Internet of Things in Logistics

EPoSS Annual Forum 2012

Andreas Nettsträter

THE FRAUNHOFER IML

The Fraunhofer IML Data and Facts

- Founded in 1981
- More than 200 scientists
- 250 student assistants
- Turnover of 23,5 million €, 40% of that from industry, trade and services
- Branches and project centers in Frankfurt (Main), Prien (Chiemsee), Hamburg
- Cooperation with HSG St. Gallen (Switzerland), Georgia Tech (USA),
 Lisbon (Portugal), Shanghai (China), Rio de Janeiro (Brazil)

The Internet of Things in Logistics

The Internet-of-Things in Logistics

- Distribution of central control to a multiplicity of small self-organized units
- Decentralized material flow control
- Automatic adaption to environmental changes (no reprogramming)
- Smart Items and
 Services are enablers for the IoT in logistics

IoT-A as the EU FP7 IoT flagship project

Establish and evolve an Architectural Reference Model for the Future Internet of Things

The intelligent Box

- Communicates with people and machines
- Energy self-sufficient
- Controls logistic processes
- Manages the whole picking process
- Supervises its environmental conditions
- Maintenance free
- Modular construction to adapt to almost every logistics process
- Self-locating

Smart and energy self-sufficient air freight containers (ULD)

Application Requirements

- Worldwide, decentralized self-control of air freight containers
- Sensor data to monitor shipment status
- Reliability and Robustness upon application use

Innovative Challenges

- Components with self-sufficient energy source
- High-performance Sensors
- Synchronized information and material flow through process in realtime

aufgrund eines Beschlusses des Deutschen Bundestages

Gefördert durch:

für Wirtschaft

und Technologie

DyCoNet – Smart air freight containers (smartULD)

- Sensor monitoring, trigger alarms autonomously (Temperature, GPS, ...)
- Internet connected (GSM based)
- ad-hoc networks of ULDs (e.g. 802.15.4)
- energy harvesting enabled (e.g. solar, vibrations)
- Integrated RFID-based identification of goods
- Ground-handler interaction (NFC)
- Vehicle-ordering

SmaRTI – Smart objects control logistic processes

- Smart post boxes for German postal letter network,
 - which communicate with multi-frequency transponder and different protocols and route themselves through networks

- Smart air freight pallets,
 - send data on position, shipment and environment in world-wide network of Lufthansa Cargo with energy self-sufficient systems

- Smart wooden pallet with innovative radiofrequency (RF)- and IT-infrastructure,
 - controls autonomously the material-flow of REWE's
 supply chain to the customer within German

Cellular Transport Systems

- Swarm of 50 autonomous transport vehicles:
 - Autonomous behavior of every single shuttle, e.g. collision avoidance, safety tasks
 - Swarm is responsible for the task of transportation, e.g. scheduling is done in the group
- Increase flexibilty and changeability
 - Simple scale-up and scale-down
 - Replace inflexible conveying systems by autonomous transport vehicles

Cellular Transport Systems

- One drive, two gears
 - Rail guided inside storage rack
 - Free navigation on floor
- Unit loads up to 40 kg and 600mm x 400mm
- Load handling device for single or double-deep storage
- Multi energy supply concept for different battery technologies
 - Lead-acid
 - Lithium-iron-phosphate
 - Lithium-ion

LivingLabs at Fraunhofer IML

Cellular Transport Systems

"Swarm intelligence" for logistics and supply chains

- Size / floor area:1,000 m²
- Opened: Mid 2011
- Largest experiment for artificial intelligence in logistics

LivingLabs at Fraunhofer IML

openID-Center

- An open platform for logistics software and autoID systems
 - Size / floor area: 1,500 m²
 - Opened: 2006 / modern. 2011
 - Open integration platform for autoID technologies

Energy Efficiency Test Facility

- MF system with belt and roller conveyors, RFID readers and light barriers
 - Energy measurement of 140 drives
 - Evaluation system for decentralized control strategies

Modeling a new world

Internet of Things

Operational level
Real time capabilities
Self-control
Shuttles & Smart Items

Internet of Services

Normative level
Batch execution
Self-organization
Logistics Mall

Logistics-as-a-Service

Logistics Mall – Cloud Computing for Logistics

- Virtual marketplace for logistics and IT apps
- The way from application-centric processes (like MES, WMS and ERP) to service-oriented processes

Fields of innovation

- Logistics-by-Design (Standards)
 - Standardized structures called <u>Business-Objects</u> for the definition and modeling of logistics services and objects
 - → Allowing easy integration of business processes and services
- Logistics-on-Demand (Tools)
 - Cloud-based tools for the integration and development of logistics services
 - → Support for the creation of flexible business processes
- Logistics-as-a-Product (Marketplace)

Virtual marketplace for custom-made logistics processes ranging from single services to complete software solutions

Our expertise in R&D for Europe

Smart items

- Electronics and electrical design
- Micro Energy Harvesting
- Communication structure
- AutoID technologies

Smart transport systems

- Mechanical design and engineering
- Navigation and sensor fusion
- Swarm Intelligence and Multi Agent Systems
- E-Mobility

Cloud Computing

- Software engineering
- App development
- System modelling
- Business models
- Enterprise ontology

Applications in logistics and manufacturing

Internet of Things in Logistics

EPoSS Annual Forum 2012

Andreas Nettsträter