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Abstract

The current trend towards renewable energy sources raises the importance of their ef-
ficient use. An accurate simulation of the energy transport through the distribution
network is key to the emerging optimization task. District heating is a powerful tech-
nology that connects great flexibility in the used energy source with the much-needed
buffering and storage effect. Heated water is distributed through a network of pipes to
many different buildings providing space heat and domestic hot water.

This thesis tackles the modeling and efficient simulation of district heating networks.
Due to the large scale and complex dynamical behavior of such systems, this is a chal-
lenging task. The obtained results build an important foundation for the upcoming
optimization problems. The dynamical behavior of water in the pipes is described by
the incompressible Euler equations. Conservation of the involved quantities determines
the coupling at each junction in the network, leading to a system of partial differential
algebraic equations. For that system, the unique existence of a solution is shown. Fur-
thermore, a stability estimate for the dependence on important parameters is derived.

A new local time stepping algorithm is presented, that is perfectly suited for the
solution of the transport problem involved. In comparison to generic high order ADER
schemes its high efficiency outperforms the classical approach significantly. In order
to enable computation of vary large time steps, implicit methods are investigated. A
high order finite volume method is equipped with an a posteriori limiter. The superior
behavior of the constructed hybrid scheme is shown in different numerical tests and
applications.






Zusammenfassung

Durch den aktuellen Trend zu erneuerbaren Energiequellen richtet sich das Interesse
auch verstirkt auf deren effizienten Nutzung. Eine genaue Simulation des Energietrans-
ports durch das Verteilungsnetz ist der Schliissel zur entstehenden Optimierungsauf-
gabe. Fernwirme ist eine leistungsstarke Technologie, die eine grofle Flexibilitat in
der genutzten Energiequelle mit dem dringend benétigten Puffer- und Speichereffekt
verbindet. Erhitztes Wasser wird iiber ein Rohrnetz an viele verschiedene Verbraucher
verteilt, um Raumwarme und Warmwasser bereitzustellen.

Die vorliegende Arbeit beschéftigt sich mit der Modellierung und effizienten Simu-
lation von Fernwérmenetzen. Aufgrund des komplexen dynamischen Verhaltens solcher
Systeme ist dies eine anspruchsvolle Aufgabe. Die gewonnenen Erkenntnisse bilden eine
wichtige Grundlage fiir die anstehenden Optimierungsprobleme. Das dynamische Ver-
halten von Wasser in den Rohren wird durch die inkompressiblen Euler-Gleichungen
beschrieben. Die Rohrgleichungen koppeln iiber die Erhaltung der beteiligten Gréflen
an jedem Knotenpunkt im Netzwerk, was zu einem System von partiellen algebraischen
Differentialgleichungen fithrt. Fiir dieses System wird die eindeutige Existenz einer
Losung gezeigt. Weiterhin wird eine Stabilitdtsabschiatzung fiir die Abhéngigkeit von
wichtigen Systemparametern abgeleitet.

Das in der Arbeit vorgestellte lokale Zeitschrittverfahren eignet sich hervorragend fiir
die Losung des vorliegenden Transportproblems. Im Vergleich zu generischen ADER-
Methoden hoher Ordnung tibertrifft seine enorme Effizienz den klassischen Ansatz deut-
lich. Um die Berechnung von wesentlich grofieren Zeitschritten zu ermoglichen, werden
implizite Verfahren untersucht. Dafiir wurde ein Finite-Volumen-Verfahren hoher Ord-
nung wird mit einem a posteriori-Limiter kombiniert. Die Vorteile des so konstruierten
Hybridschemas werden in verschiedenen numerischen Testbeispielen und praktischen
Anwendungsfallen gezeigt.
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Chapter 1

Introduction

Energy production, distribution and usage are important aspects of the political as
well as technological development. Different new technologies are on the rise. The
energy production by renewable energy sources such as solar and wind energy is pushed
forward. This trend effects a structural change in the production and distribution
infrastructure. One of the main challenges in achieving 100% green energy is the high
volatility and weather dependence in most production forms. This means together with
the production infrastructure, efficient storage and buffering technologies have to be
developed.

On a local level, district heating (DH) is a powerful technology that might be able
to solve some problems of the current energy transition. The power plant usually com-
bines heat and power production and is much more efficient than pure power factories.
Furthermore, located in industrial areas, the excess heat of nearby production facili-
ties can be used in the heating network as well. That enables the use of energy that
otherwise would be lost. Moreover the ability to filter exhaust gases is much better
compared to the smaller scale heat boilers of single households. In that way the overall
emissions of carbon and particular matter are reduced. In the near future, the ability
to feed thermal energy to the network will also be assessed by the classical consumers.
So-called 'prosumers’ will be able to primarily use locally available heat from solar pan-
els, where excess energy can be deposited in the network, while on the other hand the
network can top up shortages. This system is already common practice in electrical
power production with photovoltaics for electrical power.

Efficient use of district heating networks as energy storage and buffer requires precise
knowledge of the dynamics involved. However, the optimization of such networks is a
challenging task. The dynamic behaviour and direct coupling to certain events enforces
real time optimization. A typical control interval in which new inputs need to be
proposed is 15 minutes. The large number of degrees of freedom in the resulting system
calls for efficient numerical methods. This work addresses both, the mathematical
modeling of district heating networks and its efficient simulation.

The working principle of district heating is rather simple and shown in Figure [I.T
Thermal energy is transferred to water at a power plant. A network of pipes is respon-
sible for the transportation of the heated water to different buildings, as for example
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Figure 1.1: Schematic illustration of a district heating network: A
power plant (bottom) is connected to a number of houses by two
parallel sets of pipes (red and blue).

family houses, public buildings or office buildings. At the consumer site, heat exchang-
ers withdraw the thermal energy from the district heating network to the local heating
circuit. That way, no water is extracted from the DH network, instead it gets cooled
down to a reference temperature. The cooler water then returns back to the power
plant to be reheated again.

The large potential of DH systems is twofold: In most cases, the power plant is a
so-called combined heat and power (CHP) plant, where the primary energy sources can
be used either for heating the network or for generating electrical power in generators.
The transition between the two is continuous, such that at any time the available energy
can be split arbitrarily. This gives rise to an optimization problem, where the aim is to
get the highest gain from selling electrical energy, while fulfilling all heat demands in
the network.

Technische Werke Ludwigshafen is the DH operator that provided us with the nec-
essary data. In their specific setting, there is another optimization potential. A waste
incineration plant provides a relatively constant energy flow over the course of the day,
but consumer behaviour is in general highly volatile and depends on daytime and cur-
rent weather conditions. Whenever the energy provided by waste incineration does not
suffice the demand, additional gas boilers compensate the difference. Due to the time
delay between the injection of a specific temperature and its actual usage at the cus-
tomers, it is possible to 'preheat’ the network. The energy deposition at the consumers
contains the product of temperature difference times flow velocity. Some hours before
the peak load in the consumer demand, the operator feeds higher temperatures to the
network. That way, the additional burning of gas can be avoided, saving a large fraction
of operational cost.
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Most commercial tools for the simulation and planning of district heating networks
use a stationary or quasistationary formulation of the energy transport [32],[57]. How-
ever for live optimization tasks, a full dynamical model is required. The flow of inviscid
fluids through a pipe can be modeled by the Euler equations

O+ V - (pB) =0
By(p?) + V- (pT @ T) + Vp=f (1.1)
OE +V (E+p)7) = 8,

where p is the fluid density, ¢ the flow velocity, p the pressure and E the energy of
the fluid. The terms f and S are used to model friction terms and energy dissipa-
tion. Especially in the context of gas networks, the Euler equations are well-studied
[33],[501,[77]. When the ratio between the flow velocity of the gas and the propagation
speed of pressure differences, also called Mach number, is small it behaves similar to an
incompressible fluid. In recent years, many schemes that have an asymptotic preserving
property have been developed [24],[63]. That means that they are able to capture the
correct limits, if the Mach number converges to zero. While it might have advantages to
use such schemes also in the district heating context, mostly the incompressible Euler
equations are used. The general form of the resulting hydrodynamic system is very
similar to the ones used to model water supply networks [15],[74] with the additional
energy information that is transported.

The most crucial part of district heating dynamics is the possible change of flow
directions inside the network. Time varying consumer behaviour and non constant feed
temperatures lead to unavoidable zero crossings of velocity. Not only does that intro-
duce contact discontinuities into otherwise possibly smooth solutions, it also raises the
question of existence of solutions, that is not trivial to answer. For the pure hydrody-
namic part, existence results are available via DAE theory [36]. In [62], local existence
for the non isothermal, non isenthropic Euler equations on networks has been proven,
using the notion of renormalized solutions [26]. In some specific cases, e.g. specific
network topologies or certain friction models, also proving global existence was possi-
ble. However, due to the lack of a Lipschitz-type stability estimate for their setting,
uniqueness of solutions could not be guaranteed.

Most publications on the topic of simulating district heating networks use either first
order discretizations to model the advective transport e.g. [38],[72],[71] or node based
methods, where no spatial discretization along the pipes is used [8]. A contribution
to second order simulation of the energy transport part is given in [44]. When it
comes to the simulation of district heating networks, especially in combination with an
optimization task, computational efficiency is crucial. In [59],[61] model order reduction
is applied to the system arising from upwind discretization. Those reduced models are
used to solve optimization problems in [60].

The contribution of this work addresses both the modeling and the simulation of
district heating networks. In a first step, the shortcoming of pure algebraic coupling of
transport equations is shown by some analytical examples. By the introduction of small
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volumes at the nodes, the stability of solutions in the space of functions of bounded
variations is ensured. We are able to show unique existence of solutions to the two
separate systems, together with a stability estimate on the dependence of parameters.
A sequence of solutions to the separate systems is shown to converge towards a unique
solution of the coupled problem by a contraction argument. Altogether we were able
to show uniqueness of solutions to the full problem with Lipschitz-continuous stability
in the parameters. This emerged from joint work together with Mauro Garavello,
Elena Rossi and Raul Borsche. A separate publication on that matter is currently in
preparation.

