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Abstract. In street-based mobility mining, traffic volume estimation re-
ceives increasing attention as it provides important applications such as
emergency support systems, quality-of-service evaluation and billboard
placement. In many real world scenarios, empirical measurements are
usually sparse due to some constraints. On the other hand, pedestrians
generally show some movement preferences, especially in closed environ-
ments, e.g., train stations. We propose a Gaussian process regression
based method for traffic volume estimation, which incorporates topo-
logical information and prior knowledge on preferred trajectories with
a trajectory pattern kernel. Our approach also enables effectively find-
ing most informative sensor placements. We evaluate our method with
synthetic German train station pedestrian data and real-world episodic
movement data from the zoo of Duisburg. The empirical analysis demon-
strates that incorporating trajectory patterns can largely improve the
traffic prediction accuracy, especially when traffic networks are sparsely
monitored.

Keywords: Pedestrian Quantity Estimation, Trajectory, Gaussian Pro-
cess Regression, Graph Kernels

1 Introduction

Estimation of traffic volumes is a common task for street based traffic and the
achieved values are highly interesting for risk analysis, quality of service evalua-
tion, location ranking and mobility analysis applications. Particularly, for pedes-
trians traffic, knowledge on people’s presence offers a vast chance for improve-
ment of the signage and the infrastructure. Facilities provided to people depend
on pedestrian movements and volumes. To give a few general examples: locations
of information desks, shops or toilettes depend on the quantity of persons; path-
widths of the corridors in a stadium depend on people’s quantity as well, mobile
phone networks are planned according to the expected movements and even lo-
cations of advertisement billboards are placed such that they are potentially
noticed by as many pedestrians as possible. Modelling the pedestrian quantities
gives indispensable insights on visitor preferences and motivations at a particular
public event or site and thus supports creation of intelligent environments.
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In this work we focus on the estimation of traffic volumes for pedestrians
within closed environments. These are sites or buildings which have in common,
that no people reside inside but all present people leave after some time period.
Thus, these closed environments have dedicated entrances and exits. Prominent
examples are train stations, terminals, shops, shopping malls, parks as well as
zoos. As shown in the previous examples, knowledge of pedestrian movement
provides indispensable benefits to safety, marketing as well as infrastructural ap-
plications. Thus, over the past years many sensor technologies to fetch empirical
measurements and record pedestrian volumes have been developed (most pop-
ular ones are video surveillance, laser beams and Bluetooth sensors). However,
empirical measurements are usually rare due to some constraints, e.g., budget
limitations. This arises the following questions.

– How can values on pedestrian quantities be estimated from few empirical
measurements?

– At which places should a constrained number of quantity sensors be located?

Often, available data is limited to few measurements and some prior knowledge,
e.g., floor plan sketches, knowledge on preferred routes by local domain experts.
Incorporating prior knowledge is thus essential to address the above challenges.
However there are few approaches taking into account the trajectory patterns,
although pedestrians generally show some move preferences [1, 2], especially in
closed environments, e.g., train stations. Consider for example an average daily
traffic (ADT) prediction problem with traffic networks consisting of only one
junction. As shown in Figure 1, a T-junction occurs in a wide corridor that goes
straight. At the junction a small corridor intersects and an expert knows that it is
most likely for persons to continue their walk straight ahead in the main corridor.
Assume further to have a frequency sensor placed in the main corridor which
measures a known amount of people within considered time interval. Under
these circumstances, existing traffic volume estimation methods, e.g., k-nearest
neighbour and standard Gaussian process regression, do not take into account
the expert knowledge and thus may not effectively provide accurate estimations
for the side corridor.

