
SN
E 16/2, Septem

ber 2006

57

+++ Co-simulation of Matlab/Simulink with AMS Designer ++

Introduction

Today's integrated circuits often contain analog and

digital signal processing as well as microcontrollers

and memory. These complex Systems-on-Chips (SoCs)

provide high functionality and enable the design of

smart products for a mass market. Chip designs have

to be verified well before the expensive manufactu-

ring of the first prototype in silicon is started. Simula-

tion is the key element in chip verification.

The design flow is usually divided into different ab-

straction levels as shown in Figurei1. At system level

functionality and performance of the whole system are

specified and evaluated by system-level simulations.

Afterwards, the system is partitioned into hard- and

software, analog and digital parts - possibly in several

steps. At circuit level these blocks are implemented as

analog or mixed-signal circuits or gate netlists. Finally,

a layout is designed. After each step the description of

the design is more detailed than before.

In modern design flows, simulation support is availa-

ble for all design levels and system parts. A wide

range of tools offer dedicated solutions for specific

design problems. Each tool is optimized for a specific

level of abstraction and application area. Even though

there is a certain range of overlap between the tools,

difficulties arise when effects have to be analyzed that

span different design levels. While the interfaces bet-

ween block level and transistor circuit are well esta-

blished by mixed-signal simulators, the link toward

system level is still weak in most environments,

although there are approaches e.g. for using simulator

coupling in digital design flows ([5]).

MATLAB and its simulation toolbox Simulink are

used in system design for many applications including

communication, automotive and control systems. The

visualization of results is well supported by compre-

hensive functions for signal analysis and monitoring.

In an ideal top-down design flow the system level

model will be used as executable specification for the

detailed block implementation using mixed-signal

languages like VHDL-AMS or Verilog-AMS. In a fol-

lowing step the implementation proceeds down

towards circuit level. Since most of these designs con-

sist of analog and digital parts, their implementation is

usually supported by mixed-signal simulators like Vir-

tuoso AMS Designer or ADVance MS. Thus, a very

accurate analysis of analog and mixed-signal circuits

is provided. On the other hand this accuracy naturally

reduces the simulation speed, so that it is often imprac-

tical to verify the whole system behavior on a very

detailed level of abstraction.

Co-simulation of Matlab/Simulink with AMS Designer

in System-on-Chip Design

U. Eichler, U. Knöchel, S. Altmann, Fraunhofer Institute for Integrated Circuits, Dresden, Germany
{eichler, knoechel, altmann}@eas.iis.fraunhofer.de

W. Hartong, J. Hartung, Cadence Design Systems GmbH, Feldkirchen, Germany
{hartong, juergenh}@cadence.com

With increasing complexity of Systems-on-Chips (SoC), system level design and simulation is a necessity. In an

ideal top-down design flow, the system level model is used as executable specification for the block implemen-

tation, which is supported by mixed-signal simulators. This contribution describes a link between the system-

level simulator MATLAB/Simulink and mixed-signal simulation in Virtuoso AMS Designer by a socket based

co-simulation. The implementation of the co-simulation is described in detail, including user interface, protocol,

synchronization and cross-platform support. The application of the co-simulation is illustrated by a wireless

LAN system. While the RF subsystem of the WLAN receiver is modeled in Virtuoso AMS Designer, Simulink

provides standard compliant testbenches and adequate visualization tools. The presented simulator coupling, as

a special case of distributed simulation, provides a functional parallelization of the involved tools.

Implementation Verification

Time

h
ig

h
lo

w
A

m
o

u
n

t
o

f
d

e
ta

il
s

Layout Verification ,

Parasitic Extraction
Layout Level

Circuit Verification
Circuit / Transistor

Level

Block Verification
Electrical Block

Level

System Level

(Executable

Specification)

System Verification

Figure 1: Design levels.

A verification of the implemented blocks against

system level is difficult, due to the missing link. On the

other hand, individually testing the designed circuits

often does not ensure a working system, and designs

fail due to problems at the interfaces. A direct link to the

system environment can help to reduce interface pro-

blems and increase design efficiency and quality.