Secondly, different possibilities in the numerical simulation of the transport part
were explored. Concerning explicit methods, a new local time stepping scheme is pre-
sented. The special structure of the scheme allows very efficient evaluation and the
computational complexity is by one order of magnitude better than e.g. generic ADER
finite volume schemes. The corresponding results have already be published in [10].

Furthermore, implicit methods have been studied in order to enable the computa-
tion over larger time horizons. We present a generic construction of high order finite
volume schemes and analyze their stability. The oscillations near sharp gradients are
tackled with an a posteriori limiting technique. Originally designed for multidimen-
sional finite volume schemes for systems of conservation laws, the MOOD limiter [20] is
perfectly suited for this application. It is able to eliminate most disadvantages of clas-
sical limiters, when applied to large time steps. This is only possible due to a marching
formulation and thus sequential evaluation of the scheme. We show the superior be-
havior of the new hybrid scheme in contrast to first order methods and its applicability
for large time steps. A publication on that matter is submitted to ” Advances in com-
putational mathematics”, a preprint version is available in [30].

This thesis is structured as follows. In Chapter [2] a mathematical model describing
the dynamics in district heating networks is presented. Starting with a brief motivation
of the Euler equations, the network structure as a graph is introduced. We describe
all important components of the district heating network together with their respective
governing equations. Then a splitting of the complete system into a hydrodynamic
part and a transport part is motivated. The analytical properties of the model are
investigated in Chapter |3| For both split parts a proof for unique existence of solutions
is given. Furthermore, we show that the solutions to the subsystems fulfill a stability
estimate. This enables the construction of a unique solution to the coupled system by
Banach’s fixed point theorem. The Chapters [4] to [5| discuss numerical methods for the
solution of transport problems on networks. Different explicit schemes are explored
at first, where the focus lies on efficient computation of high order accurate solutions.
ADER schemes as well as a local time stepping scheme are described, where a suitable
coupling transfers their classical formulation to the network setting. In order to expand
the time steps beyond the classical CFL condition, implicit methods are discussed.
Starting with two first order methods, the accuracy is increased by the use of high
order implicit finite volume schemes. The novel application of a posteriori limiting

4
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to this type of problem reduces the amount of spurious oscillations significantly. The
simulation of the hydraulic part is briefly covered in Chapter [6] Chapter [7] collects the
numerical results for the presented explicit and implicit schemes. Different test cases
are used to emphasize specific properties of the selected methods. Furthermore, the
methods are applied to real district heating networks, illustrating realistic operation
settings. Finally a conclusion of the findings in this work is given in Chapter 8] Several
aspects are suggested that might be worth investigating in the future.






Chapter 2

Model

In this chapter we derive a model describing the dynamics in a district heating net-
work. Starting from the formulation with the full Euler equations for single pipes,
the transition to incompressible one dimensional flow is motivated. Using some basic
graph theory notations we define a set of incidence matrices describing the network
topology. By providing suitable coupling and boundary conditions the one dimensional
formulation extends to a system of equations on a network. Additionally to the Euler
equations on the pipes we describe the dynamics of other components involved such as
consumers and the power plant. Due to some special properties of the resulting system,
the model is split into a transport equation for internal energy density and a hydraulic
part responsible for the evaluation of flow velocities.

2.1 Euler Equations

First of all, we derive the basic equations for the dynamics of a fluid in a pipe. They state
the conservation of the three essential quantities of fluid flow, namely mass, momentum
and energy. We give a brief derivation of the essential parts, for more details on the
Euler equations we refer to textbooks as e.g. [18],[49],[64].

2.1.1 Continuity Equation

Consider a fixed domain Q € RY. The total mass of a continuous fluid for any time ¢ is
the volume integral over its density p

M(t) = / p(t, 7)dV.
Q
The change of mass over time is given by the flow of mass over the surface of the domain

d d
— = — = — U - T
dtM (t) o /deV /89 pv - 7idS,

where ¢ is the flow velocity and 7 is the outer normal vector of the domain. Since
the domain does not change, the time derivative can be written inside the integral.
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Application of Gauss divergence theorem leads to

d

—p+ V- (pt)dV = 0.
q dt

As this equation holds for all €, the integrand has to be zero. The resulting equation

is called continuity equation and states the conservation of mass

dip+ V - (p¥) = 0. (2.1)

2.1.2 Momentum Equation

The second quantity of the fluid we are looking at is the momentum

/ pudV.
Q

The momentum of a given fluid element is changing due to the forces acting on it.
Volume forces, or body forces, act on the whole mass element and are proportional to
the density

dF; = / pFav. (2.2)
Q

Surface forces just act on the boundary of the domain. Here we will assume inviscid
fluids, which means that all those forces will act perpendicular to the surface. In this
case, the only contribution is given by the pressure p which leads to

dFy = — / pids. (2.3)
o0

The general case incorporating shear stress would lead to the Navier-Stokes equations
[14], which are not in the scope of this thesis. Furthermore, as above in the continuity
equation, momentum can enter the considered domain by a flow over the boundary.
The surface integrals can again be rewritten in their volume integral form using the
divergence theorem, we get the balance of momentum as

d —
— pUdV:/pF—Vp—V‘(pl_)'@ﬁ)dV.
The time derivative can be written inside the integral again and due to generality of {2
we get

O(pV) + Vp+ V - (p¥ ® ¥) = pF. (2.4)

This is the second equation of the Euler system and called the momentum equation.
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2.1.3 Energy Equation

At last, we have the conservation of energy. In Section [2.1.2] we already noted the
forces acting on the fluid element. The change of energy is the scalar product of force
times velocity per time frame. This means we get contributions similar to and
Furthermore, the thermal energy loss/gain is given by the heat flux ¢ - 7 across the
surface. Altogether, the change of energy is

dE:(/MWMV—/pﬁ&w—/iﬁmw)ﬁ
Q o0 o0

Similar to the continuity equation, we can apply Gauss’ divergence theorem and get
the energy balance of the form

WE+V((E+p)0)=pF-0-V-q (2.5)

The energy has two different contributing parts, namely the inner energy density e and
the kinetic energy % pv?

1
E =pe+ B pv?.
Together, the three equations (2.1)),(2.4)),(2.5) form the Euler equations. In their

classical form, when no external forces act on the system, the full Euler system reads

O (pv) + V- (pi R V) + Vp = f (2.6)
OE +V (E+p)7) = 8.

The exact form of the right hand sides is introduced when the equations and parameters
of real pipelines are motivated in Section System consists of three equations
depending on the four different variables p,v,p,e. Depending on the specific setting,
it has to be closed by a suitable equation of state. The classical closure relation for
polytropic gas is .

E:T%;+§m? (2.7)
For water in its liquid phase, the ideal gas law does not apply. Most equations of state
for liquids involve interpolation of experimental data in the problem specific operation
conditions [75],[55]. In the following section we introduce the incompressible system,
which we will close by either a constant density p = const or a pure energy dependent
density function p = p(e).

2.1.4 One Dimensional, Incompressible Flow

Compared to the total length of the computational domain, the diameter is very small.
Typically the lengths are in the range of 100-1000 meters, while the diameter is be-
tween 0.05-0.4 meters. As dynamics on the length scales of the diameter do not play

9
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a large role, the 3d system is reduced to a system of one dimensional averaged values.
Furthermore we ignore the pressure contribution as well as the kinetic energy part in
the energy equation, i.e. we use the energy formulation

E = pe.
This leads to the following one dimensional system

Op + O (vp) =0

By(vp) + 0x(v*p) + Dup = f(p,v) (2.8)
Ore + 05 (ve) = S(e)

where f is a friction term and S is a term modeling a heat sink.
The density of water changes depending on its current temperature. We therefore close
above model with an equation of state of the form p = p(e) and we get

o)+ (p(e))e =0
= ples +veple) +vp'e, =0.

We insert the energy equation
et + (ve)y = S(e)

and get

o
vy = —S(e).
P ()

The derivative % is denoted by p’. For water, the derivative of the density is much
smaller than the density itself, leading to a right hand side that is very small. Setting
it equal to zero leads to the incompressibility constraint

vy = 0.
Insertion into (2.8)) leads to the incompressible Euler equations

0,0 =0
PO + dzp = f(p,v) (2.9)
Ore + v0ze = S(e).

In order to better understand the value ranges of the involved variables, they can
be transformed to dimensionless form. This means every physical quantity is scaled by
a reference value. The dimensionless quantities should then all be of a similar order of
magnitude in their usual range. Especially for the numerical solution of the equations
this procedure is advisable, as large discrepancies in variable ranges can lead to badly

10
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conditioned systems and large round-off errors. In order to transform to a dimensionless
system, we define:

~ x - v VT
xr = —, D= — = )
T, Uy t,
-t N p
f=— p=1, 2.10
- L (210)
~ p ~ €
p=— €= —
Dr Er

Inserting the scaled variables in (2.9) and dropping the tildes we end up with a system
that looks very similar:

0,0 =0

1
PO + —0up = f(p,v) (2.11)
e + voze = S(e),

with the dimensionless parameter

2
62 _ Uy Pr
br

This means that except the pressure, all variables have the same order of magnitude.

2.2 Network Model

The Euler equations derived in Section describe the fluid flow in a single pipeline.
In order to formulate the full model, we need to connect the different pipelines by
suitable coupling conditions. Furthermore, there are also non-pipe components in the
network, with different equations describing their flow behavior. First of all, some
basic definitions from graph theory are given, then all the network components are
presented. In the end the full system of equations describing the dynamics of district
heating networks is shown.

2.2.1 Basic Graph Notations

For the description of the network as a graph and for some reformulations and proofs
later, we need some basic definitions [39].