We propose a traffic volume estimation method based on Gaussian process
regression, which incorporates topological information and the expert knowledge
on preferred trajectories with a trajectory pattern kernel. By exploring trajectory
patterns, our method can also effectively elicit most informative sensor place-
ments. We demonstrate the advantages of our approach with two applications.
The first one is pedestrian mobility analysis in German train stations. As the
data available is some statistical analysis on the network characteristics. We draw
synthetic (but realistic, see Section 4) traffic networks and pedestrian movement
based on these analysis. Secondly, our approach is applied to the real world sce-
nario at the zoo of Duisburg (Germany). The pedestrian mobility data of the
visitors was collected with Bluetooth tracking technology [3]. The empirical anal-
ysis demonstrates that incorporating trajectory patterns can largely improve the
traffic prediction accuracy, especially when traffic networks are sparsely moni-
tored. Our work contributes an extensive approach to the pedestrian volume
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Fig. 1. T-junction example. Main corridor is horizontal. Expert knowledge which pre-
sumes that people walk straight ahead in the main corridor is given. Left corridor
frequency measurement is given. Numbers denote relative frequencies in percent.

estimation problem and it provides an efficient, applicable solution to industrial
real world scenarios.

The rest of the paper is organized as follows. Section 2 gives an overview of
related work. Then we describe the proposed approach in Section 3. Empirical
analysis and real world applications are presented in Section 4. Finally, we give
our conclusions and discussions on future work in Section 5.

2 Related Work

Existing literature distinguishes between average daily traffic (ADT) estimation
and average annual daily traffic (AADT) estimation. Whereas AADT focuses on
estimation of a traffic volume depending on the day of the year, ADT estimation
provides an average for a particular day. Näıve approach for AADT estimation is
utilization of ordinary linear regression (OLR) [4]. Street segment attributes (e.g.
number of lanes or function classes) are multiplied by weights which are subject
for least squares regression. Improvements of this technique were achieved by
respecting the geographical space by usage of geographical weighted regression
(GWR) [4] and by application of k-nearest neighbor approaches (kNN) [5]. In [6]
the AADT prediction of kNN for a particular location is improved by weighting
measurements by their temporal distance to the prediction time. This approach
showed better results than application of Gaussian maximum likelihood (GML)
approaches for weighting of the historical data points. Recent improvements
to kNN non parametric regression were made in [7]. Although performing the
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k-nearest neighbor search in the attribute space of the street segments, this
approach selects the spatially closest neighbours, as they have highest impact.
In [7–9] the ADT estimation problem is addressed as business critical indus-
trial data mining use case as the pricing in the outdoor advertisement sector
in Germany and Switzerland relies on the estimated values [7]. Their proposed
algorithm is a spatial k-nearest neighbour (S-kNN) approach that incorporates
geometric distances for estimation of an unknown segment. The closer a mea-
sured segment is to an unmeasured one, the higher its impact. This is similar to
the Kriging approach described in [10] but goes beyond it, as just the k-nearest
neighbours were used for prediction.

The regression approaches in [11–13] are motivated by outdoor advertisement
use cases. In contrast to the previously described methods their approaches oper-
ate in the space of the possible routes instead of the segment-attribute space. Af-
ter an extensive path enumeration step, this work checks every possible path on
plausibility and considers the resulting set of plausible paths for path frequency
estimation using a least squares regression at the measurement locations. That
approach contains a basic assumption on pedestrian route choice, namely pedes-
trians prefer the shortest path to travel from one location to another. But in
some scenarios this assumption does not hold [14]. [15] applies Gaussian process
regression(GPR) to the estimation of traffic frequencies within a public trans-
port network. Their approach is not applicable to the problem of this work as
pedestrian mobility patterns arise in the traffic flow due to the non-random but
motivated individual behaviour, which was also result of the analysis of about
2’500 traces of train station visitors in [16]. More on challenges for pedestrian
modelling can be found in [17]. [18] shows in a study of 210 infrastructure plan-
ning projects that the inaccuracy of traffic forecasts can be immense. In this
paper we propose a new GPR based method to tackle the pedestrian quantity
estimation problem which explores the prior knowledge of trajectory patterns.

