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Abstract

A solution that is only reliable under favourable conditions is hardly a safe solution. Min
Max Optimization is an approach that returns optima that are robust against worst case
conditions. We propose algorithms that perform Min Max Optimization in a setting where
the function that should be optimized is not known a priori and hence has to be learned
by experiments. Therefore we extend the Bayesian Optimization setting, which is tailored
to maximization problems, to Min Max Optimization problems. While related work ex-
tends the two acquisition functions Expected Improvement and Gaussian Process Upper
Confidence Bound; we extend the two acquisition functions Entropy Search and Knowl-
edge Gradient. These acquisition functions are able to gain knowledge about the optimum
instead of just looking for points that are supposed to be optimal. In our evaluation we
show that these acquisition functions allow for better solutions - converging faster to the
optimum than the benchmark settings.
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1. Introduction

Only in the lab, during development, engineers have control over the environment in which
their artifact has to work. When the artifact is used, these environmental conditions are out
of control. So to guarantee a certain level of performance, engineers have to find a solution
that is robust against changes in the environment. For this optimization we formally assume
the artifacts’ performance is given by a function f : Θ × Z → R, where Θ is the space of
controllable parameters and Z is the space of environment conditions, and use the Min
Max Optimization given by:

min
θ∈Θ

max
ζ∈Z

f(θ, ζ). (1)

In this paper, we will study this problem with a continuous set of controllable parameters
Θ and a discrete set of uncontrollable parameters Z.

In many practical situations the performance metric, f(θ, ζ), is unknown and has to
be treated as a black box. Bayesian Optimization is an established iterative framework
for optimization of black box functions, that is - due to its sample efficiency - particularly
useful when function evaluations are costly (Shahriari et al. (2016)). In each iteration,
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Bayesian Optimization suggests a new location (θn+1, ζn+1). After evaluating the black box
function at this location, yielding the observation y, the existing data set of observations
Dn is extended with this observation Dn+1 = Dn ∪ {((θn+1, ζn+1), y)}. Typically Bayesian
Optimization uses a Gaussian Process (Rasmussen and Williams (2006)) as a surrogate
model and an acquisition function for suggesting the next experiment to be performed (or,
in other words, the next parameter to be evaluated), (Srinivas et al. (2010); Hennig and
Schuler (2012); Frazier (2018); Shahriari et al. (2016)).

A distinguishing feature between acquisition functions are the properties a returned
candidate is expected to have. The Gaussian Process Upper Confidence Bound (GP-UCB)
(Srinivas et al. (2010)) and Expected Improvement (Jones et al. (1998)) return candidates
that are potentially the optimum, while Entropy Search (Hennig and Schuler (2012)) and
Knowledge Gradient (Frazier (2018); Frazier et al. (2009)) return candidates that increase
the information about the optimum. So, as the information can increase also by by the
exclusion of candidates, these latter acquisition functions explicitly encourage to evaluate
non optimal points.

Related Work The existing approaches for extending the Bayesian Optimization frame-
work to the Min Max problem usually pick an acquisition function that was designed to
work for maximization problems and alter it such that it also works for the Min Max prob-
lem. The literature is dominated by approaches that extend GP-UCB (e.g., Sessa et al.
(2020); Bogunovic et al. (2018); Wabersich and Toussaint (2015)) or the Expected Improve-
ment (ur Rehman and Langelaar (2015),Marzat et al. (2016)). They use two acquisition
functions: one to find the candidate for the controllable parameter and one to find the un-
controllable parameter that is a good candidate for the worst case match for the controllable
parameter candidate. The GP-UCB approaches of Sessa et al. (2020) and Bogunovic et al.
(2018) tackle problems that cover the Min Max problem as a special case.

Our approach deals with the adaption of two acquisition functions: Entropy Search and
Knowledge Gradient. They were already adapted to the case when robustness is not required
with respect to the worst case but with respect to the mean: Fröhlich et al. (2020) adapted
the Entropy Search while Toscano-Palmerin and Frazier (2018) adapted the Knowledge
Gradient. While, for the Knowledge Gradient, the necessary adaptions are similar for both
kinds of robustness, they differ strongly when it comes to Entropy Search.

In contrast to the GP-UCB and Expected Improvement approaches, the focus of Entropy
Search and Knowledge Gradient on information improvement allows us to use only one
acquisition function. Our hypothesis is that the empirically observed good performance of
Entropy Search and Knowledge Gradient for the maximization problem are inherited by
our adaptions to the Min Max Optimization.