Definition 2.2.1 A graph is a tuple G = (V, J) where
1.V ={Vi,...,Vn,} is the node set with Ny nodes.

2. J={J1,...,JIn,;} CV xV is the edge set with Ny edges.

11



Chapter 2: Model

3. For an edge J = (V1,Va2) we call V1 starting node of J and V, end node of J.
4. For a node V, the set A(V)={J = (WV1,Va) € JIV1 =V or Vo =V} is called its

incidence set.

For the formulation of coupling conditions later, we need some formulation of orien-
tation of the edges in the graph. We use two different notions, namely the topological
orientation and the flow orientation. In order to define the flow orientation, we need an
orienting function

o:J—{-1,1}.

Definition 2.2.2 For a graph G and a given node V we define the sets of topologically
mcoming edges and outgoing edges as

TIn(V) ={J =(,V2) € TV = Va}

(2.12)
jout(v) = {J = (‘/17V2) € ‘-7|V = Vi}

and for a flow orientation o we define the sets of flow oriented incoming and outgoing
edges as
(V) ={J € Tn(V)|o(V) = 1} U{J € Tour(V)|o (V) = —1}

OO’(V) = {J S Zn(VNO'(V) = —1} U {J c jout(v)‘O'(V) — 1} (213)

For a velocity field v : [0, T] — RY, that for any time ¢ assigns a real velocity to ev-
ery edge in the network we denote the sets induced by o = sign(v(t)) with Z,;)(V) and
Ou(t) (V) respectively. If the orientation function is obvious, the subscripts are dropped.

The next definitions depend on the whole graph topology, not only on local considera-
tions.

Definition 2.2.3 For a graph G
1. A walk is a sequence (J1, o, ..., Jn) with J; = (V;,,Vi,) € T, or (Vi,, Vi) € T.

2. A path P is a finite walk, where all edges and nodes are distinct. If V; is the
starting node of P and Vj is its end node, we call P a V; — V; path.

o

. A circle is a finite walk, where all edges and nodes are distinct except the first and
last node are equal.

~

. A graph G is called connected, if for every pair of nodes V;,V; € V there exists a
path from Vq to V.

O

. A graph G is called a tree, if it is connected and does not contain any circles.

D

. A spanning tree T of a graph G is a subgraph that contains all nodes and is a tree.

12



2.2 Network Model

For any connected graph, a spanning tree can be constructed by iteratively deleting
edges that close a circle. When there are no such edges left, the remaining subgraph
is a spanning tree of G. The set of removed circles is denoted by C and any element
C € C is composed by one deleted edge J = (V1, V2) and the unique Vo — Vj path in
T. A spanning tree has always Ny — 1 edges, i.e. there are N¢ = Ny — Ny + 1 linearly
independent circles in C.

For computations with graphs, a matrix representation of their topology is helpful.
In the incidence matrix A’ € R¥v*N7  the connection information between nodes and
edges in the network are stored

(A); ;=< -1, if J; = (x,Vj)
0, else

Analogously, we define the tree incidence matrix A7 as the incidence matrix of the
spanning tree 7 of G. We partition A’ into a reduced incidence matrix A, and a com-
plementary reduced incidence matrix AP such that the columns of the latter correspond
to the nodes where we later prescribe a pressure p, namely both nodes of the source
edge

(A, AP) = Al

In other words, AY contains the columns of the incidence matrix that correspond to

the source nodes. Furthermore, for the cycle set C = {C}, ...} we define the matrix
AC ¢ RNexNJ

1, if J; is in cycle C;
(Ac)i,j =4 —1, if the opposite of J; is in cycle C;
0, else

For the systems we solve, it is advantageous to have circles with as few edges as
possible, increasing the sparsity structure of AC. In [44] a heuristic algorithm for the
computation of a favorable spanning tree resulting in small circles is presented.

To conclude this section, we want to discuss some general properties of district heat-
ing network graphs. When district heating pipes are constructed, typically two parallel
sets are built simultaneously, one for the flow, one for the return. This leads to rather
special topologies: The full graph can be decomposed into two identical subgraphs and
a set of connecting edges. The first subgraph is called the flow network and responsible
for the transport of the hot water from the source to the consumers. The second one
is the return network and transports the cooled water back to the power plant such
that it can be reheated again. Both subgraphs are connected by a set of edges that are
either consumers or the source (see Section . Furthermore, the flow direction of
those edges is always the same: The source will always draw from the return network
and feed the flow network and the consumers operate vice versa. An example network

13



Chapter 2: Model

is shown in Figure [2.1) where the flow part is drawn in red and the return part in blue.
The flow in the connecting edges, where green stands for consumers and gray repre-
sents the source, is always directing from the red side to the blue side. Note that for
other pipes in general, the flow direction can change over time. Most of the important
dynamic happens in the flow part of the network, as in most cases, the temperatures
in the return part are at the same constant level. Therefore in most considerations
and examples in this work we drop the return network. In order to keep a network
topology that remains closed in terms of water circulation, we can compress the whole
return network into one single node, compare Figure Since the length of source
and consumer does not appear in their respective equations, the different scalings in

the figures have no impact on the resulting system of the flow network.

14

Figure 2.1: Graph of a district heating network

Figure 2.2: Graph of a district heating network with compressed return



2.2 Network Model

2.2.2 Network Components

In this section, we introduce all components of a district heating network.

The components are represented by the edges of the graph, where every edge, depending
on its type, adds a set of equations to the full system. The components are then coupled
via suitable coupling conditions at the nodes.

Pipes

The most important components are the pipes. They are responsible for the transport
of the hot water to all parts in the network and transporting back the cool water to
be reheated again. The dynamics inside the pipes are modeled by the Euler equations,
derived in Section For the description of the transport medium water, we use the
incompressible equations . The high pressure inside the pipes ensures that the
water stays in the liquid phase for all temperatures within the operation range (up to
140°C).

We now introduce the right hand side of the momentum equation. The two terms
influencing the momentum by additional forces are friction and gravity. Friction results
from viscous effects from boundary layer theory [46] and in the section averaged case
can be modeled by the Darcy-Weisbach law

A
Fr. = —vlv
fr 2d | ‘7
with diameter of the pipe d and friction coefficient A. The friction factor depends on
material properties of the pipe as well as viscosity and flow velocity of the medium.
A popular model for A is the so-called Colebrook-White equation [41], where \ is the

solution of

1 o1 ( v n 2.51 )
_— = — O —_— —— .
VA 510\37d " Rev/x
Here, v is the pipe roughness and the Reynolds number, depending on velocity and

viscosity u,

d
Re = [P
n

is a dimensionless indicator for the typical flow conditions. A Reynolds number below
2300 means laminar flow, while Re > 3000 typically is a turbulent regime with a
transition zone in between. District heating networks are operated in the turbulent
regime in most cases. That further justifies the one dimensional considerations and the
perfect mixing assumption, as no distinct layers can develop.

Furthermore we need a gravity term modeling the effects of different elevations in
the network. The gravitational acceleration on the fluid has the form

Fg = gOo.b,
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Chapter 2: Model

with gravitational constant g and the space derivative of the elevation b. Altogether,
the momentum equation for the incompressible system reads

1 A
- = — ) 2.14
O + pa;rp QdU’U’ + g0:b ( )

For the heating purposes, we are only interested in the internal energy part e of the
total energy. This is why we drop the kinetic part in the energy equation. The thermal
losses in a pipeline due to insufficient insulation are given by

4k
= “2(I(e) —~ Tuele))

where k is the heat transmission coefficient and T, the temperature of the ground
or air outside the pipe. Note, that here we need a relation between temperature T'
and internal energy e. For water, experimental data can be used to approximate this
relation by polynomials up to a desired order. We restrict ourselves to the first order
approximation

q(e)

T(e) = 1.94 + 220.54 e.

The values are achieved by interpolations of data from [55]. Furthermore, we assume
the density to be constant, i.e. the continuity equation becomes trivial.

Using the length L of the pipe as reference length z, as in , we can transform the
computational domain to be = [0, 1].

Altogether, the incompressible system for water flow in a pipe is modeled by

O,v =20
1 A
O + ;&Cp = ﬁvh}\ + g0zb (x,t) € Q x [0, tend-
4k
ore + v0ze = —?(T(e) —Two(e))

When the equations are lifted to the full network, we equip the variables with super-
scripts indicating the corresponding edge.

Source

The source is located at the position of the power plant and responsible for the heating
of the water. The source will act as the hydraulic driver of the network and produces
the necessary pressure gradient accelerating the water in the pipes. Furthermore, it
generates the thermal energy and transfers it to the water in the network. The exact
dynamics of the power plant is not in the scope of this work, so we model it by a single
pipe connecting return to flow part of the net. Rather than having PDEs on an edge,
it provides the network with boundary values

p(0,8) = po(t), p*(Lt) =pr(t), e*(1,1) = em(t).
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2.2 Network Model

In this work, we restrict ourselves to a single source in the network, but in general
more sources are possible. In fact, there is current research on having each consumer
acting as a source. The so called ”prosumers” are able to drain from and feed energy
to the network by the use of decentralized solar heating for example.

Consumers

The consumers extract the thermal energy from the water in heat exchangers. Besides
the source, they are the only edges connecting the flow part with the return part of
the network. Every consumer has a time dependent energy demand Q(t) it wants
to drain from the system. The heat exchangers will drop the incoming temperature
to a contractually determined [2] return temperature T,..;. The flow velocity will be
regulated to provide the exact power needed

Q) = v(t) - (e(0, ) — erea). (2.15)

As already mentioned above, the flow direction for the consumer edges has to be positive
for all times. In real networks, this is achieved by a sufficiently large margin of the
difference between the feed temperature e;, and the desired return temperature e;.q;.
Typical values are e;, € [80°C,140°C], e, = 60°C. For analytical purposes, the
consumer equation can be modified to

Q(t) = v(t) - (max{e(0, 1), 50} — €ret);

with a fixed energy ef . > €. This ensures a minimal energy difference and conserves
the positivity of the velocity in any cases.