This was the main motivation for the development of

the AMS Designer - Simulink co-simulation feature.

Designers of analog and mixed-signal systems can eva-

luate their designs within a system model that can be

reused from system design. The powerful Simulink

model libraries simplify the design of module testben-

ches. System designers may include block or circuit

level models of critical analog modules in the system

simulation to analyze the performance impact and to

adjust analog and digital parts, e.g. by digital predistor-

tion of signals to compensate the non-linearity of a suc-

ceeding analog amplifier. Some of the existing solu-

tions for multi-level simulation have been evaluated

and improved within the project DETAILS ([*]). It is

focused on an integrated simulation flow from system-

level to mixed-signal and RF circuit implementation.

1 Concept and Implementation

When linking two simulators for co-simulation three

main aspects of implementation have to be conside-

red: the coupling of the different simulation algo-

rithms, the choice of an appropriate user interface that

integrates well in the simulators' handling concepts,

and how both simulators should communicate. In the

presented simulator coupling the mixed-signal simu-

lator Virtuoso AMS Designer is used for the block and

circuit level simulation. MATLAB/Simulink acts as

sys-tem level simulator. Because both tools calculate

the time-dependent behavior of the analyzed model

(time-domain simulation), the coupling algorithm is

focused on synchronization which is discussed in Sec-

tion Synchronization below.

The simulator coupling user interface has to provide a

simple way for the user to define the border between

both model parts residing in the two different simula-

tion environments. That concerns the choice of the

signals to be transferred, their data types and the sam-

pling mode to be used. Special coupler modules have

been introduced for both simulation environments. The

coupler module represents the model part that resides in

the other simulator. Signals that should be transferred to

or from the other model part are connected to the input

or output ports of the coupler (see Figurei2). This

approach allows to keep the modular structure of a

model when splitting it for co-simulation.

The coupler modules can be easily inserted and para-

meterized using the well-known graphical user inter-

faces of both simulation environments.

For the communication between the coupled simu-

lators a TCP/IP network socket connection is used,

allowing the co-simulation to be run on a single ma-

chine as well as on different hosts in a network. Dif-

ferent operating systems and platforms are supported

in one co-simulation run (cross-platform simulation,

see also Section Platform Support below). When run-

ning on different machines, the co-simulation may

profit from better memory utilization because more

memory is available per simulator.

1.1 Virtuoso Coupler Module

For AMS Designer the actual coupler module is written

in Verilog-AMS. It provides port definitions, contribu-

tion statements for port access, and intermediate varia-

bles of type real for each input and output port. These

variables are read and written by the VPI application -

a dynamically loaded library which is written in C and

contains the main coupling functionality. VPI, the Ver-
ilog Procedural Interface, provides several functions to

interact with the simulation engine and to access Ver-

ilog objects like variables, modules and ports. The VPI

application is started by a user-defined system task cal-

led at initialization of the coupler module:

initial $couple_init(CouplerToSimulink,hostName);

SN
E

16
/1

,
Se

pt
em

be
r

20
06

++ Co-simulation of Matlab/Simulink with AMS Designer +++

58

 Verilog-AMS model Simulink model

 coupler module
S-Function

real real double, int,
uint, bool

double, int,
uint, bool

Socket channel

coupler module

VPI application

Figure 2: Co-simulation principle.

Figure 3: Virtuoso AMS Designer coupler module.

In each step, the simulation data received from Simu-

link is written to the Verilog module's output vari-

ables, and the input variables are read. Inside the Ver-

ilog coupler module these variables has to be mapped

to the module ports. Currently, there are two coupler

modules implemented. The first one is a pure digital

module and maps data directly to its ports of type

wreal. The second one is shown in Figurei3 and has

analog electrical ports. It uses an interpolation algo-

rithm to write the received data to its output ports.

