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Abstract—Anomaly detection supports human decision mak-
ers in their surveillance tasks to ensure security. To gain the trust
of the operator, it is important to develop a robust system, which
gives the operator enough insight to take a rational choice about
future steps. In this work, the maritime domain is investigated.
Here, anomalies occur in trajectory data. Hence, a normal model
for the trajectories has to be estimated. Despite the goal of
anomaly detection in real life operations, until today, mostly
simulated anomalies have been evaluated to measure the perfor-
mance of different algorithms. Therefore, an annotation tool is
developed to provide a ground truth on a non-simulative dataset.
The annotated data is used to compare different algorithms with
each other. For the given dataset, first experiments are conducted
with the Gaussian Mixture Model (GMM) and the Kernel Density
Estimator (KDE). For the evaluation of the algorithms, precision,
recall, and f1-score are compared.

Keywords—Anomaly detection; Gaussian Mixture Model; Ker-
nel Density Estimation; Maritime domain

I. INTRODUCTION

For surveillance tasks, the detection of abnormal behaviour
is of utter importance. It helps operators to gain better situation
awareness by focusing their attention on important events,
while providing enough information to support the decision
on the next possible steps. As stated by Fischer and Beyerer
[1], the biggest challenge for advanced surveillance systems is
not to collect as much data as possible, but rather to support
a human decision maker by providing only the important
information. Due to the large amount of recorded data, an
operator can easily loose focus on the relevant events or even
overlook them. In this regard, the detection of anomalies can
help to reduce the amount of information, and hence help to
distinguish crucial events from normal behaviour. A system
will only provide such benefit, if the operator can trust in it. It
is crucial for system acceptance by the human operator, that the
surveillance system takes decisions on anomalies in a transpar-
ent way. Otherwise, an operator might not even consider the
support of the anomaly detection, or even completely abandon
the whole supporting system.

In order to achieve a transparent and reliable proposition,
a surveillance system has to be designed with real life data
in mind. By only using simulated data, a system might not
be able to find anomalies in real data in an appropriate way,

because it was only tested with abnormal behaviour as seen
by the system designer and not with actual anomalies.

In this paper, the focus is mainly on anomaly detection
in the maritime domain. Anomalies can be seen, e.g., in a
deviation from normal sea lanes, a compared to the normal
traffic wrong driving direction on a sea lane or too fast
movement. Hence, algorithms for anomaly detection are inves-
tigated, which are able to detect anomalies in spatio-temporal
data in form of trajectories.

The paper is structured as follows. Section II gives an
overview about related work. Section III describes the used
dataset and the annotating process. Section IV describes the
designed test set-up with brief explanations of the used algo-
rithms. In Section V, an empirical evaluation of the algorithms
is conducted by using two subsets of prior described dataset.
Section VI and VII give a conclusion and provide ideas about
possible future work.

II. RELATED WORK

Anomaly detection is important in different fields of appli-
cation and research. A wide overview about different tasks
and algorithms is given, e.g., by Chandola et al. [2] or
for vision-based algorithms by Morris and Trivedi [3]. The
applications vary from cyber security over fraud detection
to image processing and sensor networks. Depending on the
specific use case, an appropriate algorithm is chosen. These
algorithms may base on different concepts, e.g., classification-
based, clustering-based or nearest neighbour-based. Each of
these algorithms has advantages and disadvantages. Thus, there
is no all-in-one solution to cope with every problem.

Another type of classification is based on the ability of an
algorithm to learn a model supervised, unsupervised or rein-
forced. For the first, the model is learned by using annotated
data, i.e., an expert decides about anomalies in the training
dataset. For unsupervised learning, there is no annotated data
available. Therefore, an algorithm has to find patterns on its
own. For the last type, an algorithms maximises the expected
return for a specific application by following a prior specified
policy.

In the field of maritime surveillance, several different
approaches were introduced to identify abnormal behaviour
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of vessels, see, e.g., [4], [5], [6], [7], [8], [9].