3 GPR with Trajectory Patterns

In the paper we focus on the pedestrian quantity estimation in closed envi-
ronments, e.g., train stations, shopping malls and zoos. Unlike the outdoor
pedestrain quantity estimation, the continuous tracking technologies, e.g. global
positioning system (GPS), are not feasible due to the lack of GPS signal in build-
ings and expensive deployment of the hardware. Recently developed technolo-
gies (lightbeams, video surveillance, Bluetooth meshes) record episodic move-
ment data [19] or its location based aggregate, presence counts at low expenses.
Episodic movement data is represented by tuples < o, p, t > of moving object
identifier o, discrete location identifier p and corresponding timestamp t. The
location based aggregate, presence counts, for time interval ∆t, as known as
number of visits, quantity or traffic frequency, is defined as

NV (p,∆t) = | < o, p, t >, t ∈ ∆t| . (1)

To estimate the traffic volume at unmeasured locations, we propose a nonpara-
metric Bayesian method, Gaussian process with a random-walk based trajec-
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tory kernel. The method explores not only the commonly used information in
the literature, e.g. traffic network structures (retrieved by tessellation from the
floor plan sketch) and recorded (or aggregated) presence counts NV at some
measurement locations, but also the move preferences of pedestrians (trajectory
patterns) collected from the local experts.

Consider a traffic network G̃(Ṽ, Ẽ) with N vertices and M edges. For some
of the edges, we observe the pedestrian quantities, denoted as y = {ys :=
NV (ẽs,∆t) : s = 1, . . . , S}. Additionally, we have the information of the major
pedestrian movement patterns T = {T1, T2, . . .} over the traffic network, col-
lected from the local experts or the tracking technology (e.g. Bluetooth tracking
technology). Obviously, taking into account the trajectory patterns is beneficial
to predict the unknown pedestrian quantities: The edges included in a trajectory
pattern appear to have similar pedestrian quantities. To meet the challenge, we
propose a nonparametric Bayesian regression model with trajectory based ker-
nels.

The pedestrian quantity estimation over traffic networks can be viewed as
a link prediction problem, where the predicted quantities associated with links
(edges) are continuous variables. In the literature of statistical relational learning
[20,21], commonly used GP relational methods are to introduce a latent variable
to each vertex, and the values of edges is therefore modeled as a function of latent
variables of the involved vertices, e.g. [22,23]. Although these methods have the
advantage that the problem size remains linear with the size of the vertices, it
is difficult to find appropriate functions to encode the relationship between the
variables of vertices and edges for different applications.

In the scenario of pedestrian quantity estimation, we directly model the edge-
oriented quantities [5, 6, 15] within a Gaussian process regression framework.
First, we convert the original network G̃(Ṽ, Ẽ) to an edge graph G(V,E) that
represents the adjacencies between edges of G̃. In the edge graph G, each vertex
vi ∈ V is an edge of G̃; and two vertices of G are connected if and only if their
corresponding edges share a common endpoint in G̃. To each vertex vi ∈ V
in the edge graph, we introduce a latent variable fi which represents the true
pedestrian quantity at vi. It is value of a function over the edge graph and the
known trajectory pattens, as well as the possible information about the features
of the vertex. The observed pedestrian quantities (within a time interval ∆t) are
conditioned on the latent function values with Gaussian noise ϵi

yi = fi + ϵi, ϵi ∼ N (0, σ2) . (2)

As mathmatical form and parameters of the function are random and unknown,
fi is also unknown and random. For an infinite number of vertices, the function
values {f1, f2, . . .} can be represented as an infinite dimensional vector. Within
a nonparametric Bayesian framework, we assume that the infinite dimensional
random vector follows a Gaussian process (GP) prior with mean function m(xi)
and covariance function k(xi, xj) [24]. In turn, any finite set of function values
f = {fi : i = 1, ...,M} has a multivariate Gaussian distribution with mean and
covariances computed with the mean and covariance functions of the GP [24].
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Without loss of generality, we assume zero mean so that the GP is completely
specified by the covariance function. Formally, the multivariate Gaussian prior
distribution of the function values f is written as