Symbol and parameter dialog of the Verilog-AMS

coupler module in Virtuoso AMS Designer are shown

in Figurei3. The following parameters are provided:

- NumberOfInputs, NumberOfOutputs:

The number of module ports per direction.

The symbol view is changed according to

these settings.

- InitialValue: The starting value for the inter

polation algorithm. It is provided at the

coupler module's output ports at simulation

time t0 (Figurei5, 6).

- HostnameOfMaster:The name of the local

or remote host where Simulink is started.

- SocketPort:The TCP/IP port number for the

socket connection. Both simulators must use

the same setting in order to communicate.

- TimeoutConn: Time before terminating

simulation if no data is received from the

other simulator.

1.2 Simulink Coupler Module

The C-based s-function API was used to implement

the coupler module on Simulink side. The advantage

is that common functions for protocol and socket

access could be shared by VPI application and s-func-

tion. The S-Function code is compiled to a shared

library and contains the entire functionality of the

coupler except the parameter dialog which was crea-

ted using the Simulink Mask Editor (see Figurei4).

The coupler module can be executed either at a pos-

sibly variable sample rate, inherited from the connec-

ted blocks, or at a constant, user-defined sample rate.

With the following three parameters the sampling

mode can be controlled:

- FrameMode:Toggles between framed and

unframed synchronization (see below).

- FrameSize: The number of samples per frame.

If the frame size should be inherited from the

connected blocks, this value is set to -1.

- SampleTime: This value defines a fixed

sampling or frame period for the coupler

block. If set to -1, sample time is inherited

from the connected blocks.

1.3 Synchronization

When splitting a simulation task into several parts for

co-simulation, the synchronization of the involved

simulation tools is an important issue. This comprises

the choice of an appropriate synchronization algorithm

as well as its implementation (for overview, see [4]).

A synchronization algorithm should strongly depend on

the scheduling schemes used by the coupled simulators.

In our case these are a dataflow-like scheduling algo-

rithm with fixed or variable time steps for Simulink and

a combination of discrete-event control with a continu-

ous-time analog solver for the mixed-signal simulator

AMS Designer. Here, the set of applicable synchroniza-

tion schemes is mostly determined by Simulink,

because in dataflow simulation a block is not executed

until all of its inputs are calculated by their drivers. This

results in a fixed execution order of all blocks that is

repeated for each sample period. Thus, also the Verilog-

AMS model represented by the coupler block has to be

executed accordingly to this order and has to calculate

its outputsfor that sample period. The synchronization

time points are given by Simulink. This scheme is a

conservative synchronization approach ([3], [1]).

With these preconditions an implementation using the

master-slave principle was the most preferable one due

to its simplicity and its only small communica-tion over-

head. Consequently, Simulink was chosen to take the

master role for synchronization and connection setup.

SN
E 16/2, Septem

ber 2006

59

+++ Co-simulation of Matlab/Simulink with AMS Designer ++

Figure 4: Simulink coupler module.

The simulators exchange data frames with blocking

access to the socket connection. Simulation time

advance is controlled by the master simulator and is

always positive for both simulators. That means, Si-

mulink calculates the coupler module's input data for

the current time step, sends this data together with the

time of the next sampling point to the Verilog cou-

pler. AMS Designer advances simulation until this

time and sends back its output data to Simulink.

Inside the Verilog-AMS coupler module the discrete-

timed data received from Simulink has to be mapped

to the continuous time axis of the analog part. This is

done by an interpolation algorithm that calculates

additional values between the received samples if

requested by the analog solver. The interpolation is

done linearly starting at simulation time t0 with the

value of the parameter InitialValue. In the opposite

direction the input signals of the Verilog coupler are

sampled at the times given by Simulink. This can in-

fluence the co-simulation performance significantly.

Thus, the sampling rate should be chosen carefully. If

it is too low, signal changes with smaller time con-

stants are lost. If the sampling rate is too high, simula-

tion performance decreases.