There is a large variety of different consumers in a district heating network, each
having unique behavior. Since their real time consumption is not known in detail,
consumers are grouped in different classes, e.g. one family houses, apartment houses
and industrial consumers. Members of the same class share the same form function
weighted with an individual annual consumption factor. The consumption of ¢ € J¢
then has the following form [7]:

Qc(t) =KW*. h(Td7 TTL(C)) *Mmc) (tv Td)

The factor KW¢ is the mean daily power drainage, h(Ty, m(c)) is a profile function
depending on the outside temperature T, and the consumer class m(c) and finally
Thm(c) 1 an hourly distribution function of the daily consumption values. Note, that the
outside temperature Ty is in general different from T’ in the energy transport equation,
since the first one describes the air temperature and the latter the temperature of the
ground. The shape of the consumption profiles is shown in Figure for different
outside temperatures T, over the course of three days. The general shape of the three
curves is similar, while the mean demand for temperatures of 0°C' are about nine
times higher, than at temperatures of 25°C'. The profiles show two distinct peaks
of consumption, a sharp one in the morning and another, slightly smaller one in the
afternoon. At nighttime, the consumption is the lowest, with about half the amount of
the maximum.
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Figure 2.3: Consumption profiles for different outside temperatures

Nodes

The different components are coupled in nodes to form the network. We now formulate
the coupling conditions that provide boundary values to the PDEs on the edges. In
each node, the relevant quantities should be conserved. For the mass flow pv this means
the sum of all the flows on edges connected to the node must add up to zero

Y Alphvi(t)=0, WV eV, VL (2.16)
J,eA(V)

Here, A = ﬁ(%i)Q is the cross sectional area of the pipe. This expression is straight for-
ward, since the involved values are not space dependent and thus the edge orientation
can be neglected.

For the coupling of p we assume the pipes to come together at a node in one point,
meaning that they effectively share the same pressure value. So for a node V' we have

pv(t) :pi(l,t) :#(Oat) VJZ S s7m(v)7 VJ] S jout-

If we assume the vertical slope of each pipe to be constant, the only space dependent
variable remaining in the momentum balance is the pressure, which means d,p has to
be constant in space. We can integrate the momentum equation over the spatial domain
[0, 1] leading to

1 A
O + ;Ap = ﬁvM + gAb.
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Figure 2.4: Perfect node mixing

We can see that only the pressure difference Ap = p(0,t) — p(1,t) is needed, values in
between can be linearly interpolated. It is not necessary to compute the full spatial
resolution of p, instead we just compute the pressure for every node p" .

In order to formulate the conservation of energy in the nodes, the flow orientation is
important such that the energy is picked from the right side of the edge. A perfect mix-
ing of the involved flows is assumed, this means that all outgoing edges share the same
energy, the flow-weighted mean of all incoming energies. Note here, that flow directions
may change over time and therefore the mixing dependencies are time dependent. For
edge J; we define the outflow boundary as

i 1 if0'(t) >0
ct) = { 0, if vi(t) < 0.

The inflow boundary is defined analogously and denoted by —c'(t).
The energy coupling with perfect mixing then reads

> Al = ) AW (W)ey(t) =0 (2.17a)
J,€T(V) J;,€0(V)
el(=c(t),t) = ey(t) VYV eV, Vt, (2.17b)
with the time dependent node energy ey .
If the densities are considered constant, they can be eliminated from (2.16)), effec-
tively leading to a volume conservation formula. Since temperature differences in the
node mixing can get relatively large, a more precise formulation includes the energy

dependence of the water density. That way, the velocity coupling cannot be solved
independently of the energy.

2.2.3 Full Network Model

Now we have all the necessary equations to formulate the full model on the network.
It consists of an inflow boundary condition given by the source, outflow boundary
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conditions implicitly given by the consumers and a set of (P)DEs on the pipelines. The
spatial domain of every pipe has been scaled to the interval [0,1]. Due to different
pipe lengths, this leads to different scalings in each pipe that has to be compensated in
the coupling. The rescaling is done by a modified cross-section A? = A% bringing all
velocities to their corresponding range. The tildes are then dropped again for clarity
This means we can formulate the whole system as a set of equations on Q2 = [0, 1]. We
split the set of all edges into the subsets induced by the three edge categories source
(s), consumer (c¢) and pipe (p)

Jngchp:j

All relevant variables on the edges are collected in vectors u = (u;); = (u?) ez € RNV7.
Additionally, for a vector u created that way, let the corresponding diagonal matrix be
U = diag(u) € R¥7XN7_ We collect all the above defined models in one large system

Opv =0 (2.18a)
ij <8tV + 1Ap> = ij <;AD1V‘V’ + gAb) (218b)
P

Iz (Oie+ Vo,e) =1 (—4kd ' (T'(e) — T (e))) (2.18c¢)
IJCV ' (e(ov ) - eret) = Q (218d)
I7.e(1,) = ein (2.18e)
I,p=p° (2.18f)
Alv =0 (2.18¢)

o AR, )= Y Al ()leY (1)
Ji€Z(V) J,€0(V) VWV eV, VJ; € O(V), (2.18h)

/(= (1),1) = ¥ (t)

for (t,xz) € [0,teng] x Q. The first three equations (2.18al)-(2.18b)) are the vectorized
Euler equations on the pipes. The relevant entries are selected by the indicator matrices

Iz, € RNoXN7 1, € RNxN7 1, € RNs*Ng Without loss of generality we can assume
the edge ordering to start with the pipes, followed by the consumers and the source at
last. Composed, they build the identity matrix

The pressure and height differences Ap and Ab can alternatively written as a linear
form with the incidency matrix

Ap = (A")Tp,  Ab=(A")Tb.

Equation (2.18d) is the vectorized version of (2.15)), with the vector of consumptions
Q and the consumer indicator matrix I 7. The boundary conditions at the source are
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formulated in (2.18¢) and (2.18f). In our setting, where the case of a single source is
considered, those equations are scalar. The mass conservation is the linear equation
with the assumption of constant density. Finally, the energy conservation is
described by . Here we stay with the nodal formulation for now as a more

compact notation would involve more formal definitions.

2.3 Splitting

The full system is a PDAE that becomes large once it is fully discretized. The
special structure of the network and the system of equations allows for efficient solving
techniques by decomposing the hydraulic part into linear and nonlinear elements. This
motivates a splitting of the full equation set into two separate ones, the hydraulic
equation and the thermal equation. Due to the fact that energy influences the fluid
velocity only at the boundary, namely when reaching the consumers in , the
splitting is straight forward:

The hydraulic system can be solved for velocity and pressure, given an energy at the
consumers. We introduce the modified demand Q(e, t) with

= Q@
Qi = et(0,t) — eret’

for the consumers J; € J.. Then the decoupled hydraulic problem is:

O,v=20
1 1
1y, (o + 2(a7)7p) =1, (JAD VIV +o(a)7D )
Alv—0 (2.19)
chv = Q(e7 t)
Ijsp = ps7

which only implicitly depends on the energy via the modified demands at the consumers.
Systems of the form are used in water supply networks [1],[74], where there is no
temperature information needed and the consumers have pure volume flow demands as
a function of time. Using the information of the network structure, such systems can
be solved very efficiently. A decomposition of the system into a pure algebraic part and
a set of ODEs of smaller dimension is shown in [44] and [36].

The general idea is the decomposition of the graph into a spanning tree and a set of
circles. For tree-networks, the algebraic part

Alv =0
chV = Q(e,t)

can be uniquely solved for v. The momentum equation only acts as a definition of the
pressures in the network. When there exist circles in the network, we can make use

(2.20)
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of Kirchhoffs voltage laws. Originally formulated for electrical circuits, the law can be
transferred to hydraulic systems by replacing voltage with pressure. It states that the
sum of all pressure drops along a closed circle have to sum up to zero.

Y Ap=0 V(G ec (2.21)
J,€C;

Since is uniquely solvable for trees and for each circle, we can add an additional
equation with one new velocity component of the form , the resulting system stays
uniquely solvable. More details on the exact form of the new system are investigated
in the analysis Chapter [3] We just want to emphasize here, that instead of solving the
full nonlinear system of size N7, we solve a linear one of size Ny, — 1 and the nonlin-
ear one just for the remaining N¢. In general the number of circles in district heating
networks is relatively small compared to the total number of edges, so this leads to a
much simpler problem.

The remaining set of equations form the energy transport system

Iz, (Oie + VO,e) =17 (—4kd ' (T(e) — T (e))) (2.22a)
Ijse(l ) = €in (2.22b)

> Al = > A ()
Ji€Z(V) J;,eO(V) YW eV, V] e OV). (2.22¢)

(e (t),t) = e (t)

The parts (2.22b]) and ([2.22c) are responsible for providing the boundary data for the
PDE (2.22a). The latter is a system of pure advection equations with a source term.
The main focus of this thesis lies on the numerical simulation of such networks of
advection equations.

2.4 Conclusion

District heating networks are modeled by a set of Euler equations on a graph. The
typical operation conditions force the water into its liquid phase, even for temperatures
higher than 140°C, allowing to use the incompressible equations. Those equations hold
on all pipes of the network, where a suitable friction model and a cooling term model
the interaction of the fluid with the pipe wall. Further components of the network are
consumers and source, responsible for heat transfer onto the network and its drainage
at the desired locations. With some basic graph notations, we can formulate the full
network system in a very compact way. Hereby all relevant components are coupled by
basic conservation properties and ideal mixing laws. By applying a splitting to the full
system, separating hydraulic and thermal transport part, we can use efficient solving
strategies exploiting their specific structures.
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Analysis

In this chapter, some analytic properties of the system are explored. Starting with
some examples, we show scenarios where even for very smooth initial conditions the
regularity of the solution of the energy advection is reduced. This might be surprising,
since the underlying PDE is linear. The network structure of the full system however
introduces a nonlinear behavior. With an adjustment of the node coupling equation,
we regain stability of solutions in the BV sense. Finally, the wellposedness of the
district heating model is shown in three steps. First the existence of solutions as well
as their Lipschitz continuous dependence on the parameters for the hydraulic as well
as the transport equation is shown. With those results we construct an operator in
the specifically chosen solution space and show its contractive property. Application
of Banachs fixed point theorem yields unique existence of solutions to our problem.
These stability results emerged from joint work together with Raul Borscher'_-], Mauro
Garavell(ﬂ and Elena Rossﬂ The corresponding paper is already submitted [9].

