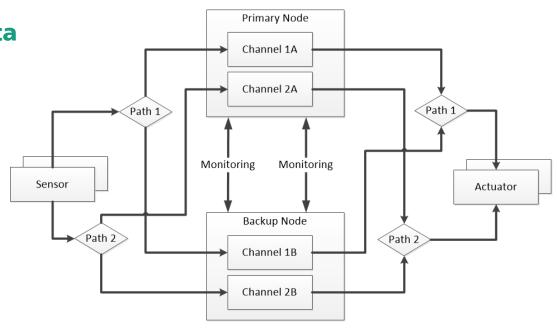
- 1002 voting within node
- Diagnostics: cross node & cross channel

Graceful Degradation

- Utilise backup node for other tasks
- High resource utilisation

Potential Hazards & False Trips

Two Masters


- Requires missing heartbeats on both paths
- Requires incorrect & congruent value on both channels

■ Missing & Incorrect Output Data

- Output on both links
- End-to-end data encoding

■ False Trips

- Self-test after vehicle restart
- Inexpensive
- New type of driver warning

Design Phase (Modelling & AUTOSAR Toolchain)

Automatic Layout & Configurations

- Plan network & ECU schedules (according to timing & failover requirements)
- Primary & redundant instances
- Disposable software (graceful degradation)
- Communication channel in case of failure
- Data refresh channel & heartbeats
- Respect AUTOSAR's static design principle

System Configuration

System Configuration Generator

ECU Configuration

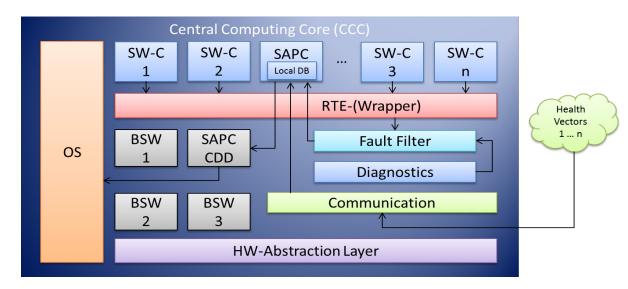
ECU Configuration Generator

RTE, BSW & OS Configuration

RTE Generator OS & COM Generator

Basic SW Generator

FCU Software


Safety Requirements in EAST-ADL

- Failover times
- Redundancy (hot or cold standby)
- Monitoring instances
- Importance of features

Runtime Environment

Platform-Independent Redundancy Manager

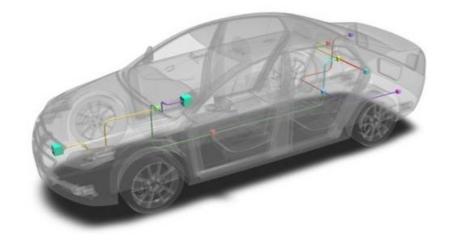
- Move safety features into runtime environment
- Mapping of failures onto configurations
- Unified configurations
- Interfaces for platform
- Generalised failure modes
- Heartbeats & monitoring
- Benefit from COTS status

■ Integrate into AUTOSAR

- Utilise synchronised schedule tables
- Well-defined mode switching
- RTE-interfaces for redundancy management

Summary & Outlook

■ Continuous Support for Safety Requirements


- Modelling safety requirements
- Automatic translation of requirements into code
- Safety functionality integrated into runtime environment

■ E-Vehicles drive X-by-Wire Technology

■ Efficient Designs


- Reconfiguration for graceful degradation
- Strong resource utilisation
- Reuse of safety artefacts

THANK YOU FOR YOUR TIME AND ATTENTION!

Philipp Schleiß, Research Engineer <u>Automotive Software</u> Tel.: +49 89 547088-398 | philipp.schleiss@esk.fraunhofer.de

Source: Panthermedia

