

FRAUNHOFER INSTITUTE FOR SOLAR ENERGY SYSTEMS ISE


Project »Rock-Star« – High-Speed Rotary Printing for Solar Cell **Metallization: From Vision to Reality**

A. Lorenz¹, J. Röth², K. Zengerle¹, M. Linse¹, M. Klawitter¹, S. Tepner¹, N. Wirth³, R. Greutmann³, M. Lehner⁴, A. Senne⁵, D. Reukauf⁵, A. Mette⁶, F. Hage², M. Drews², S. Gombert³, H. Brocker³, J. Rohde⁷, E. Dörsam⁸, F. Clement¹ and R. Preu¹

¹Fraunhofer Institute for Solar Energy Systems ISE, Heidenhofstr. 2, 79110 Freiburg, Germany, Phone +49 761/4588-5299, and reas. lorenz@ise.fraunhofer.de ²ASYS GmbH, Benzstr. 10, 89160 Dornstadt, Germany ³Gallus AG, Harzbüchelstr. 34, 9016 St. Gallen, Switzerland ⁴Lehner Engineering GmbH, Ebnetstrasse 18, 9032 Engelburg, Switzerland ⁵ ContiTech GmbH, Breslauer Str. 14, 37154 Northeim, Germany

Background and Motivation

- Increasing gross throughput rate by factor 2 (8000 Wafer/h per line) compared to flatbed screen printing
- Continuous printing process instead of stop-and-go process
- Usage of low-cost printing forms
- Efficient silver consumption due to reduced paste laydown
- Development of a demonstrator machine with high technology readiness level (TRL)^[1]

Flexographic printing form with ultra fine line layout for front side metallization

⁶Hanhwa Q Cells GmbH, Sonnenallee 17-21, 06766 Bitterfeld, Germany ⁷Kurt Zecher GmbH, Görlitzer Str. 2, 33098 Paderborn, Germany ⁸Technische Universität Darmstadt (Institute of Printing Science Technology IDD), Magdalenenstraße 2, 64289 Darmstadt, Germany

Joint Project »Rock-Star«

- **7** Industry partners Project period:
- Sept. 2015 December 2019
- Supported by the German Ministry of Education and Research (BMBF)

Project Aims:

- Evaluation rotary printing
- Development of demonstrator
- Fabrication of highly efficient solar cells

Project partners:

Associated partners:

Gefördert vor

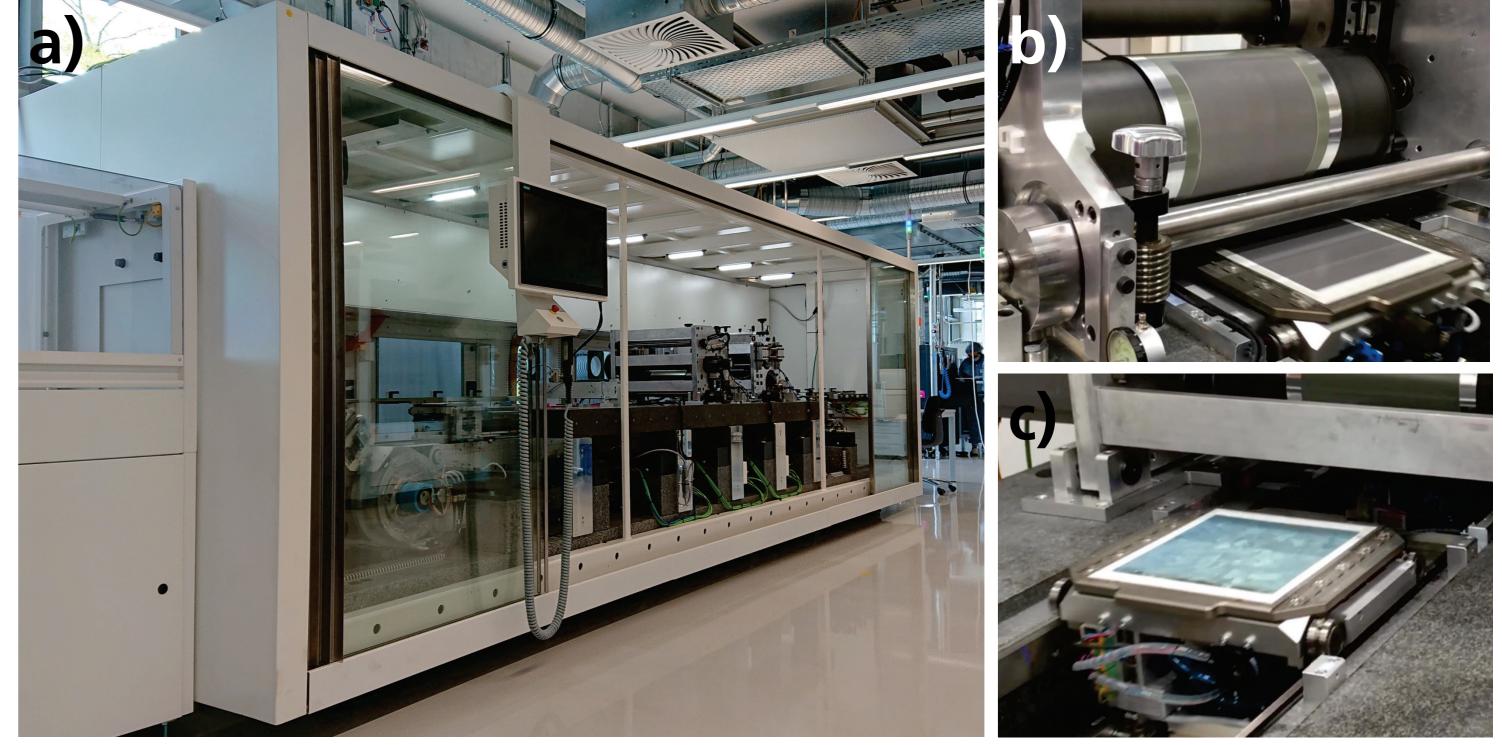
Bundesministerium für Wirtschaft und Energie und Forschung