3.1 Analytical examples

Before coming to the theoretical results some analytical examples are shown. We want
to emphasize the impact of the network structure on solutions to the transport problem.
In district heating networks, the flow direction of edges inside the network can change
over time. In general, the sign of velocities is known and fixed in some parts of the
network, for example at the power plant and on the consumer edges. If then the network
graph is a tree, the positivity directly transfers to all the other edges. However, if there
are circles in the graph, the velocity can change sign on the edge closing the circle,
depending on the energy distribution and the consumer behaviour. This can already
happen in the smallest possible example as shown in the following. Each change of flow
direction might introduce a new contact discontinuity in the solution.

!Technische Universitit Kaiserslautern, borsche@mathematik.uni-kl.de
2University of Milano Bicocca, mauro.garavelloQunimib.it
3University of Modena and Reggio Emilia, elena.rossil3@unimore.it
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3.1.1 Formation of Contact Discontinuities

Even for smooth initial data and velocities, contact discontinuities can form inside the
network. This is due to the fact, that the sign of velocity can change. When flow
direction changes in an edge J; and the node temperature is not equal to the energy
values inside the pipe, a discontinuous energy signal will travel through the pipe. This
can happen in general in any network that contains a cycle. A minimal example is a
triangle network, containing a source, 3 pipes and 2 consumers. Further details about
this example can be found in [5I]. The geometry of the triangle network is shown in
Figure[3.1] We assume that all three edges have the same parameters as length, diameter
and friction coefficient. Furthermore we assume perfect thermal insulation i.e. there
is no heat loss and we ignore the acceleration term in the momentum equation. While
those simplification allow for a simple example, where an analytic solution for the full
system can be given, they do not change the general behavior of the system. Including
all the mentioned effects would also lead to a solution with the desired properties but
an analytic formulation would be much harder.

V3

Jl 0 —p

/

—_ tJs
Vi

N

J2 W —
Va

Figure 3.1: Triangle network

Analyzing the symmetry of the geometry, we observe that if the demands of the
two consumers produce the same velocities, the pressure drops along the edges J; and
Jo are equal and thus the velocity on edge J3 will be zero. If then one of the demands
rises, v3 will grow in the corresponding direction. With suitable energy configurations
in the pipes, a contact discontinuity forms. The exact setting of an example for such a
case is the following:

Let t € [-1,1] and

t

Ulzl‘i‘é

t

'U2:1—6
t
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Using the momentum equation, we can calculate the velocity of the connecting edge vs
as

t t t t 4t
v3lvz| = vi|vr| — valva| = (1 + 6)’1 + 6' —(1-2)1—-=]=—

6 6 6
) t
— v3 = 2sign(t) |6\

Knowing the velocities, the energies in the pipes can be calculated by the method of
characteristics as

e(t,2) = a1 () = 3+ 64/ (1 4+ ) -

wl s

ealt ) = enlta(e)) =15 - 611+ ) + 3.

where t; and to are the origin times at the left boundary of the characteristics of v
and v respectively. The energy es is getting its values, depending on the sign of vs
from either edge 1 or edge 2. At t = 0 the sign of v3 changes and the corresponding
characteristic travels into the domain. This results in the piecewise defined signal

[SI[°)

( 242
15—6ﬂ1—(\g\3+$gl)3] +1ift>0andz>1- (%)

es(t, x)

3 212
3+6\/{1 (‘é’2+§>3} —%, else.

The corresponding values at the discontinuity are

4
e3(07,1) =15 — 6\/; ~ 8.07

3\? 1
- 1) = 2) = ~ 58T
e3(07,1) =3+6 <4> 5 ~ 587

This discontinuity then travels along the pipe. The resulting signal at e(t,0) is shown
in Figure|3.2

3.1.2 Violation of BV-stability

In a second example, we want to show a rather artificial scenario. In theory it is possible
that the sign of velocity changes infinitely many times in a finite time horizon. We will
later show, that the velocity as solution of the hydraulic system will lie in the space of
absolutely continuous functions. Additionally, when at a junction two pipes feed a
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e3(t,0)

6 .

-1 —O 5 . 1.5 2
t

Figure 3.2: Temperature signal e3(0,t)

j —
S

Figure 3.3: 3-way junction with two edges feeding a third one

third one (compare Figure [3.3]), it is possible that the side from which the outgoing
edge is fed changes infinitely many times in an interval. Consider the following setting:

and

1
S ¢ -2 gin?( (tog 5)s if (tO{t) € [2km, (2k + 1)7],k € N
0, else

1
v =1 € (t—1)? sinz((tol_t)), if (tol_t) € [(2k + 1)7, 2kn], k € N
0, else

1
v3=v1+vy=¢€ 092 sin?(1/(tyg—t)).

Pipe J3 will now draw alternately the values 1 and 0. Each switch raises the total
variation of the solution by 1, so for ¢ = ty the total variation is unbounded. A
schematic illustration of the solution is shown in Figure Note, that the drawn
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values are not the real solution but one that more visibly displays the true behavior.
The zeros do coincide the ones of the true solution.

1073 o1(t) —va(t) e3(0, 1)
‘ 7 7 : :

1 1 10N w

0.8 |

|

= N ‘
0.4

0.2} J

| Rl

0 2~£0‘24v£0‘26~10‘28v10‘2 0.1 0 2~£0*24~£O*26~£0*28~£O*2 0.1

t t

Figure 3.4: Schematic velocities and energy violating BV-stability

Scenarios like that will not play a role in real scenarios, as a fixed discretization grid lim-
its the number of switches. For analytical considerations however, we need to somehow
deal with those extreme cases. In order to do that, we introduce a small volume V in
the nodes. This adds some inertia to the node mixing energy and therefore smoothens
the boundary data that edge three draws in above example. For every node V we in-
troduce a new node energy variable ey . The change of node energy within a small time
step At can be expressed by

1 o .
v(t) + Aey = = > AP(H)|E(t bi) At

VJiEZt(V)
1

e Ww— > A’\v )AL | ev ().
W J;€0H(V

As it can be seen in Figure [3.5] the change in node energy is the sum of all incoming
volumes A'v® minus the sum of all out flowing volumes weighted with their respective
energies. Passing the limit At — 0 we end up with an ODE describing the dynamics
of the node energy ey

1
ecv==—1_ > A2|v e'(t,ai(t) - > A"\v Olevt)|.  (3.1)
4% J;€TH(V J;€OH(V

This leads to higher regularity in the resulting solution and thus to a bounded to-
tal variation. With the choice V' = 107> the solution of above example is shown in
Figure
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Figure 3.5: Schematic model of the node V' with two incoming and one
outgoing pipes in the derivation of the coupling condition (3.1
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Figure 3.6: Node energy with new coupling formulation and V = 1075

3.1.3 Trace of the Solution

The important detail, why we are able to get stability estimates for the transport part is
that in all coupling terms of the energy we consider the trace of the fluxes v(t)e(t, ¢;(t))
instead of the trace e(t, ¢;(t)). For the traces of solutions to

ore +v0ze =0

e(0,z) = ep(x), (3:2)

there exist no such estimates. Consider the following setting: Let Q = [0, 1] and

1, ifz <1,
@) =30 ife=1
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€. Then the traces of the
t=20
t>0

Consider two different velocities v1(t) = 0 and wva(t)

1
corresponding solutions are ej(t,1) = 1 and es(t, 1) = { 07 and therefore

lex (-, 1) — ea(:, 1)HL1(O,t) =1,

but
o1 = vallga = €t
for all e. So the difference in the traces is the same, even for arbitrarily small distance

between v; and vs. One possibility to get stability of traces is to prescribe a lower
bound on the velocity.

Theorem 3.1.1 Let Q = [~00, 1], v1,v2 € [Upmin, 00] and eg € L. "BV (—o0,1),
then for the two solutions to (3.2))

||€1(‘, 1) - 82(') 1)”]_‘1(07,5) < Lt\vl — 112|.

Proof. By solution of characteristics and using Lemma [3.6.3

t
lex(-,1) = ea(, Dllpagos = /0 leo(1 —v17) — eo(1 — var)

S TV(B())

tlvy — val.
Umin

O]

This result can aswell be extended to non-smooth time dependent velocities. Many
stability properties for velocity fields with low regularity have been shown in [23]. Those
results however require a positive lower bound on the velocity, similar to the one above.
As we have seen in the first example, flow direction changes cannot be avoided in district
heating networks.

In , the traces never appear alone, but always multiplied with the corresponding
velocity. This fact will save our results and enables the necessary stability estimates in
Section Above example would then read

lorer(-, 1) —vaea (-, 1)l (o, = llvzea(s, Dllpagoy
<et= ||’Ul - UQHLl(O,t) )

so we can in fact bound the difference of fluxes by the difference in velocities in that
specific case. We will show in the following, that a stability estimate of that form holds
for arbitrary time varying velocities in L' without prerequisites on its sign. This will
be the main tool in proving uniqueness of the coupled system.
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3.2 Wellposedness Results

We finally come to the main results of this chapter, where the wellposedness of the
coupled system is shown. We start by showing the existence of solutions to the hydraulic
system. This system is very similar to those for water supply networks and we can
use similar decomposition techniques bringing the system in a form where an explicit
solution can be constructed.