Laxhammar et al. [4] compare the Kernel Density Es-
timation (KDE) and the Gaussian Mixture Model (GMM).
They train the models with real life data and evaluate the
performance of the algorithms with artificial anomalies. In
order to evaluate the models’ performances to reproduce the
normal behaviour, the log-likelihood is calculated and com-
pared using the median log-likelihood and the 1st percentile.
For the anomaly detection performance, the needed number of
observations for detecting an anomaly is compared.

Brax and Niklasson [5] introduce a state-based anomaly
detection with discrete states for heading, speed, position
and relative position to the next vessel. With these states,
the probabilities for different roles (here called agents, e.g.,
raid agent, smuggler agent or friendly agent) are calculated.
For the evaluation, different scenarios resembling specific
situations are generated to obtain an accurate ground truth.
The algorithms are only tested using this simulated ground
truth.

Andersson and Johansson [6] use a Hidden Markov Model
(HMM) to detect abnormal behaviour. The aim is to detect
pirate attacks. They train the HMM with simulated data
describing the normal behaviour of ships in a certain area.
The data is divided into discrete states resembling the change
of specific values, i.e., distance to other objects, vessel size,
identification number, speed and heading. Afterwards, the
model is evaluated by using a simulated pirate attack.

Laxhammer and Falkman [7] introduce the sequential
conformal anomaly detection. This algorithm is based on the
conformal prediction framework, which is explained, e.g.,
by Schafer and Vovk [10]. The main idea is to provide a
reliable lower boundary for the probability that the prediction
is correct. Therefore, the probability that the prediction is not
correct is given as one parameter. For calculating the similarity
between two trajectories, the Hausdorff distance is used. For
the evaluation, a non-simulated dataset is used for training and
anomalies are simulated.

Guillarme and Lerouvreur [8] introduce a novel approach.
They first partition the training trajectories into stops and
moves using the Clustering-Based Stops and Moves of Trajec-
tories algorithm. Afterwards, the sub-trajectories are clustered
using a similarity measure and the OPTICS algorithm, which
utilizes the data density for clustering. The used clusters are
picked for their quality by hand. With this results, motion
patterns and junctions for the trajectories are defined. For
testing purposes, they use historical satellite AIS data. The
model is trained on this dataset and some results of the anom-
aly detection are shown. They give no information about the
performance of the algorithm compared to other algorithms.

Fischer et al. [9] present an approach based on dynamic
Bayesian networks. They model the relationship between situ-
ations in a situational dependency network. With this method,
the probability of a prior defined situation, e.g., a suspicious
incoming smuggling vessel, can be estimated. Thus, unusual
behaviour of a vessel can be detected. This algorithm is tested
with simulated data.

The main difference between the previous work in the
maritime domain and this paper is the used dataset. Previous

Fig. 1. Heat-map of the vessel traffic in the dataset. The traffic density is
encoded by the colour, whereas the gradient from red to green represents the
gradient from high density to low density. The marked areas (namely Fehmarn
and Kattegat) are further analysed.

attempts relay either completely on simulated data ([6] and [9])
or at least the anomalies are created artificially ([4] and [7]),
while here an annotated dataset based on real data is used. For
the annotation, a tool to identify anomalies in a dataset and to
annotated the anomalies is developed. The tool and the used
dataset are described in the following section.

III. DATASET ANNOTATION

As mentioned before, a dataset from the maritime domain
is used. It was recorded using the automatic identification
system (AIS). The AIS provides different kinds of data like
navigation-status, estimated time of arrival, ..., destination.
For the analysis only a subset of the whole available data is
used, namely position, speed, heading, maritime mobile service
identity (MMSI), timestamp and vessel-type. Altogether, more
than 2.4 million unique measurements are recorded.