P (f |X) = N (0,K),

where K denotes the M ×M covariance matrix, whose ij-th entry is computed
in terms of the covariance function. If there are vertex features x = {x1, ..., xM}
available, e.g., the spatial representation of traffic edges, a typical choice for
the covariance function is the squared exponential kernel with isotropic distance
measure:

k(xi, xj) = κ2 exp

(
−ρ2

2

D∑
d

(xi,d − xj,d)
2

)
, (3)

where κ and ρ are hyperparameters.
Since the latent variables f are linked together into an edge graph G, it

is obvious that the covariances are closely related to the network structure: the
variables are highly correlated if they are adjacent in G, and vice versa. Therefore
we can also employ graph kernels, e.g. the regularized Laplacian kernel, as the
covariance functions:

K =
[
β(L+ I/α2)

]−1
, (4)

where α and β are hyperparameters. L denotes the combinatorial Laplacian,
which is computed as L = D−A, where A denotes the adjacency matrix of the
graph G. D is a diagonal matrix with entries di,i =

∑
j Ai,j .

Although graph kernels have some successful applications to public trans-
portation networks [15], there are probably limitations when applying the network-
based kernels to the scenario of closed environments: the pedestrians in a train
station or a shopping mall have favorite or commonly used routes, they are not
randomly distributed on the networks. In a train station, the pedestrian flow
on the main corridor is most likely unrelated to that on the corridors leading
to the offices, even if the corridors are adjacent. To incorporate the information
of the move preferences (trajectory patterns, collected from the local experts or
tracking technology) into the model, we explore a graph kernel inspired with the
diffusion process [25].

Assume that a pedestrian randomly moves on the edge graph G. From a
vertex i he jumps to a vertex j with nk

i,j possible random walks of length k,

where nk
i,j is equal to [Ak]i,j . Intuitively, the similarity of two vertices is related

to the number and the length of the random walks between them. Based on
diffusion process, the similarity between vertices vi and vj is defined as

s(vi, vj) =

[ ∞∑
k=1

λk

k!
Ak

]
ij

, (5)

where 0 ≤ λ ≤ 1 is a hyperparameter. All possible random walks between vi and
vj are taken into account in similarity computation, however the contributions of
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longer walks are discounted with a coefficient λk/k!. The similarity matrix is not
always positive semi-definite. To get a valid kernel, the combinatorial Laplacian
is used and the covariance matrix is defined as [25]:

K =

[ ∞∑
k=1

λk

k!
Lk

]
= exp(λL) . (6)

On a traffic network within closed environment, the pedestrian will move
not randomly, but with respect to a set of trajectory patterns and subpatterns
denoted as sequences of vertices [26], e.g.,

T1 = v1 → v3 → v5 → v6,
T2 = v2 → v3 → v4,
T3 = v4 → v5 → v1,

. . .

 . (7)

Each trajectory pattern Tℓ can also be represented as an adjacency matrix in
which Âi,j = 1 iff vi → vj ∈ Tℓ or vi ← vj ∈ Tℓ. The subpatterns are sub-
sequences of the trajectories. For example, the subpatterns of T1 are {v1 →
v3, v3 → v5, v5 → v6, v1 → v3 → v5, v3 → v5 → v6}. Given a set of trajectory
patterns T = {T1, T2, . . .}, a random walk is valid and can be counted in similar-
ity computation, if and only if all steps in the walk belong to T and subpatterns
of T . Thus we have

ŝ(vi, vj) =

[ ∞∑
k=1

λk

k!
Âk

]
ij

, K̂ =

[ ∞∑
k=1

λk

k!
L̂k

]
= exp(λL̂)

Â =
∑
ℓ

Âℓ, L̂ = D̂ − Â, (8)

where D̂ is a diagonal matrix with entries d̂i,i =
∑

j Âi,j .
For pedestrian quantities fu at unmeasured locations u, the predictive distri-

bution can be computed as follows. Based on the property of GP, the observed
and unobserved quantities (y, fu)