After that, the required stability results for the transport equation are shown. In
the main theorem of this part, the Lipschitz continuous dependence of solutions to the
advection equation on non-smooth velocities is shown. Furthermore, in a second part
a similar L-continuous dependence of the fluxes at the boundaries is proven. This is
essential, as the pipes in the DH network couple over the fluxes and therefore we can
extend these results to the whole network.

Combining those two results enables the construction of a fixed point iteration. The
Lipschitz continuity gives rise to a contraction property and with Banach’s fixed point
theorem the wellposedness of the coupled problem is shown.

3.3 Hydrodynamic System

In the following, we analyze the wellposedness of hydrodynamic equations on the net-
work. This system has already been studied in different applications, most notably in
the context of water supply networks. First of all, the system and all necessary re-
quirements are stated. After that, we show that there is a reformulation of the system
allowing for direct construction of a solution. This procedure was already presented in
[36] and we just emphasize the differences to their system of equations. In the end, we
show that the solution fulfills a stability condition with respect to the input parameters,
most notably the energies at the consumer sites.

Having a closer look at the consumer equation , the smoothness of the energies
at the consumers directly transfers to the smoothness of the vector of velocities. For
the stability estimate and some technical details later in the coupled setting, additional
smoothness of the solution v to the hydrodynamic system is needed. We modify the
algebraic consumer equation and instead use the ODE formulation

ok = é (Qult) — 40 ey, — e(Tw)) (3.3)

with relaxation parameter o > 0. Similar to the modified node mixing in , this
adds regularity to the system. In particular the solution v to is continuous even
if demand and energy are just L' functions. Note that each consumer is connected
to a node in the network and therefore using the new coupling defined in the
corresponding node energy has to be considered.
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We recall the hydraulic system from (2.19):
0, v=20

1y, (o + 28770 =T, (4D VIV + o(a)7D )

chatv == Q(V, e, t) (34)
I7p=0p°
Alv=0

and incorporate the new formulation of the coupling condition (3.1) and consumer

equation (3.3) by
-1 .
Qi = - (Q"(t) - (max{evi1 (t), emin} — eret))

for each consumer J; = (V;,,Vi,).

Definition 3.3.1 Fix T > 0 and, for every Jx € Jc, functions Qy that are in

L ([0, +00); [Qmin: @umaz)) - Assume that, for every J, = (Vi,, Vi,) € Jo, the function
t ey, (t) is in LY([0,T];R). A couple (p,v) = ((pl,...,pNV) , (vl,...,vNJ)) s a
hydraulic solution to (3.4)) on the time interval [0,T] if the following conditions are
satisfied.

1. For every i € {1,...,N}, the functions p*, and v* satisfy the reqularity assump-
tions:

(a) p' € AC([0,T];R)
(b) vi € AC ([0, T);R).

2. For every J; = (V;,,Vi,) € Ip, p and v satisfy
P2 =p" —p( 550 [v*] + Oyt () + g (b — %) ).
3. For every J; = (V;,,Vi,) € Jo, for every t € [0,T],

v (t) = v"(0) + /Ot é (Qi(s) —v'(s) (maux{evi1 (8), Emin} — eret)) ds.

4. The boundary condition p'(t,a1) = p"(t) holds.

5. For every junction V €V,

> Aty =o.

JpeA(V)
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For the proof of the next lemma we use several properties of the topology matrices
defined in Section We just state them here, a proof can be found in [36].

1. < Ai > and A;A, are nonsingular
Apc

2. ApcA, =0

Lemma 3.3.2 Let G = (V,J) be a connected graph with at least one pressure node.
Then the system

o = Q(vo, €,1)

vy = (ATAT) " (AT15,) v

iy = (ApcABe) " Apc (r+ F(AT vy + Abcvs — AT o))

p=p(A(A)") " A¢ (r+ F(AT o1 + Afove) — (ATin + Afoin)) |
is equivalent to (3.4).

Proof. A detailed proof can be found in [36]. We restrict ourselves to the main ideas of
the proof and highlight the differences of our system to theirs.

Using the incidence matrices defined in Section [2.2.1] we perform the coordinate
transformation

Vo
v=~T7. AT AL | v1 | =700+ Afvi + Abvs. (3.6)
V2

Due to the third equation of (3.4]), the vy component is independent of the others
and follows the ODE

Vg = Q(U07eat)‘

Then the mass conservation reads

Vo
Alv=A" (17, AT AL:) [ w
V2
= AT v+ ATAT
=0

due to AAL, =0 and therefore

vy = (ATAT) ™ (A1) vo.
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3.3 Hydrodynamic System

We multiply the second equation of (3.4)) with ( AAt > and with (3.6]) we get
pPC

1 1,
1y, (o + 28770 =T, (4D VIV + (a1 D )
oA (Af01 + Abcin) + At (AT = A (Af o1 + Abous) + Asg(AT)TD
Apc (ATi1 + ALoin) + Apc (AN p = Apct (ATvr + AL o) + Apcg(AT)Tb
%At(AI)Tp = A, (f (AtT’Ul + A£0U2) — (A?UI + Agcvg) + g(AI)Tb)
= . .
ApcAT iy = Apc (—%(AI)Tp — Al + £ (AT o1 + AL cwo) + g(AI)Tb>
LAL(A,)Tp = A (f (Afvi + Abpvs) — (AT 61 + Abpin) + g(AT)Tb — %Afps)

=
ApcAfeis = Apc (~3AZp* — ATiy + £ (AT v + Abces) +g(AT)Tb)

with f(v) = SAD™'V|v|. Finally, with the abbreviation r = g(A’)"b — %Af,’ps we get
for the full system

i = Q(vo, 1)

v = (ATAT) 7 (A'Lz) v

iy = (ApcAbe) " Apc (r— Aliy + F (AT v + ALowy))

p=p(AA)T) Ay (r+ £ (AT vy + ABevs) — (AT + Abein)),
which concludes the proof. O

For this system we formulate the following theorem:

Theorem 3.3.3 Let T > 0, p* € C([0,T],R) and Q € L([0,T],RN¢) such that
| Q1) < Qmaz for almost every t. Then for each node energy function ey that lies in
LY([0, T],R™) with | ey ()|, < €mas for almost every t, there exists a unique solution

(v,p) € AC([0,T],RN7) x Ll([O,T],RJX") to (3.4) in the sense of Definition with
the following properties:

1. v and p are bounded, i.e. ||[v(t)| . < Vmaz and [|[P(t)|lo < Pmax for almost every
t.

2. The solution depends L-continuously on the parameters, i.e. there exists a positive
constant L, > 0 such that, for every two sets of initial conditions p°, p»°, v°,
and ©%° (i € J), two boundary data p°, p°, two sets of power demands Q, Q,
and two sets of node energy functions ey, ey in L1 (0, T; RNV), the corresponding
solutions (p,v) and (P, ) satisfy for a.e. t € [0,T)

DT = oo < Lo | Do v = &vlagos + D HQk - @k‘

L1(0,T)
AN Vey Jre€Jc

(3.7)
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Proof. Due to Lemma we can show the results for the equivalent system (3.5).
Under above assumptions, the function Q(vy, e,t) with

Q; = é (Qi(t) — (rnam{eyi1 (t), €min} — eret» is globally Lipschitz continuous in vg
as well as measurable in ¢. This means the ODE

’[)0 == Q(vﬂv e, t)

fulfills the requirements of the Caratheodory existence theorem and there exists a unique
solution vg(t) € AC([0,¢*],Re). Furthermore using Gronwalls inequality we get an a
priori bound on each component of the solution.

i | < a(t)edo XD —: vy o (8),

dr.

where a(t) = fg —Q:ET) dr and b(t) = fg max{ev;, (Tl’em"}*e”t
After that, the component vy (t) = (AI AtT)_1 (AI I7,) vo is just a linear function of vg
and consequently also unique with the same regularity as vyg.

Similarly to vg, vy is again the solution of a Caratheodory type ODE with locally
Lipschitz right hand side and there exists a locally unique solution. It remains to show,
that this solution can be extended to the full time interval [0, T"]. For this proof we refer
to the proof of theorem 5.3 in [36], where they show that there exist k,c¢ > 0 such that

lva(t) o < K

and with this a priori estimate the solution can be uniquely extended to the full time
interval. Note that the constants k, c depend on vg 4z in our case. With those estimates
we can recover a bound on v by

VIl < U+ [[Millo) lvoll oo + 1Mzl 02l = Vmaz,

with M; = AT (AIAtT)_1 (AIIJC) and My = AL.. The boundedness of p then is
trivial as all the parameters it depends on are bounded.

The stability estimates directly follow from basic ODE theory, e.g. [22].

The L-continuity of the right hand side of the ODE on the parameters Q(¢) and ey (t)
directly transfers to the solution. The proof is similar to showing continuous dependence
on initial values. In fact, if the right hand side of the ODE is continuous, continuous
dependence on parameters is equivalent to continuous dependence on initial values. [

Remark 3.3.4 In Lemma[3.53.9 we showed, that the hydraulic system has a triangular
structure in terms of (vo,v1,v2,p). In fact, the velocities can be computed completely
independent of p. The pressure is only of interest, when the system is used within an
optimization, where e.g. box constraints on p are prescribed to avoid bursting pipes.
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This is why from now on, we drop the pressure from all solution notations and stability
estimates. Due to the form of , especially the similarity of the third and fourth
equation, all estimates that can be derived for v will hold in a similar form also for p.
For clarity and simplicity of notations, when talking about the solution of the hydraulics,
we refer to it by just v.