Contributions In short, our contributions are: (i) the adaption of the Entropy Search
and Knowledge Gradient acquisition functions for the Min Max problem, (ii) the demon-
stration of their efficiency in comparison to Thompson Sampling (Thompson (1933)) and
the algorithm of Wabersich and Toussaint (2015) (on synthetic problems), (iii) the discus-
sion of the results, showing the advantageous behaviour of our adaptions and (iv) an outline
of our future work.
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2. Bayesian Optimization for Min Max Optimization

We tailor the two acquisition functions, Entropy Search (Hennig and Schuler (2012)) and
Knowledge Gradient (Frazier (2018); Frazier et al. (2009)), so that they are applicable for
searching the Min Max point.

Entropy Search In Entropy Search, we seek candidates that improve the knowledge
about the location of the optimum. Given the set of observations Dn, the Entropy Search
acquisition function is defined by: αES((θ, ζ);Dn) := E

[
η?n − η?n+1

∣∣ (θn+1, ζn+1) = (θ, ζ)],
where η?n is the entropy of a distribution popt derived from the current Gaussian Process
surrogate model that represents our knowledge about the location of the optimum and
η?n+1 = η?n+1(y) is the same quantity derived from the Gaussian Process surrogate model
that was updated with the fictive observation y at location (θ, ζ). The expectation is taken
with respect to the measure for the fictive observation y induced by the (not updated)
current surrogate model. The distribution popt is given by popt((θ, ζ)) = p((θ, ζ) = (θ?, ζ?)),
where p is the measure of the Gaussian Process surrogate model and (θ?, ζ?) is the searched
optimum. In our context, this is the Min Max point and in the original Entropy Search
setting it is the global maximum.

In the original maximization setting there is no closed form expression for the distribu-
tion and instead two approximations are used: first, the uncountable search space is replaced
by a finite set of representative points. Second, Expectation Propagation (EP) (Minka and
Lafferty (2013)) is used for estimating the distribution over the optimum within these repre-
sentative points. We follow the first approximation and introduce the representative control-
lable parameters θ1,θ2, ....,θN . While following the second approximation we encountered
the obstacle that in the Min Max setting the distribution does not have a nice multiplicative
decomposition into terms that depend on maximally two locations of the Gaussian Process
(as it is needed for EP). Instead, we express: popt((θ, ζ)) = pMin Max ((θi? , ζ

?)) as

∫ ∏
ζ∈Z
ζ? 6=ζ

H [f (θi? , ζ
?)− f (θi? , ζ)]

∏
i∈{1,...,N}\i?

1−
∏
ζ∈Z
ζ? 6=ζ

H [f (θi? , ζ
?)− f (θi, ζ)]

 p (f) df,

(2)
where H is the heavy side function and p is the measure of the Gaussian Process. To derive
this expression we used that stating the point (θ?, ζ?) is the Min Max point of function f
is equivalent to the following two statements:

• For the worst case optimal controllable parameter θi? , the function value f(θi? , ζ
?)

is the worst case among all uncontrollable parameter; in short: f(θi? , ζ
?) ≥ f(θi? , ζ)

for all ζ ∈ Z,

• For all other controllable parameter settings θi for i ∈ {1, ..., N} \ i?, the function
value f(θi? , ζ

?) is exceeded for at least one uncontrollable parameter setting; in short
f(θi? , ζ

?) ≤ f(θi, ζ) for at least one ζ ∈ Z.

Our workaround for the sum that emerges after multiplying out the second product in
formula 2 is to condition on the argmax function g, this is the function that maps each
controllable parameter setting θ to the worst case uncontrollable parameter setting. We
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consider the conditional probability of θi? being the minimizer of the worst case function:
P (θi? is optimal | g is the argmax function). Up to a normalization constant this conditional
probability is given by∫ N∏

i=1

∏
ζ∈Z
ζ? 6=ζ

H [f (θi, g (θi))− f (θi, ζ)]
∏

i∈{1,...,N}\i?
H [f (θi, g (θi))− f (θi∗ , g (θi∗))] p (f) df,

(3)
where the first product (over the index i) under the integral is the indicator for the function
g to actually be the argmax function and the second product is the indicator for θi? to
be the minimizer of the worst case function f(θi, g(θi)). To estimate (the unconditional)
probability of θi? being the minimizer of the worst case function, we sample argmax func-
tions g1, g2, ..., gM from the Gaussian Process and take the mean of the resulting conditional
probabilities.

As the integrand in formula 3 is a product of terms that depend on maximally two
locations of a Gaussian Process, we can reuse large parts of existing Entropy Search imple-
mentations: our implementation is based on the GPyOpt package (The GPyOpt authors
(2016)).