Fig. 1 shows a heat-map representing all vessel positions in
the dataset. The map encodes the traffic density with colours
ranging from green for low density to red for high density.
Regions with high traffic density can be identified as sea lanes
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Fig. 2. The annotation tool: The map on the left side is used for annotating data. The right side is used to give an overview and a better understanding of the
current situation, e.g., the heading. The grey polygons in the maps are landmasses and the white background is water. The grey lines represent all trajectories in
the dataset (here tankers). The trajectory to annotate is marked with either black, red or blue dots. Black dots represent normal behaviour and red dots abnormal.
The blue dots are removed from the dataset (not seen in this figure). The blue triangle depicts the position marked in the feature plot in the bottom right.

or harbours. Geographically, the recorded area comprises the
western parts of the Baltic Sea, the Kattegat and parts of the
Skagerrak. Temporally, it spans a whole week starting from
16th May 2011. Altogether, 3702 different vessels (unique
MMSIs) grouped into 30 different vessel types were detected.
In the first step, clearly wrong measurements as well as
measurements generated by offshore structures (e.g., lights) are
removed. Afterwards, 3550 unique vessels remain. For further
processing the data points created by each ship are grouped
by their corresponding MMSI and connected to tracks. If the
time between two measurements with the same MMSI is too
large (here, larger than 30 minutes), the track of the ship is
split. Therefore, each vessel can generate more than one track
and altogether 25 918 different tracks are detected.

For further investigations, only cargo vessels and tankers
are used. In the prepared dataset, there are 1087 cargo vessels
and 386 tankers. The two types have similar movement be-
haviour; therefore, they are treated as one. This means, there
will always be one compound model for both types instead of
a single one for each.

In order to detect non-simulated anomalies, a ground truth
for the dataset is needed. Therefore, the dataset needs to be
annotated. To achieve this, an annotation tool is implemented
in Python with QT for the graphical user interface (GUI). The
GUI is shown in Fig. 2. The left part of the window shows a
map of the regarded area. The light grey polygons represent
landmasses, the white background is equivalent to the sea, in
this example an area around the islands Fehmarn and Lolland.
The grey lines indicate all relevant tracks in the chosen area
(here, only the tankers are shown), and the black and red dots

represent the track which is currently being annotated. In the
top right of the window, a track that needs to be annotated can
be selected by using the arrows or the drop-down menu. Below
this, an overview map is shown with the same colours as in
the main map. This map always shows the whole area, while
the main map can be used to get a zoomed view of a specific
area. In the bottom right, a plot of a specific time-dependent
feature can be seen. Here, the speed in meter per second is
displayed for the selected track.

The black vertical line in the feature plot is connected with
the blue triangle in the main map. The blue triangle shows
both position and heading of the vessel at the time specified
by the black line. This provides a better understanding of the
vessel situation. Thus it helps the annotator to decide, whether
abnormal data is on hand or not. In order to annotate points
as anomalies, a rectangle selector can be drawn in the main
map, and all points inside the selector will be annotated as
abnormal.

Furthermore, a rectangle selector can be used either on the
main map or on the overview map to get a zoomed view of
the specified area in the main map. In order to show only a
part of the whole track, the slider under the main map can be
used; alternatively, a part of the track can be selected in the
feature plot.

Due to the huge amount of data and the effort that would
be necessary to annotate the whole dataset, the amount of data
for the first experiments is narrowed down. Hence, two areas
are chosen which reflect specific criteria. The trajectories of
the normal behaviour for the chosen areas is depicted in Fig.
3 and Fig. 4. In figure 3 the Kattegat area is depicted (which
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Fig. 3. Normal trajectories (grey lines) in the annotated and evaluated areas
around the Kattegat. The light grey polygons represent landmasses, the white
background represents represents water.

is actually only a part of the Kattegat). In this area, there are
no ports called at by any of the tankers or cargo vessels in
the dataset. Because of the many shoals around the two bigger
islands (in the north Læsø and in the south Anholt), there
are only a few main lanes where most of the vessels travel.
These lanes are going from north to south or vice versa. Vessels
travelling from west to east are considered as anomaly. In total,
there are 516 different tankers and cargo vessels in this area
creating 30 531 data points.