3.4 Energy Network

In this section we study the wellposedness of the transport problem on networks. Similar
existence results have been shown in [62] by using the notion of renormalized solutions.
In our case, a constructive proof by the method of characteristics is possible. Using
the modified node coupling, we are able to get powerful additional stability results.
The main ingredient in the proof is Lemma [3.4.2] where we show unique existence
of solutions to one dimensional advection problems for L!-velocities together with a
Lipschitz continuous dependence of solutions on v. This result is then extended to the
network setting by incorporating the coupling ODE.

We recall the PDE part of system from Section

Iz, (Ore+Voe) =17g(e)

3.8
Ire(l,) = e 35
and add the new node coupling formulation
. 1 1 1
éy = ™ JG;V)A [vt ()| (t, ci(t JG%;V)A [o'(t)|ev (t)
(3.9)
1
ev(0) = — Al v'(0)|e*(0, ¢i(t))
2 gieoutt(v) A0 O)] | egt:t Vo)l
el(t, ~ci(t)) = ey (), VJ; e O(V) (3.10)

for all nodes V € V.

Definition 3.4.1 Fiz T > 0 and assume €*° € L1([a,b];R), VJ; € J. Furthermore
let g be Lipschitz continuous. Assume that, for every J; € J, the function t — v(t)

is in L1 ((0,+00);R). A function e = (e, ey) = ((el,...,eNj) , (8]1,...76JNV>> 18
called an energy solution to (3.8),(3.9),(3.10) on the time interval [0,T) if the following

conditions are satisfied.

1. For every i€ {1,...,N}, the function ' € C° ([0, T};L* ([a;, b;]; R)) satisfies the
reqularity assumption and, for every t € [0,T], €'(t) has finite total variation.

2. For every V €V , the function ey € C° ([0, T];R) has finite total variation.
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3. For everyi € {1,..., N}, € is a broad solution to

e’ + vdye’ = g(ei)
e'(0,2) = ().

4. For every junction V€V, for a.e. t € [0,T] and for all J € A(V)
e'(t, mei(t) = ev (t),
where ey is the Caratheodory solution to (3.9).

In the following we will show that there exists a unique solution in the sense of Defini-
tion and furthermore this solution depends Lipschitz continuously on the velocity
vector v. This is done in several steps. The main ingredient is to show unique existence
and L-continuous dependence on v for an isolated pipe with given boundary data, i.e.
for a one dimensional domain €2 = [a, b]

Ore + v0e = g(e) x € (a,b), t>0
e(t,a) =er(t)
e(t,b) = egr(t)
e(0,x) = é(x).

(3.11)

The important part here is that we show the stability property not only for the solution
e itself, but also for its flux vte(t,1) and v e(t,0) over the boundary. The latter is
essential due to the dependence of the node coupling ODE on the fluxes.

In a second part, we show that the node energies conserve the desired stability property.
The connection of this result with the boundary data for the problem on one segment
gives rise to a Gronwall estimate for the full network case.

Lemma 3.4.2 (Stability of solutions on segments)

Fiz a,b € R, with a < b, vl,vg,e}:,e%,e}z,e% € LY(R") and &1,é5 € L(a,b), all with
bounded total variation. Further let g: R — R be a Lipschitz continiuous function with
lg(y1) — 9(v2)| < Gly1 — y2|. We consider e; and ex the solutions to the following IBVP
problems:

Ore1 + v10e1 = g(e1) x € (a,b),t>0
e1(t,a) = ey (t)

Py eitd) = eh(t) (3.12)
e1(0,z) = e1(z)

and

Orea + v20ze3 = g(e2) x € (a,b),t >0
ea(t,a) = €3 (t)

Poy ety = ) (3.13)
e2(0,z) = éx(x) .
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Then for a.e. t the following stability inequality holds:

lex(8) — e(llgaoay <Ko o1 — vallga oy + K1 lr = sllpsuny (3.14)
1 2 1 2
+ K [ler, - eLHLl(O,t) + K ||er - 6RHL1(O,t) ’
where the Ks depend on the total variations and L°°-norms of €1, €s, er,, er and on G
and t.
Furthermore, if |vi],|ve| < Umaz and t < %’ for the fluzes at the boundaries we
have
[orex(s, a) — vy ea(:, a)HLl(O,t) < Koallor =2l + Kraller — eallpay (315
1 2
+ KLa HeL - eLHLl(O,t) ’
H/U;rel(')b) - Ué"_ez("b)HLl(O,t) < Kv,b

+ KRp He}% - G%HLl(O,t) :

lvr — vl + Krpller — e2llpa,  (3.16)

A sequential consideration with (3.14) can remove the bound on t.

The proof of this lemma is given in Section |3.6.1
We now come to the main theorem of this section.

Theorem 3.4.3 Fiz T > 0. Then system - admits a unique solution, in the
sense of Definition|3.4.1]

Moreover the following stability estimate holds: There exists a positive constant
L > 0 such that, for every two sets of initial conditions €-°, €-°, (J; € J) and two sets
of velocity functions v, 0 fulfilling the requirements in Definition[3.4.1] the corresponding
solutions € = (87, &y) and é = (&7, éy) satisfy for a.e. t € [0,T]

Z ||éV — éVHCO(Qt) + Z Héz(t) - éi(t)HLl(Ji)

Vey J, €T (3 17)
<L (5 s + 11— Ellpasy) -
J;,eTJ

We define by 7. the operator producing a solution according to Theorem [3.4.3]

Proof. Existence of solutions to similar transport problems on networks have already
been proven, e.g. in [62]. The main difference is the new ODE coupling formulation
we use compared to the algebraic one in their case. We focus on the stability estimate
that to our knowledge has not been shown before. Nevertheless the main ingredient
we use in this proof, Lemma [3.4.2] also contains the construction of a solution. The
proof of the stability estimate consists of two steps. In the first one, we decompose the
network problem into shorter time intervals. Those intervals are chosen in such a way
that information does not travel from one node to another. Effectively the network
problem then decouples into a sequence of localized problems on segments.
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In the second step, the interconnection between the node energies and the energy fluxes
at the boundaries are resolved. The right hand side of the node coupling ODE depends
on the fluxes of solutions at the boundary. Whenever the flow velocity is negative,
that node energy travels back into the domain and introduces a self dependence. By
applying Gronwalls inequality we get a bound on ey of the desired form.

Both of those steps depend on a stability condition for solutions and fluxes of solu-
tions to the advection equation. The proof here is lengthy and since the result is rather
general we have formulated it in the separate Lemma [3.4.2

Step 1: Network decoupling
We want to prove the L-continuous dependence of the solution e as well as the node

’ Ll(a,b)>

energies ey on the velocity v:

Z He HLl(ab) Ly Z <

4 Hék,o _ ék,O‘

AN Jeed L0
(3.18)
ey — €y < Lo < vF — f)k’ k0 _ ék,O‘ )
V% H ooy J;j o s
(3.19)
For each individual edge J; € J we can apply Lemma and get
i) — &t . < Kk k_~k‘ KE(150 _ g0
PO RIS ) Ll I 1 R
1] 518,
+Ip |ler — e L1(0) R||6R — €R L1(0.4)
(3.20)

where the left and right boundary values ey, er are exactly the node energies ey due
to (3.10). Let deg(G) be the largest node degree in the network, then each node energy
provides the boundary data to at most deg(G) edges. Thus (3.20]) gets

Z H(Z HLl(ab) <Ky Z ‘U _U Ll(Ot K1 Z Helo i’OHLl(a’b)

JieJ JeT JeeT
+Ky Z lev —évilLigo

Vey
BN 7 i (LB .

=]

JLeT JLedJ

+Kvt Y lev — évlicogy »
Vev

(3.21)

38



3.4 Energy Network

with K, = maxj,c7s Kff, Ky =maxjc7 K}g and Ky = deg(G)(maxe7 K +
maXJkGJ KR).

Consequently, (3.18]) follows directly from (3.19)).

We now show (3.19) for one node V' € V. Define the intermediate times 0 = tg <
t1 < -+ <tp =T with At; = (t; —t;—1) such that max;—; _, At; < bm“ Then in each
interval [t;_1,t;] the information coming from other nodes does not reach ey. Assume

~ ; k ~k
Hev—evncﬂ(ti_l,ti) SA%f Z Hv v ’

Jed LY (t;—1,t:)
B H Bt 1) — &y, - ‘ (3.22)
+VZ€(11) e(ll)Ll(a,b)
JLedJ

+ lev(ti—1) — ev(ti—1)|

holds. We denote the maximum over those constants by A = max; 1/ A"'/, B = max; vy B%/.
Then by iterative insertion we get

> llev —évllcon =D swp llev —évliooq,_,u)

Vey Vey 1=0,...,n
+B >
Ll t, 1,ti )

(insert {22) < Z _sup A Z H

ek(ti—lu ) - ék(ti—lv )‘

Vevz:O,...,n Jeed v
+ lev(ti—1) — ev(ti—1)] )
kE -~k
oF 5 NVB sup Z H Rt )‘
JheT L1(0,t) 0=l s e L
+ Z lev —évilcogot, 1)
vey
(insert ) SNVA Z vak - ﬁk‘ L1(O,t)
JeT

+ NyB sup K, H ‘
1=0,...,n—1 JkZGJ

+Kvt Y llev = évlicows, )

1(0,t;
) vey

+K7 Z Hek(tz‘—l,') —ék(ti—h‘)’

JweT

+ Z llev = évilcoo, 1)
vey

(rearrange) SNV(A + BKU) Z H/Uk — ﬁk‘
JLeT

L1(a,b)

L1(0,t)
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+(1+ NyBKvt) Y llev — évllcoou, )
vey

—I—NVBK[ sup Z H tza —6 t’m )‘
0,...,n— 2J cT

L1(a,b)

We can insert until the initial condition is reached. In each iteration, the resulting
terms are multiplied by the constant K; coming from the initial condition estimate of
the previous step.
Kn 1
(...until to) <Nv(A—|— BK Z HU — Nk‘
Jped

n—1
+ NVBKVtZ ((Kl)z Z lev — éVHCO(O,tnli)) + Z lev = évllcoot, 1)

=0 Vey Vey

L1(0,t)

+ NyBK} ! Z Hek(toa ) — & (to, ')‘
JLeT

L1(a,b)
and finally with K; = max(K7y,1)

1— Kn 1 k
rearrange <N A BK H - v ‘
( ee) SNp(A + - K[ E v

JLeT

+ NUBK]E ST eh0 — ko]
JreTJ

L1(0,t)

L1(a,b)

n—1

+(1+ NvBEvEP ') Y > llev = évilco, o o) -
i=0 Vey

This is a recursive formula for the node energies a(i) = [ley — év|[go(gy,) of the form

with ¢; = cf ZJkej Hvk — ~kHL1 0. + 2 ZJkej Hek’o - ék7OHL1(a7b)’ where the coeffi-

1 ~
cients are cj = Ny (A + B, ) ,c3 = NyBK}™ ! and ¢; = (1+ NyBKy K}~ 't).
This recursion has the explicit formula

a(i) < cp (14 )Y,
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which leads to the explicit estimate of ([3.4)

ZHGV—GVHCO o0n < (1+c2) S Z HU -

L1(0,¢
Vey JLeT )
T Z H kO _ ko‘
L1(a,b)
JeT

<13 (-]

JLeT

Hek,o _ ék,O‘

Ll(a,b)> '

Thus the result (3.17)) follows directly from (3.22)), which we show in the second step.