Knowledge Gradient The Knowledge Gradient acquisition function αKG (Frazier et al.
(2009); Frazier (2018)) reflects how strongly the optimum of the mean of the surrogate model
is influenced by a function evaluation at a given location. The acquisition function is defined
analogously to the one for Entropy Search. The entropies, η?n and η?n+1(y), are replaced by
the means, µ?n and µ?n+1(y), of the corresponding Gaussian Processes: αKG((θ, ζ);Dn) :=
E
[
µ?n − µ?n+1

∣∣ (θn+1, ζn+1) = (θ, ζ)],

For maximization, an implementation is described in Frazier (2018) Algorithm 2. Adopt-
ing this approach, that uses Monte Carlo estimates for the expectation and grid search for
maximising the acquisition function, is straight forward. The more scalable approach, that
uses stochastic gradient descent for finding the maximum of the acquisition function, as
implemented in Algorithm 3 and 4 in Frazier (2018), is left for future work.

3. Experiments

To test our approaches, we adapt three synthetic two-dimensional problems, namely the
branin, the six-hump camel and the eggholder function1. Our test cases, visualized in
Figure 1, are representative for three problems: the robust optimum is at the boundary, at
a not differentiable and at a differentiable location of the worst case function. We benchmark
our methods2 against Thompson Sampling (Thompson (1933)) and the GP-UCB approach
of Wabersich and Toussaint (2015).

Further details about our experimental setup and the benchmark implementations can
be found in appendix A and appendix B.

We run 100 trials with randomized initializations of (in total) 5 points and measure
the mean absolute residuals (the mean absolute difference of the current function value at
the estimated Min Max location and the function value at the real Min Max location), see

1. https://www.sfu.ca/∼ssurjano/optimization.html

2. https://github.com/fraunhofer-iais/MinMaxOpt
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Figure 1: The three different test problems are adaptions of the functions branin, six-hump
camel and eggholder. The vertical line indicates the Min Max location. In branin?, the
Min Max point is at the boundary and the argmax function is nearly constant. In six-hump
camel? the Min Max point is at a non differentiable point of the argmax functions. In
eggholder?, the optimum lies in a local optimum of one of the functions and the argmax
changes frequently.

Figure 2. For all test cases, Entropy Search, Knowledge Gradient and Thompson Sampling
show superior performance over the benchmark of Wabersich and Toussaint (2015). The
benchmark’s unfavourable behaviour is caused by the deteriorations due to maximization in
the inner loop that could not be counterbalanced by the improvement due to minimization
in the outer loop. This is particularly noticeable for the branin? and the camel? problem,
as the oscillation is especially large in the first iterations, when the minimizing loop lacks a
sufficient amount of data. For eggholder?, the performance in the first iterations is compara-
ble to the other acquisition functions, but the algorithm of Wabersich and Toussaint (2015)
tends to get stuck in a local minimum. Knowledge Gradient shows a fast convergence in
the first iterations, but sticks to local optima as well, as can be seen for the eggholder? case.
This is due to a lack of exploration, as the Knowledge Gradient only concentrates on the
difference of the mean function values. On the contrary, Thompson Sampling, that performs
well on branin? and camel?, explores too heavily on the eggholder? problem. This is due
to the short (and fixed) lengthscales of the underlying Gaussian Process, as their is a high
variance in the samples drawn from it, when the amount of training data is low. Entropy
Search is comparable to Thompson Sampling in the smooth problems (branin? and camel?).
But it shows its superior performance on the eggholder? problem, as it does not explore as
aggressively as Thompson Sampling, but exploits the problem structure when estimating
the probability of being the Min Max location. Further analyses (e.g., standard deviations,
influence of algorithm parameters in Entropy search) are provided in appendix C.

4. Conclusion and Future Work

We extended two existing acquisition functions - Entropy Search and Knowledge Gradi-
ent - such that they are applicable for solving the Min Max problem. We compared and
benchmarked the algorithms on three representative problems. We could show the com-
parable or advantageous performance of our approaches against two existing benchmarks,
namely Thompson Sampling (Thompson (1933)) and Wabersich and Toussaint (2015). The
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Figure 2: Mean residuals of the different algorithms on the three test problems.

Knowledge Gradient acquisition function shows a very fast convergence during the first
iterations but might get stuck in local minima. Entropy search converges slower, but it
comes close to the optimum even for the eggholder problem in an acceptable number of it-
erations. Regarding our hypothesis in the beginning, we showed that the empirically shown
good performance of the acquisition functions Knowledge Gradient and Entropy Search for
maximization is transferable to Min Max Optimization.

Future Work There are two directions for future work: enhancements to the adaption
of the Entropy Search acquisition function and to the experimental sections. For the adop-
tion of the Entropy Search acquisition function, Gessner et al. (2019) enables us to directly
approximate Equation 2 with the Expectation Propagation algorithm, instead of enforcing
a product representation as we are doing currently by conditioning on the argmax function.