Fig. 4 shows the Fehmarn area where the situation is more
complex. There is one sea lane between the islands Fehmarn
and Lolland. Furthermore, there is a sea lane for each direction
from west to east. In the western part, these lanes split into two
lanes for each direction, one going north, and one going west.
All vessels coming from the south are marked as anomalies,
even though some of them might be normal traffic going to
ports in Rostock or other German cities. Due to the small
amount of vessels taking this way, normal and abnormal traffic
cannot be distinguished proficiently. Therefore, the tracks are
annotated as anomalies. Furthermore, there are several ports
which are called at by the selected vessels in this area. These
are marked with red dots in the figure. Thus, there is a higher
percentage of abnormal data in this region. Altogether, there
are 602 unique tankers and cargo vessels in the two regions
generating 36 069 data points.

With the above described tool, the tanker and cargo vessels
in the two areas can be annotated. For the Fehmarn area, 14.5%
of the data points by cargo vessels and 8.7% of the data points
by tankers are marked as unusual ones. Vessels that are moored

Fig. 4. Normal trajectories (grey lines) in the annotated and evaluated areas
around Fehmarn. The light grey polygons represent landmasses, the white
background represents water, the red dots represent harbours.

in a harbour are removed from the dataset, for the behaviour
in harbours is out of scope for this work. In the Kattegat area,
5.4% of the data points by tankers and 6.6% of the data points
by cargo vessels were annotated as abnormal.

IV. TEST SET-UP

Here, the two algorithms GMM and KDE are evaluated.
Therefore, the algorithms, the possible parameters to set, the
metrics, and the detection of anomalies with these algorithms
are introduced. Afterwards, the optimal parameters for the
given areas of the dataset are estimated. The observed features
for the models are the position in latitude and longitude as well
as the speed vector split into its latitude and longitude parts.
This results in the feature vector xi = {xlat, xlon, vlat, vlon} for
each data point i. For each area, a different model has to be
trained. In order to generate a better model of a specific area,
it can be divided by a grid, and each grid-cell is assigned
its own model. The grid-size has to be estimated as well as
the parameters of the models. For these purposes, the Python
package scikit-learn [11] is used.

A. Algorithms

1) Gaussian Mixture Model: A GMM consists of n com-
ponents. Each component is a multivariate normal distribution
with the mean vector µ and the covariance matrix Σ. Together,
they form the parameter set θi = {µi,Σi} for each component
i. The dimension of µ and Σ depend on the number of observed
features k. The probability density function is given by

f(x) =

n∑
i=1

fg(x, θi)

with the density function for each component given by

fg(x, θi) =
1

(2π)
k
2 |Σi|

1
2

exp

(
−1

2
(x− µi)

T Σi
−1(x− µi)

)
.

In order to estimate the parameter sets θi, the expectation-
maximisation (EM) algorithm is used. Prior to this estimation,
the number of components n must be available. More details
on the GMM and the EM algorithm is given, e.g., by Barber
[12].
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2) Kernel Density Estimator: The KDE or Parzen-window
density estimation estimates the probability density function
(PDF) of a dataset with n data points. Each data point in the
dataset is assigned a kernel K(x) with the bandwidth h. Here,
the same bandwidth is chosen for all points which depends on
the density of the dataset. The kernel itself has to be a valid
PDF. By taking the sum of all kernels at the point x, the PDF
is estimated resulting in

f(x) =
1

n

n∑
i=1

1

hk
K(

x− xi
h

).

The Gaussian kernel

K(x) =
1

(2π)−
k
2 |Σ|− 1

2

exp

(
−1

2
xT Σ−1x

)
with the covariance matrix set to the identity matrix Σ = Ik
is used as kernel function. The value of the bandwidth has
a huge impact on the resulting PDF. If it is chosen too
small, the resulting estimation will overfit the problem; if the
chosen bandwidth is too large, underfitting will occur. Further
information on the KDE is available, e.g., by Murphy [13].