With its signal processing blockset Simulink pro-

vides a special signal type - so-called frame-based sig-

nals. These compose several successive samples to a

single frame and transmit them all at once. Frame-

based signals can help modeling multi-rate systems

and increase simulation performance significantly due

to the reduced communication effort between connec-

ted blocks ([6]). This feature had to be considered also

for the proposed co-simulation. Supporting Simulink's

different sampling modes - from variable sample rates

to frame-based signal processing - was a challenge for

the co-simulation implementation.

For more flexibility two different synchronization

algorithms for framed and unframed data are used. In

unframed mode (Figurei5) the Simulink coupler

module does not exchange data at simulation time t0.

The first input sample of the coupler module is igno-

red and a value of 0 is written to the outputs. The input

sample of the second sampling period is then sent to

AMS Designer together with the current simulation

time t1. AMS Designer advances simulation until t1,

samples the coupler module's input signals and sends

these values back to Simulink. Due to the interpola-

tion algorithm in the Verilog coupler module, the sig-

nal values received at time t0 are not achieved until t1
is reached. Thus, the introduced delay of one sample

period is compensated, and time axes of both simula-

tors are absolutely synchronous. Because the Simu-

link coupler module only needs to know the current

simulation time, the synchronization scheme for the

unframed mode allows using the coupler also in

models with variable sample time.

In framed mode whole data frames are exchanged bet-

ween the simulators at the equidistant frame sample

points. It is important to note, that Simulink always

generates frames for the following frame period. Thus,

the first frame is sent at simulation time t0 from Simu-

link to AMS Designer for the interval from t0 to t1
(Figurei6). The Simulink coupler module has to know

the next synchronization point tn+1 when sending a

data frame. This is only possible with fixed sampling

rates as used in framed mode. Within the VPI applica-

tion of the Verilog-AMS coupler the incoming data

frame is split into the original data points. The Verilog

simulation works subsequently on this input data. The

generated output data is again collected into a frame

and sent back to Simulink once the frame is complete.

At sample level AMS Designer shows a delay of one

sample period compared to Simulink resulting from

the linear interpolation between the sample points (see

above). In both, framed and unframed mode, there

appears no delay between the input and output ports of

the Simulink coupler module.

For the analog co-simulation, the use of the two diffe-

rent schemes provides the most suitable synchroniza-

tion in both, framed and unframed mode. The unfra-

med synchronization also allows variable sample times

in Simulink. The occurring delays are negligible.

SN
E

16
/1

,
Se

pt
em

be
r

20
06

++ Co-simulation of Matlab/Simulink with AMS Designer +++

60

t0

AMSD

Simulink

t2

h
a

n
d

 s
h

a
k
e

interpolation s
a

m
p

lin
g

initial value

(parameter)

ignored

tAMSD

tSimulink

sample period

t1

sample period

tAMSD

tSimulink

t0

frame period

AMSD

Simulink

t1 t2

frame period

h
a

n
d

 s
h

a
k
e

interpolation

sampling

Figure 5: Sample-based synchronization.

Figure 6: Frame-based synchronization.

1.4 Protocol

The implemented master-slave coupling principle has

only few requirements concerning the underlying

communication protocol. There are initial handshake

messages exchanged at co-simulation setup and data

messages containing simulation data (see Figurei7).

When starting a co-simulation, the master simulator

acts as server waiting for client requests. After the

client simulator has sent an initial handshake message,

the master sends a handshake reply containing infor-

mation on its Endian byte format (see below) and the

number, data types and dimensions of its coupler

module's ports.

If the client simulator accepts the received settings,

simulation starts with the first data frame from the

master simulator. The data messages contain a flag

describing the simulation status. It is mainly used to

signalize errors or the end of simulation. The maxi-

mum time a simulator waits for an incoming message

can be set by a parameter of the coupler module.

1.5 Platform Support

The current implementation of the simulator cou-

pling supports the Linux, Solaris, and Windows oper-

ating systems and the Sparc and x86 processor archi-

tectures. To enable cross-platform simulation, it was

necessary to consider the different Endian formats of

the target platforms. Data is stored in sequences of

bytes assembled of eight bits. To store numbers like

integers or doubles using more than eight bits, several

consecutive bytes are used. Different processor archi-

tectures use different byte orders inside those multi-

byte numbers.