Furthermore, Max-value Entropy Search (Wang and Jegelka (2017)) allows to apply that
the Min Max value is the maximal value that is, for each controllable parameter setting,
exceeded (including matched) for at least one setting of the uncontrollable parameter. This
alternative approach has the potential to be more accurate and easier to compute as it was
seen where the goal was maximization (Wang and Jegelka (2017)), where it was robustness
with respect to the mean (Fröhlich et al. (2020)), and where it was Pareto optimality
(Belakaria et al. (2019)).

We plan to perform tests on higher dimensional test settings and to benchmark against
other state-of-the-art approaches such as (Sessa et al. (2020)). Additionally, as it is easy to
extend our approaches to the case where the space of uncontrollable parameters Z is not
finite, we will perform experiments to test its performance for this setting.

Acknowledgments

This work was jointly developed by the Fraunhofer Center for Machine Learning within
the Fraunhofer Cluster for Cognitive Internet Technologies and the Fraunhofer Lighthouse
projects ML4P and SWAP.

6



ICML 2020 Workshop on Real World Experiment Design and Active Learning

branin? six-hump camel? eggholder?

description negated branin six-hump camel† eggholder
fixed slices {0, 4, 8, 12} {-0.9, 0, 1} {-512, 0, 185}

min-max location (-5, 12) (0, 0), (0, 1) (234.647671, 185)
(σn, σv, l) (0.001, 1, (0.2, 0.4)) (0.001, 0.5, (0.2, 0.2)) (0.001, 1, (0.09, 0.09))

Table 1: The test problems are adaptions of the traditional branin, six-hump camel and
eggholder function. To match our Min Max problem, we treat the first dimension as control-
lable parameters θ and the second as uncontrollable parameters ζ. We fix a set of parameters
in the second dimension, producing multiple slices. Additionally, we make small adaptions
to construct interesting problems for Min Max Optimization. The parameters (σn, σv, l)
are the hyperparameters we used for the Gaussian Process. †: restricted to [−3, 3]× [−2, 2]
and transformed by log(f(θ, ζ) + 2).

Appendix A. Test Setup

During the optimization, we use a Gaussian Process with an automatic relevance determi-
nation squared-exponential covariance function and zero mean function with fixed hyper-
parameters (signal variance σ2

v , lengthscales l and noise variance σ2
n), to avoid disturbances

of the analysis due to wrongly estimated hyperparameters.

Furthermore, we applied the Gaussian Process model to scaled versions of the functions:
the input locations of the functions are fit to the bounding box [0, 1]2 and the output values
of the functions are normalized to zero mean and variance 1. A summary of the test setups
is provided in Table 1.

We developed our code with the use of the python packages GPyOpt (The GPyOpt
authors (2016)) and BoTorch (Balandat et al. (2019)).

Appendix B. Benchmarks

For Thompson Sampling, a sample of a Gaussian Process is drawn in every iteration and
its optimum location (here: the Min Max) used for the next evaluation. As we use a
discretization to find the Min Max location of the sample (due to discontinuous partial first
derivatives of the worst case function we cannot use traditional gradient based optimizers),
we also use this discretization for sampling from the Gaussian Process, avoiding expensive
operations like spectral sampling (Lázaro-Gredilla et al. (2010)).

The algorithm of Wabersich and Toussaint (2015) stays in the nested setting of the
Min Max problem, resulting in an outer optimization loop for minimizing and an inner for
maximimizing given the current candidate for the minimum. Here, GP-UCB with a tailored
exploration-exploitation-tradeoff parameter β for the current optimization state, favouring
exploration at the beginning of the optimization and exploitation at its end, is used.

Appendix C. Further results

For the standard deviations of the acquisition functions on the test cases, see Figure 3.
The overall large size of standard deviations is due to the low number of samples for the
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Figure 3: Standard deviations (one standard deviation interval is coloured) and means of
residuals of the acquisition functions on the test problems. The benchmark of Wabersich
and Toussaint (2015) is simply called ‘”Benchmark”’ here.
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Figure 4: Residuals on the camel problem for different numbers of representative points
and a fixed number of 10 argmax samples.

initialization. In the worst case, all 5 samples have the same coordinate for the second axis,
resulting in a long exploration phase. The standard deviations of the information-based
acquisition functions Entropy Search and Thompson sampling shrink with a higher number
of iterations, as the algorithm gains further knowledge about the location of the optimum.

For the Entropy Search algorithm the number of representative points has a smoothing
effect on the performance, see Figure 4. The higher the number of samples, the smoother
the convergence plot; the speed of convergence is not effected (small differences are due to
the high standard deviations of our experiments).
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