B. Anomaly Detection

For both algorithms, the detection of abnormal behaviour
is defined in the following way. First, the normal model is
estimated using only data with normal behaviour. For each
model, the minimum log-likelihood for the training data is
calculated. The log-likelihood is the natural logarithm of the
likelihood function which is defined as the conditional proba-
bility that an outcome is generated by a specific parameter set.
The minimum value will be the boundary between normality
and anomaly. By Using only normal data for training, which
is diverse enough to resemble at least most of the possible
normal behaviour, it can be expected that abnormal data will
generate a lower log-likelihood.

Each new data point will now be decided on by evaluating
the normal model with the new data. The result will be the
log-likelihood of the new data point. If it is lower than the
boundary, the new point is considered as an anomaly.

C. Metrics

As previously mentioned, precision, recall and f1-score are
used as metrics to evaluate the performance of the different
algorithms. The precision is defined as

precision =
true positives

true positives + false positives
,

whereas the recall is defined as

recall =
true positives

true positives + false negatives
.

The f1-score is the harmonic mean of the precision and recall.
It is defined as

f1-score = 2 · precision · recall
precision + recall

.

The recall describes the fraction of the positives which are
actually classified as positive (true positives). Thus, a small
recall means, that there are lots of false negative classifications.
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Fig. 5. Precision, recall, and f1-score for different bandwidths in the Fehmarn
area.

TABLE I. OPTIMAL PARAMETER

KDE GMM

Area Bandwidth # Components Grid Size

Fehmarn 0.06 75 5x5
Kattegat 0.09 50 3x3

The precision describes the fraction of all positively classified
results which are actually positives. Hence, a small precision
equals a great number of false positive classifications. These
metrics are commonly used in classification tasks. For an
optimal classifier, the value of each metric should be “1”. The
used metrics are further explained, e.g., by Manning et al. [14].

V. EMPIRICAL EVALUATION

For the empirical evaluation, the optimal parameters for
both algorithms have to be determined. Therefore, a k-fold
cross-validation as, e.g., described by Witten and Frank [15]
is conducted for each parameter combination. The parameters
to estimate are the bandwidth for the KDE and the number of
components as well as the optimal grid-size for the GMM.

For the cross-validation, the dataset is first divided into
normal and abnormal data. These two sets are then further
divided into k parts, called folds, of equal size. In each step
of the cross-validation, the model is trained with k − 1 folds
of the normal data. The validation is performed by using the
remaining fold together with one fold of the abnormal data.
Therefore, the normal model is learned by using only normal
data, and the validation can take place with the annotated data
consisting of normal and abnormal data points. The results
for the optimal parameters using a 3-fold cross-validation
are shown in Table I. For each step in the cross-validation,
the precision, recall, and f1-score are calculated. Finally, the
cumulated means of these scores are determined.

Exemplarily, Fig. 5 shows precision, recall, and f1-score
depending on the chosen bandwidth for the vessels in the
Fehmarn area. For the KDE, the grid-size is not an important
parameter to optimize. Due to the main principle behind the
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TABLE II. SIMULATION RESULTS

Fehmarn Kattegat

KDE GMM KDE GMM

Normal Anomaly Normal Anomaly Normal Anomaly Normal Anomaly

Precision 0.9388 0.5620 0.9538 0.5414 0.9602 0.3844 0.9710 0.4744
Recall 0.9312 0.5926 0.9513 0.5549 0.9569 0.4040 0.9634 0.5342

F1-Score 0.9350 0.5769 0.9526 0.5481 0.9585 0.3940 0.9672 0.5025

KDE, only data points from the training set which are close
to the evaluated data point will have an influence on the
resulting probability density function. If the distance between
data points from the training set and the evaluated data point
is large, the resulting value of the kernel function will tend
to zero. Thus, omitting some points will only decrease the
calculation time, which is not important for this work.

To assess the performance of the algorithms, two differ-
ent aspects are mainly considered. First, the performance to
resemble the true normal model is estimated. This will give
an idea about how well the true PDF is replicated by the used
algorithms. The second is to identify abnormal behaviour. This
will offer valuable insight about the performance of modelling
abnormal behaviour by using training data consisting solely
of normal data. Therefore, in Table II, precision, recall and
f1-score for both are given.