T follows a Gaussian distribution[
y
fu

]
∼ N

(
0,

[
K̂u,u + σ2I K̂u,u

K̂u,u K̂u,u

])
, (9)

where K̂u,u is the corresponding entries of K̂ between the unmeasured vertices

u and measured ones u. K̂u,u, K̂u,u, and K̂u,u are defined equivalently. I is an
identity matrix of size |u|. Finally the conditional distribution of the unobserved
pedestrian quantities is still Gaussian with the meanm and the covariance matrix
Σ:

m = K̂u,u(K̂u,u + σ2I )−1 y

Σ = K̂u,u − K̂u,u(K̂u,u + σ2I )−1 K̂u,u .
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Besides pedestrian quantity estimation, incorporating trajectory patterns
also enables effectively finding sensor placements that are most informative for
traffic estimation on the whole network. To identify the most informative loca-
tions I, we employ the exploration strategy, maximizing mutual information [27]

argmax
I⊂V

H(V\I)−H(V\I | I) . (10)

It is equal to find a set of vertices I, which maximally reduces the entropy of the
traffic at the unmeasured locations V\I. Since the entropy and the conditional
entropy of Gaussian variables can be completely specified with covariances, the
selection procedure is only based on covariances of vertices, not involves any
pedestrian quantity observations. To solve the optimization problem, we employ
a poly-time approximate method [27]. In particular, starting from an empty set
I = ∅, each vertex is selected with the criterion:

v∗ ← argmax
v∈V\I

Hϵ(v | I)−Hϵ(v | I) , (11)

where I denotes the vertex set V\(I ∪ v). Hϵ(x|Z) := H(x|Z ′) denotes an
approximation of the entropy H(x|Z), where any element z in Z ′ ⊂ Z satisfies
the constraint that the covariance between z and x is larger than a small value
ϵ. Within the GP framework, the approximate entropy Hϵ(x|Z) is computed as

Hϵ(x | Z) =
1

2
ln 2πeσ2

x|Z′

σ2
x|Z′ = K̂x,x − K̂T

x,Z′K̂−1
Z′,Z′K̂x,Z′ . (12)

The term K̂x,Z′ is the corresponding entries of K̂ between the vertex x and a set

of vertices Z ′. K̂x,x and K̂Z′,Z′ are defined equivalently. Given the informative
trajectory pattern kernel, the pedestrian quantity observations at the vertices
selected with the criterion (11) can well estimate the situation of the whole
network. Sec. 4.3 shows a successful application to the zoo of Duisburg data.

4 Experimental Analysis

Our intention here is to investigate the following questions: (Q1) Can the pro-
posed method integrate with expert knowledge on preferred movement patterns
in closed environments and thus improve the prediction accuracy on pedestrian
quantity estimation? (Q2) Can the proposed method choose sensor locations to
better monitor pedestrian quantities in an industrial scenario? To this aim, we
evaluate the method on two datasets: synthetic German train station pedestrian
data and real-world episodic movement data collected with Bluetooth tracking
technology at the zoo of Duisburg (Germany). We compare our method with
state-of-the-art traffic volume estimation approaches. As discussed in Section 2,
kNN methods are extensively used for traffic volume estimation [5]. The latest
version of this approach, the Spatial kNN [7], has many successful applications
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and is considered as a baseline. In the experiments we use distance-weighted 5-
Nearest Neighbors. Particularly this method detects for each unmeasured edge
the 5 nearest neighbors among the measured ones. Their traffic frequencies are
weighted by distance to achieve prediction for the unmeasured ones. As this is
a geometric algorithm which requires spatial representation of the traffic net-
work, we apply Fruchterman Reingold [28] algorithm to lay out the test net-
works in two-dimensional space and achieve spatial representations. Distances
between edges are computed with Euclidian metric. Additionally, we compare
our method to GPR with commonly used kernels, including regularized Lapla-
cian (RL), squared exponential (SE) and diffusion kernel (Diff). The predic-
tion performance of the methods is measured with mean absolute error (MAE)
MAE = n−1

∑n
i=1 |yi − fi|.

4.1 German Train Station Data

Fig. 2. Sketch of train station Hofheim (Germany) with traffic network overlay.