There are two common formats:

Little Endian, used by Intel pro-

cessors and Big Endian used by

Sparc or Motorola processors

and for protocol data in TCP/IP

networks.

The cross-platform support pro-

vides an automated detection of

the Endian format on both

machines. A conversion is done

only in the case of different for-

mats to minimize the simulation

overhead.

For Little Endian the least significant byte is stored at

the first position (the lowest address) and for Big
Endian the most significant byte comes first. To per-

form a cross-platform co-simulation, the Endian for-

mat of the master machine must be detected and - if

necessary - transferred data must be converted when

sent/received from the other simulator. In the current

implementation the initial handshake messages con-

tain a flag that indicates the Endian format of the

simulator and are sent always in Big Endian format.

The subsequent data messages are sent in the Endian

format of the master simulator. That means, during

simulation only the client simulator converts data if

the Endian formats of client and master are different.

Endian format detection is done by casting the first

byte of a long integer variable with value 1 to a one-

byte character and checking whether it's value is 0

(Big Endian) or 1 (Little Endian). The data conversion

simply re-orders the bytes of each double or integer in

the reverse order.

2 Application Example: Wireless

LAN Transceiver

In this section the application of the co-simulation for

modeling a wireless LAN IEEE 802.11b physical

layer transmission system on different levels of ab-

straction is shown.

Figure 8 shows the Simulink top-level schematic of a

wireless LAN system level model. Binary random data is

encoded and modulated in the transmitter part. The

OFDM signal is then transferred to a channel model.

SN
E 16/2, Septem

ber 2006

61

+++ Co-simulation of Matlab/Simulink with AMS Designer ++

AMS Designer SIMULINK

ti
m

e start simulation

wait for incoming connection

initial handshake
start simulation

handshake answer

1st data sample/frame

1st data sample/frame

stop simulation
stop message

simulation stopped simulation stopped

< TimeoutInit

< TimeoutConn

calc 1st sample/frame

calc 1st sample/frame

< TimeoutConn

< TimeoutConn

user input user input

Figure 7: Protocol message flow.

In the example a White Gaussian Noise

channel is used. The receiver blocks

demodulate and decode the channel out-

put. Finally the received bits are compa-

red with the original bit stream to com-

pute the bit error rate.

This standard compliant model of the

wireless LAN link is built with modules

from the Simulink communication and

signal-processing toolboxes. The sam-

ple model contains only the digital parts

of the transmission system. Effects ori-

ginating from the analog RF parts of

transmitter and receiver are not conside-

red in the current simulation.

The RF frontend was designed using

SpectreRF and AMS Designer within

the Cadence Virtuoso environment.

Figurei9 depicts the behavioral model of

the RF transmitter module, which fil-

ters, up converts and amplifies the sig-

nal.

For simulation speed-up, the RF parts

are modeled in complex baseband

domain as Verilog-A behavioral models.

It is possible to switch the abstraction

level as far down as transistor level.

However, the simulation performance

will be lower in this case.

One- and two-tone sources are typically

used in this environment as stimuli for

the analysis of the RF sub-systems.

Characteristics of the design are for

example intercept points, noise figures

and corner frequencies.

In most cases, it is much easier to handle

more realistic stimuli, like modulated

signals and corresponding DSP post-

processing blocks for performance eva-

luation, on system level using Simulink.

With the co-simulation those tests are

set up easily without modifying the

environment setup too much.

SN
E

16
/1

,
Se

pt
em

be
r

20
06

++ Co-simulation of Matlab/Simulink with AMS Designer +++

62

Figure 8: End-to-end system-level simulation with Simulink.

Figure 9: Behavioral model of the transmitter RF frontend.

Figure 10: Simulink model with modules for co-simulation.

Figure 11: AMSD testbench with couple module.