»Rock-Star« Rotary Printing Demonstrator

Demonstrator machine for high-throughput metallization of Silicon solar cells and electronic devices

Special features:

- Innovative shuttle transport concept with autonomous energy supply, vacuum system
- High-speed camera positioning system
- Flexo printing unit (front side metallization)
- Rotary screen printing unit (rear side metallization)
- Cycle time down to < 0.5 s per cell


Fields of application:

- Solar cell front and rear side metallization (PERC, HJT, TOPCon)
- Electronic devices (PCB, fuel cell, power electronic devices etc.)
- Application of functional inks/pastes

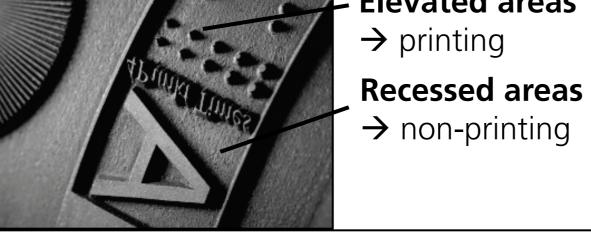
Rotary Screen and Flexographic Printing

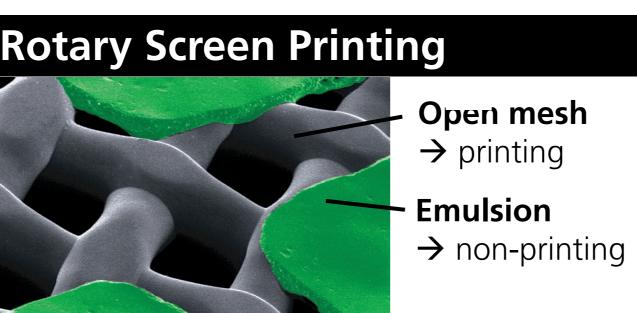
Flexographic Printing: Flexible printing plate/sleeve

Flexographic Printing - Elevated areas

»Rock-Star« Rotary printing demonstrator device (a), rotary screen printing unit (b) shuttle transport of a PERC solar cell through the printing units (c)

Major results of Project »Rock-Star«


Development of »Rock-Star« demonstrator machine Over1000 Al BSF and PERC solar cells metallized using flexography and rotary screen printing^[3] Feasibility of rotary printed metallizaton demonstrated on cell and module level: mc-Si PERC solar cells $\eta_{max} = 19.7 \% (\eta_{\varnothing} = 19.3 \%)$ 9-cell demonstrator modules with SmartWire (SWCT)^[4] interconnection



Fine lines down to $w_n = 5 \ \mu m$ on printing form^[2] Printed contact finger width down to $w_f \approx 30 \ \mu m^{[3]}$

Rotary Screen Printing: Cylindric, rotating screen Commercial metallization pastes (slightly modified) Front and rear side metallization

of PERC solar cells successfully demonstrated^[3]

Working principle of flexography and rotary screen printing method.

[1] Mankins, White Paper (1995) [2] Lorenz et al., J. Sol. Energ. Mat. 157 (2016) [3] Lorenz, PhD Thesis (2018) [4] Söderström et al., Proc. 28th EUPVSEC (2013)

9-cell demonstrator module with partly rotary screen printed mc-Si PERC solar cells and SmartWire interconnection

This work was funded by the German Ministry of Education and Research (BMBF) within the project "Rock-Star" (contract number 13N13512).