To approximate the true situation, we study traffic networks of 170 largest
public train stations in Germany, an example shown as Fig. 2. The distributions
of vertex-degree and vertex-number are visualized in Fig. 3. Given the collected
information of the real-world train stations, the synthetic data is generated as
follows. We apply the real vertex-degree distribution to the random network
generator described in [29] and draw the train station like random graphs of order
10. In these graphs we generate pedestrian flows between dead ends (vertices of
degree one), as no pedestrians permanently stay in a train station. The dead
ends are selected pairwise and edge frequencies are sampled along the shortest
connecting path with a random frequency of maximal 10,000 persons, which is a
reasonable approximation for train station traffic networks. Afterwards we select
a random set of edges (ranging from 10 to 50 percent of all edges) as monitored
locations. Traffic frequencies at these edges are viewed as evidence to estimate
frequencies at unmeasured ones. At each setting, we repeat the experiment 100
times and report the distributions of prediction performance for each method.



10 Thomas Liebig, Zhao Xu, Michael May, and Stefan Wrobel

1 2 3 4 5 6 7 8 9 11

degree of vertices

pe
rc

en
ta

ge

0
5

10
20

30

number of vertices

pe
rc

en
ta

ge

0 20 40 60 80 100 120 140

0
5

10
15

20

Fig. 3. Distributions of vertex-degree (right) and number of vertices (left) among 170
large German train stations.
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Fig. 4. Pedestrian quantity estimation on networks of train stations. Performance is
measured by MAE at settings with different ratios of monitored edges (10 to 50 percent
from left to right). The five methods: GPR with diffusion kernel (Diff), spatial k-nearest
neighbor (kNN), GPR with trajectory pattern kernel (Patt), GPR with regularized
Laplacian (RL) and GPR with squared exponential kernel (SE).
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Experimental results are depicted in Fig. 4. Grouped in blocks are the differ-
ent experiment configurations (different number of monitored edges). Statistics
on the MAE distribution per method are depicted in the five boxplots. Through-
out the tests, our method achieved minimal MAE and minimal average MAE,
and therefore best results for the pedestrian quantity estimation problem. The
proposed method outperformed commonly used kNN approach, especially when
traffic networks are sparsely monitored. With increasing the number of moni-
tored edges, all methods, except the GPR with diffusion kernel, provide better
performance on pedestrian quantity estimation given that MAE decreased and
did not scatter that much. Within the GP framework, the proposed trajectory
pattern kernel achieved best performance compared to other kernels.

4.2 Zoo of Duisburg Data

Fig. 5. The network of the zoo in Duisburg (Germany) and the positions of the 15
Bluetooth scanners.

We apply the proposed method to a real world dataset of visitor movement
in the zoo of Duisburg (Germany). The dataset consists of episodic movement
data [19] and was collected with a mesh of 15 Bluetooth scanners [3,30] (see map
in Fig. 5). Within a period of 7 days (07/26/11–08/02/11) all Bluetooth enabled
devices (smartphones or intercoms) were scanned and log-entries attached to the
log-file. Thus, the dataset consists of tuples (device identifier, timestamp, loca-
tion). In order to perform the tests, the traffic network is build from the sensor
positions. Each sensor becomes a vertex. To achieve ground truth for the traffic
volume prediction, temporal aggregates of recorded transitions between sensors,
as proposed in [19], become scaled by the Bluetooth representativity (in this
case at the zoo approximately 6 percent). Due to the uncertainties in episodic
movement data transitions in the dataset are not limited to neighbouring sensor
positions, but occur between arbitrary pairs of sensors. In our case this results
in a traffic network consisting of 102 edges and 15 vertices. The recorded trajec-
tories of the zoo visitors become the trajectory pattern input to the trajectory
pattern kernel. Similar to the previously synthetically generated data, the real
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world experiments are conducted with different percentages of measured edges.
Measurement edges are chosen uniformly at random 100 times for each dataset.