A coupler module is used to link the RF transmitter

model into the Simulink system-level schematic

(Figurei10). In AMS Designer the RF frontend model

is embedded in a separate testbench containing the

corresponding coupler module and a simple antenna

model (Figure 11). The input of this coupler module is

sent through the socket connection to the output of the

Simulink coupler module and is therefore connected

to the output of the transmitter model.

Figure 12 depicts the frequency characteristic of the

transmitted OFDM signal and the spectral mask (dot-

ted) for IEEE 802.11a. The transmitted signal must be

within this mask to fulfill the specification. The left-

hand plot shows the signal generated by the digital

baseband in Simulink. After passing the RF frontend

some deviations can be observed, caused by nonlinear

behavior (right-hand plot). The co-simulation can now

be used to improve the system model by optimizing

the parameters of RF front-end and DSP part.

3 Summary and Outlook
The presented simulator coupling enables the co-simu-

lation of MATLAB/Simulink and the mixed-signal

simulator Virtuoso AMS Designer. Its main advantage

comprises the possibility to integrate design verifica-

tion steps into system level simulation by increasing

simulation accuracy of selected parts of a model - if

necessary down to circuit level. Here, the general tra-

deoff between simulation accuracy and performance

has to be taken into account. This application scenario

was demonstrated by a WLAN transceiver model.

Furthermore, the coupling allows to use special featu-

res of one simulator in a co-simulation, e.g. Simulink

blocks for stimuli generation and postprocessing, AMS

Designer for multi-language mixed-signal simulation.

Cadence Design Systems is providing this coupling

feature within the current software release. It has been

successfully tested by several major design companies.

References

[1] U. Donath et al.: Parallel
Multi-Level Simulation
with a Conservative
Approach. J. Systems

Analysis - Modelling -

Simulation 21(1995), pp.

187-201

[2] R. Frevert et al.: Modeling
and Simulation for RF

System Design.

ISBN 0-387-27584-3,

Dordrecht, Springer, 2005

[3] D. Kim, C.-E. Rhee, S. Ha:

Combined Data-Driven and Event-Driven
Scheduling Technique for Fast Distributed
Cosimulation.

IEEE Trans. on VLSI Systems,

Vol. 10, No. 5, pp. 672-678, Oct. 2002

[4] P. Le Marrec et al.: Hardware, Software and
Mechanical Cosimulation for Automotive
Applications. Proc. 9th IEEE Int. Workshop

on Rapid System Proto-typing, pp. 202-206,

Leuven, June 1998

[5] S. Wielens, S. Altmann, J. Haufe,

P. Schneider: Integration of Prototypes into
the Design Flow of Digital Hardware for
Applications in Mechatronics and
Telecommunication. Proc. Model-Based

Design Conf. 2005, pp. 55-60,

Munich, June 2005

[6] Simulink Signal Processing Blockset,
WWW.MATHWORKS.COM/products/sigprocblockset/

[7] Cadence RF Design Methodology Kit.
WWW.CADENCE.COM/products/kits/RF_Design/

[*] The presented work was partly funded by the project

DETAILS, promoted by the German BMBF (Sign

01M3071) within the initiative ‘Mobile Internet’.

Corresponding author: U. Eichler

U. Eichler, U. Knöchel, S. Altmann

Fraunhofer Institute for Integrated Circuits (IIS),

Branch Lab Design Automation (EAS)

Zeunerstraße 38, 01069 Dresden, Germany

{eichler, knoechel, altmann}@eas.iis.fraunhofer.de
W. Hartong, J. Hartung, Cadence Design Systems GmbH

Mozartstrasse 2, 85622 Feldkirchen, Germany

{hartong, juergenh}@cadence.com

Received: May 2, 2006

Revised: June 8, 2006

Accepted: June 20, 2006

 SN
E 16/2, Septem

ber 2006

63

+++ Co-simulation of Matlab/Simulink with AMS Designer ++

Figure 12: Co-simulation results, spectral masks.