The performance to resemble the normal model is quite
high. The f1-score for the KDE is at 0.9350 for the Fehmarn
area respectively 0.9585 for the Kattegat area. For the GMM,
these values are at 0.9526 and 0.9672 respectively. Thus, both
algorithms estimate the PDF of the normal behaviour well.

The identification of anomalies performed poorly compared
to the normal model. The f1-score equals 0.5769 and 0.3940
for the KDE in the Fehmarn and the Kattegat area respectively.
The GMM scored 0.5481 and 0.5025 for the f1-score, and
thus 5% lower in the Fehmarn area and 27.5% higher in the
Kattegat area. The precision score for the normal model is
always higher than the recall, whereas this relation is reverted
for the anomaly detection capability.

The difference between precision and recall for the anom-
aly detection is higher than the one for the normality detection.
For the normality detection, precision and recall are more or
less the same. The difference is less than 1%, and the precision
is always higher than the recall. For the anomaly detection,
the differences are greater (up to 12% higher), and the recall
is always higher than the precision.

In Fig. 6 results regarding the Fehmarn area, and in Fig.
7 and Fig. 8 results for the Kattegat area are shown. For the
Fehmarn area, plots of all folds are shown. These plots consist
of a map of the area, grey lines representing the relevant traffic
in the area and several dots. These dots resemble some of the
tested points in each fold. The green dots represent the data
points correctly found as anomalies, the red ones represent data
points which are marked as normal despite being abnormal,
and blue dots represent data points which are falsely marked
as anomaly. Normal data points classified as normal are not
depicted in this figure. The same colour-encoding applies for
Fig. 7 and Fig. 8. In these figures, only the first fold, which
contains for each algorithm identical data points, is shown.

The result figures for both areas show some general prob-
lems with the detection of anomalies. First of all, if a trajectory
is quite near to the normal behaviour, and if the speed and
heading of the vessel is similar to the normal model, the
trajectory will not be identified as anomaly. This can be seen
particularly in Fig 6(a). Another problem can be seen, when
using a grid to divide the area as depicted in Fig. 6(b), Fig.
6(d), Fig. 6(f) and Fig. 8. If there is not enough data in one of
the grid-cells to build a normal model, there will be no valid
model for the decision about abnormal behaviour. Therefore,
a different strategy has to be chosen; e.g., all data points in
the cell are anomalies, or there are no anomalies in the cell.
Here, all points in those cells are marked as anomaly.

Another problem will occur, if the position is normal, but
either the heading, or the speed, or both are abnormal. In these
cases, both algorithms perform poorly as, e.g., shown in Fig.
6(d). Here, in the cell 3x3, a vessel is driving in a different
direction than the other vessels in this region (depicted by red
dots), but is not detected as anomaly.

Between Fehmarn and Lolland, there is a ferry lane.
Therefore, there is traffic between the two islands. While this
is a normal behaviour, which repeats itself more or less often,
the algorithms have problems to identify this as normal. This
can be seen in Fig. 6(a) and Fig. 6(b). In these figures, only
the part of the trajectory which crosses the main sea lane is not
detected as anomaly. Particularly, the data around the harbour
of Lolland is falsely detected as anomaly.

Furthermore, there are many falsely classified anomalies
in both areas with both algorithms (blue dots). For the KDE,
these occur evenly on all normal trajectories. For the GMM,
the false classification depends mainly on the observed cell:
In some cells, the amount of false anomaly classification is
higher than in others; e.g., in Fig. 6(b), the cell 3x3 has more
false anomalies than the cell 3x2.

VI. CONCLUSION

The amount of false detections as well as the amount of
anomalies which are not found is high for both algorithms.
Therefore, the question arises, whether these methods are
actually able to reconstruct the real underlying PDF. In this
regard, the GMM has a disadvantage for relying on multi-
variate normal distributions for each component. The actual
distribution is unknown, and can be of another kind. A KDE
is able to estimate an arbitrary PDF, if the amount of training
data is great enough.