As shown in Figure 6 on the experimental results, the proposed method again
achieved the best prediction performance for the pedestrian quantity estimation
problem in comparison to other state-of-the-art methods. Incorporating expert
knowledge on movement preferences allows for the model to well capture the
dependencies of traffic at different edges and, in turn, to improve prediction
accuracy.
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Fig. 6. Pedestrian quantity estimation on network of the zoo in Duisburg (Germany).
Performance is measured by MAE at settings with different ratios of monitored edges
(10 to 50 percent from left to right). The five methods: GPR with diffusion kernel
(Diff), spatial k-nearest neighbor (kNN), GPR with trajectory pattern kernel (Patt),
GPR with regularized Laplacian (RL) and GPR with squared exponential kernel (SE).

4.3 Sensor Placement with Trajectory Patterns

Besides the traffic volume estimation, another interesting task is to give a so-
lution to the question where to place the sensors such that the traffic over the
whole network can be well estimated. Based on the proposed trajectory pattern
kernel, we perform the sensor placement procedure on the zoo of Duisburg data.
Afterwards, pedestrian quantity estimation based on resulting sensor placement
is carried out and performance is measured with MAE. The red horizontal line
in Fig. 7 depicts the sensor placement performances in comparison to previous
random placement. For sparse sensor distribution (low percentages of measure-
ment edges), the sensor placement has a high positive impact on the prediction
performance. However, for higher sensor numbers the random placement may
outperform the mutual information based sensor placement. One reason is that
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this placement is not optimal but near optimal. Another possible explanation is
given by the data. Due to noise or other unexpected anomalies in the data which
are not consistent to the prior knowledge on trajectory patterns.
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Fig. 7. Traffic Flow Estimation performance measured by MAE for 5 real world
datasets with different ratios of known edges (10 to 50 percent) and five methods:
GPR with Diffusion kernel (Diff), Spatial k-Nearest Neighbor (kNN), GPR with the
proposed Trajectory Pattern kernel (Patt), GPR with Regularized Laplacian (RL) and
GPR with Squared Exponential (SE) in comparison to (Patt) with mutual information
based sensor placement (horizontal line).

5 Conclusions and Future Work

Pedestrian volume estimation is an important problem for mobility analysis
in many application scenarios such as emergency support systems, quality-of-
service evaluation and billboard placement, risk analysis and location ranking.
This work proposed a nonparametric Bayesian method to tackle the pedestrian
quantity estimation problem which explores the expert knowledge of trajectory
patterns. We validated our proposed method on two datasets: synthetic German
train station pedestrian data and real-world dataset collected with of Bluetooth
tracking technology at the zoo of Duisburg. Furthermore, we addressed the ques-
tion for sensor placement in an industrial scenario with the trajectory based
graph kernel. The empirical analysis demonstrated that incorporating trajec-
tory patterns can largely improve the traffic prediction accuracy in comparison
to other state-of-the-art methods. Our work also provides an efficient and appli-
cable solution to pedestrian volume estimation in industrial real world scenarios.

This work focussed on pedestrian volume estimation in closed environments
(zoo, train station, terminal, etc.) because in closed environments different meth-
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ods can be studied and compared under controlled circumstances. For instance,
movements in these closed environments are not influenced by residing persons
or unexpected pedestrian sinks or sources like tram stops, living houses, etc.
Nevertheless, our proposed approach was not based on this assumption and fu-
ture work should validate performance on arbitrary traffic networks. Another
future research direction is to focus on temporal aspects of pedestrian move-
ment and the creation of time dynamic models using at once dynamic expert
knowledge and dynamic measurements. Also combination of measurements and
expert knowledge at heterogeneous spatial granularities is promising for indus-
trial applications (e.g. combination of (1) movement patterns among dedicated
points of interest retrieved from social media and (2) pedestrian counts from
video surveillance on (3) a city center traffic network). This question is of high
interest in near future, as valuable (episodic) data on people’s movement is ex-
pected to become widely available e.g. by billing data, logfiles on social media
usage or wireless communication networks (GSM, WLAN, Bluetooth) [19].
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