L1(0,t)

Step 2: Stability of node values
From classical ODE stability we know for the junction that the solution of (3.9)) fulfills

s é‘
where € =} c 4 [vilet (-, ei(+)).
Each incoming ﬂux can be estimated using (3.15)) and (3.16) from Lemma[3.4.2such
that we have

lev(t) — év(t)] < K

(0) —ev(0)],

L1(0,t)

6 — é‘ L0 < KV ”ev — éVHLl(O,t) + Kv JEZA%V) Hvl - ﬁiHLl(O,t)
+ Ko Z [ _éiVOHLl(a,b) :

J,eA(V)
Inserting yields
lev (t) — év(t)] < a(t) + KKy [lev — évllioy

t
= a(t) +/ KKv‘ev(T) — év(T)‘dT,
0
where

= KKy Y v =l + KK > [l = @|pa g
Ji€A(V) Ji€A(V)

+ Kvolev(0) — év(0)].

Now we apply Gronwall with «(¢) monotone increasing and obtain

lev (t) — &y (t)] < a(t)eR KVt
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and due to monotonicity of the right hand side

lev = évllaos < a(t)e ™!

<K | |ev(0) —év(0)| + Z [o* = @iHLl(o,t)
J¢€A(V)

+ Z Hezo éi’OHLl(a,b) 7

Ji e A(V

where K does depend on t. By extending the sums on the right hand side to all edges
instead of the adjacent ones we get that (3.22]) does hold which concludes the proof. [

3.5 The Coupled System

In this part, we deal with the well posedness result for the complete system. The results
of both separate parts are put together in order to construct solutions to the coupled
problem

0, v=20
ij <8tV + ;Ap) = ijf(V)
I7, (Oie+ Vo.e) =17g(e)

~ 3.23
I7.V - (e(0,") — eret) = Q(v, €,1) (3:23)
IJse(l, ) = €in
Lyp=p°
Alv =0,
together with the energy coupling
1
éV:V—V Z Al|v Vel (t, ci(t Z Az‘v )’ev(t)
JieTH(V J;eOH(V
1 (3.24)
ev(0) = —— Atlv'(0)]€4(0, ei(t))
ZJiEOutt(V) AZ|’01(O)| J; E(%t; ) ‘ ‘ '

ei(tv _'Ci(t)) = €V(t), VJJ € O(V)
for all nodes V € V.

Definition 3.5.1 Given T > 0, a couple (e,v) is a solution to (3.23)-(3.24) on the time
interval [0, T if the following conditions are satisfied.
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3.5 The Coupled System

1. e=(e7,eq) = ((61,...,€N),(6]1,...,€JL)), and v = (vl,...,vN).
2. For the given node energies ez, v is a solution as defined in Definition|3.5. 1]
3. For the given velocity v, e is a solution as defined in Definition |3.4. 1|

We finally state the main result of this chapter.

Theorem 3.5.2 Fiz T > 0 and, for every Jx € Jo, functions
Qr € L ([0,400); [Qumins Qmaz])- Let €0 € L([a,b];R), V.J; € J. Furthermore let f
be continuously differentiable and g be Lipschitz continuous. Then system —
admits a unique solution, in the sense of Definition|3.5.1)

Moreover, if Qp and Qy, denote two different power demands for every Ji, € Jo,
then, denoting respectively by (é,v) and (€,v) the two solutions, the following stability
estimate holds: there exists a positive constant L > 0 such that, for t € [0,T],

> [H@l - 6i“c°([0,t]) +le') ~ éi(t)HLl(Ii)} + D lev —éviicopy
JieTJ vey

_ - (3.25)
<L Y ||on - @ .
<L > ||@k— @k L0
JreJC
Proof. Define the Banach space
Xe, = C° ((0,7);RY), (3.26)
of node energy functions ey endowed with the norm
levllx,, = sup lev (o). (3.27)
tel0,T),Vey
Define also the set
Xy, =4qveC([0,T;RY) : Z Alp? =0 for every V€V 5, (3.28)
JieA(V)

which is a closed subset of the Banach space C° ([O, TY; RN ) endowed with the norm

[vllx, = sup |v(®)]. (329)
te[0,T
Finally, define the set
X = XEV X XU, (330)

which is a complete metric space endowed with the distance associated to the norm

ey, v)llx = llevllx,, + llvllx, - (3.31)

43



Chapter 3: Analysis

We consider the operator

T: X — X
(BV,’U) — (fvw)v

where w = T, (ey) is the solution of the hydrodynamics subsystem (see Theorem (3.3.3))
and f is defined in the following way. First define g = (gJ ) gv) = T. (v) as the solution
of the energy subsystem (see Theorem [3.4.3). Then denote

(3.32)

f = (fV17 . 'afVNV> = (gV17 <o 7gVNv> =gy
as the node energy functions.

T is well defined. This follows directly from the mentioned theorems. The node
energies f lie in X,,, and the velocities w lie in X,,.

T is a contraction. Fix two elements (éy,v) € X, (éy,?) € X and denote

(7, @) = T (éy,v) € X, (f )— (év, D) € X.

We have that

(7. = (70)] = [l7 =

+ o —wlx, -

cy
By Theorem we deduce that
|lw — ||y = sup |w(t) )] < o' — 0
X = > 1~ oo
<L Z ey — év||L1(o,T) < LT Z lev — évllcoo.r)
Vey Vey

< LTNy ey —évlx, -

By Theorem we deduce that

Hf— f‘ oy S0 ‘f(t) - f(t)’ < V;} va - fv‘ o001
<Ly |o _@iHLl(o,T) <LT Y |0’ _@iHCO([O,T])

WASNS JieJ
< LTNg4 ||17—17HXU.

Therefore

|(7.0) = (F.0)| <2707 + M) v, ) - @v, D)l
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proving that 7 is a contraction, provided T' < W Then by Banach’s fixed point
theorem [5] there exists a unique fixed point (e}, v*) of T in X, i.e.

T(GT/v v*) = (GT/’ U*)'

This fixed point is a solution in the sense of Definition by the definition of 7. A
sequential consideration similar to the proofs before allows the extension of this result
to arbitrary times 7.

Stability estimate. Let Q and Q (Jx € Jo) denote two different power demands.
Denote respectively with (e,p,v) and (é,p,?) the corresponding solutions. By Theo-
rem [3.3.3] we deduce that

Z o — o HCO([Ot Z lev = év iy + Z HQk _Qk‘

J; €T Jx€Jc

. (3.33)

L1(0,t)
and by Theorem [3.4.3| we deduce that

Do llev —évlicopy + Y lleft) - éi(t)HLl(u) <L) |- f)iHLl(Oﬂf)' (3.34)

vey J;eT J, €T

Using (3.21)), the spatial L'-norm can be expressed in terms of the other two C%-norms
and we get

Z (H@Z - ﬁiHCO([O,t}) + Héi(t) - éi(t)HLl(Ii)> + 2 llev = éV”CO(O,t)

JiedJ Vey

< (Kt+1) | Y10 = coqon T 2 eV = éviicops | -
J.eTJ Vey

in particular we have the estimates of (3.7) and (3.19)) point wise for all ¢

SRt = T+ D lev(t) — év(t)]

JieJ Vey

<L Y lev —évllwon + 2 10 =5l + 2 [ @— Q4

Vey Ji€T Jr€Je

L1(0,t)

We now can apply Gronwall and get

DR = O]+ D lev(t) —év(t)l

J; €T vey

<M Z HQk - Qk‘

JLe€TC

L1(04t)
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Monotonicity of the right hand side immediately implies

Z (HT’Z - 5i||c°([0,t}) +le'e) - éi(t)HLl(zi)) T Z lev = éviicoo,

JieJ Vey

SQ+E) | Y00 = o + D v —eviicowy

JieJ Vey
<+ KO Y Q- Qkf
> ( + )6 Z Qk Qk Ll(O,t),
JreTe
which concludes the proof. O

3.6 Technical Details

We end this chapter with some technical details concerning Lemma We give the
proof in the end of this section. It relies on some additional properties that are stated
and proven first.

First of all, for many estimates in the proof of Lemma [3.4.2] we need an upper bound
on the energies involved.

Lemma 3.6.1 (Boundedness of energy)
FizT <0 and a,b € R, with a < b. Letv,ep,er € L1([0,T],R) and & € L([a,b],R) all
with bounded total variation. Further let g: R — R be a Lipschitz continiuous function

with |g(y1) — 9(y2)| < Glyr — v
Then for the solution e to (3.11]) we have

e