For both algorithms only a single point at a time is
considered for evaluation, and not the whole trajectory. Hence,
an anomaly as depicted in Fig. 9 will probably not be found,
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(a) KDE - Fold I (b) GMM - Fold I

(c) KDE - Fold II (d) GMM - Fold II

(e) KDE - Fold III (f) GMM - Fold III

Fig. 6. KDE (a, c, e) and GMM (b, d, f) results for the Fehmarn area for the different folds. The light grey polygons represent landmasses, the grey lines
correspond to all trajectories, the dotted lines represent the used grid, the dots represent some evaluated data points. Green dots represent correctly found
anomalies, red dots missed anomalies and blue dots normal points which are falsely declared as anomaly. The figures next to each other are from the same fold,
and thus the same data is used to estimate and validate the models.
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Fig. 7. KDE results for the Kattegat area for one fold. The light grey polygons represent landmasses, the grey lines correspond to all trajectories, the dots
represent some evaluated data points. Green dots represent correctly found anomalies, red dots missed anomalies and blue dots normal points which are falsely
declared as anomaly. The area is not further divided by using a grid.
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Fig. 8. GMM results for the Kattegat area for one fold. The light grey polygons are landmasses, the grey lines correspond to all trajectories, the dotted lines
represent the used grid, the dots represent some evaluated data points. Green dots represent correctly found anomalies, red dots missed anomalies and blue dots
normal points which are falsely declared as anomaly.
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Fig. 9. Problem with point only evaluation. Two trajectories (each is only
valid in the direction of the arrow) are crossing. An abnormal behaviour is
depicted as an orange dashed line. It starts on one trajectory and changes to the
other during the crossing. Depending on the context, this can be considered
as anomaly.

because each point for itself is of normal behaviour. Only the
combination of all points in the trajectory can be considered
an anomaly.

The usage of an arbitrary grid to divide the area can yield
problems. Particularly, in the border region between two cells,
the grid can perform worse than using no grid at all. The aim
of the EM algorithm is to fit the components of the GMM
to the underlying data. Therefore, for each cell, the enclosed
data is analysed separately. For each cell, the data abruptly
ends at the border. Hence, it is likely to be less dense at the
border compared to the center of a cell. Thus, the components
of a trained GMM will more likely be placed in the center of
the cell instead of the border, even though globally observed
the data might have the same density at the center and at the
border. Furthermore, if the grid was chosen unfavourably, the
resulting model will not be able to learn a sea lane properly,
because the grid might divide a sea lane or cut out parts of a
sea lane.

Depending on the procedure to handle cells with not
enough data to build a normal model, this can also result in
worse performance. E.g., every point in these areas is marked
as anomaly, then the grid can cut out a part of a lane with
normal behaviour. If this area has not enough points, it will
be detected as abnormal behaviour, even though it is not.

VII. FUTURE WORK

Even though, the optimal parameters are estimated, the
same parameters are used for all grid-cells. Therefore, an
improvement could be achieved by estimating the model
parameters for each cell separately, respectively to use an
adaptive approach for the bandwidth estimation for the KDE.
Thus, the difference in density and complexity of each local
area would be taken into account.

Currently, only quite simple algorithms for the anomaly
detection are examined. The performance of these algorithms
was suboptimal. Therefore, the next step is to compare more
sophisticated algorithms. These algorithms should consider
past points of a track while evaluating a new point. By
incorporating the additional information provided using whole
or partial trajectories, the results should improve compared to
the density estimation using a GMM or a KDE.

Another open point is the annotation of the whole dataset
and not only some artificial subsets. Currently, only a small
subset of the whole dataset is annotated and inspected during

the evaluation. By using the whole dataset, a better overview
of the observed area can be used to get a better understanding
of the normal behaviour, and thus to improve the models. Due
to the greater amount of data, the methods of annotating the
data must be reconsidered and improved. E.g., to achieve better
model results the tracks could be annotated by domain experts
or by using another strategy to ensure a consistent and reliable
annotation. Also, using sea-maps to gain a better understanding
of the sea lanes, shoals etc. will help to improve the annotated
ground truth.
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