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- the heat flow removed by the fluid Quse (W*m-² 
aperture). 

 
The detailed model in [2] is a thermal multi-node 

model, using an energy balance for each node/layer. 
This energy balance is based on angle-dependent 
absorbance and transmittance (for each layer), 
temperature-dependent formulas for the convection 
and the infrared heat-exchange, and constant thermal 
resistances for conduction around the edges. The 
complex energy balance is then resolved by a solver 
to calculate the outputs. 

 
The parameters of the model (spacing-properties, 

IR-values…) have been calibrated for the first 
prototypes by calorimeter measurements. This 
parameterization must be carried out anew for each 
type of collector. 

A TRNSYS type was made of this detailed 
model. Many whole-year simulations using TRNSYS 
were then carried out with the developed TRNSYS 
type coupled to a building and its HVAC system. The 
simulations showed the energy saving potential of 
such TSTCs, as presented in [4]. 

 
The detailed model is validated against validated 

software, a flat plate collector measurement and  
measurements of a glazing unit with integrated 
blinds. Finally, the model is validated by calorimeter 
measurements of a transparent solar thermal collector 
prototype. The validation methodology is explained 
in [3]. 
 

Need of a simplified model 

 
A simplified model of TSTC was already 

presented in [5]. However, this simplified model was 
not capable of accurately modeling Qint and Quse, 
since it neglects the effect of the  operating mode on 
Qint and underestimates Quse with increasing fraction 
of diffuse irradiance. As a result, the calculated 
heating and cooling loads were sometimes over or 
underestimated, when the errors in the simplified 
model reinforced each other.  
 
 The detailed model is accurate but complex, 
with over 300 parameters to fit on the basis of 
measurements. 
 
  
 
 Apart of the simplicity of use, a simplified 
model is needed for several reasons: 
-A simplified model with only 5 parameters to fit 
requires only a limited number of expensive 
calorimetric measurements. 
- Computational time can be reduceded by using a 
simplified model instead of a detailed model. 

- A simplified model may allow to compare façade 
collectors by including the simplified model in a 
norm, as it is done for standard roof collectors[6]. 
 
 This papers aims to present a new simplified 
model, in order to allow a good modeling of Quse and 
Qint. 

 

SIMPLIFIED MODEL 

Existing model for opaque collectors 

The efficiency η Quse/G	of collectors, as given, for 
example, in [6], is usually calculated by 
 

∗ ∗ ∗  

 
(1) 

With  

- 	
	

 [m2*K *W-1] 

- a1: linear heat loss coefficient in [W*K-1*m-2]. 
- a2: second order heat loss coefficient in [W*m-

2*K-2]. 
- G the global irradiance on the collector surface 

in W*m-². 

- 	 , ,    

- Text the ambient temperature. 
- η0  the efficiency at zero temperature difference 

between the mean fluid and the ambient temperature. 
 

New Model 

Contrary to opaque collectors, the efficiency 
of a façade collector also depends  on the temperature 
of the building interior.  The following formula was 
developed: 
 

	
 , ∗ , ∗ ∗ 	

, ∗ , ∗ ∗  

(2) 

 
With  

- 	
	

 [m2*K *W-1] 

- 	
	

 [m2*K* W-1] 

- a1,int: internal linear heat loss coefficient [W*K-

1*m-2], 
- a2,int: internal second order heat loss coefficient 

[W*m-2*K-2], 
- a1,ext: external linear heat loss coefficient 

[W*K-1*m-2], 
- a2,ext: external second order heat loss coefficient 

[W*m-2*K-2], 
- G: total irradiance on the collector surface 

W*m-², 

- 	 , ,  : the mean fluid 

temperature in the collector, 



 

 

- Tint: the temperature of the building interior, 
- Text: the ambient temperature, 
- η0: the efficiency at zero temperature 

difference between the fluid, the front and the back 
of the collector.[3] 
 
 The hypothesis is that the heat flux to the 
interior Qint equals: 
 

	 , ∗ ∗ , ∗ ∗  (3) 

 

Parameterization of the new model 

 
In order to test this simplified formula, the 

collector prototype developed in [3] was chosen. A 
validated, detailed model already exists for this 
prototype. This allows us to use accurate stationary 
simulations in order to parameterize the simplified 
formula. 

For the parameterization, four input 
parameters were varied: the exterior temperature Text, 
the building interior temperature Tint, the direct 
normal irradiance on the collector G and the fluid 
inlet temperature Tfluid,in. The outputs were Quse, the 
heat flux transmitted to the fluid, and so the 
efficiency η for each simulation. 

 
First, we calculated η0 by setting Tint=Text 

and varying Tfluid,in until X=Y=0. η0 was found to be 
equal to 0.6989. 

 
Simulations were carried out using many 

combinations of the four input parameters, varying 
within following ranges: 
- Text was varied within [-20;40] with 5°C steps. 
- Tint was varied within [0;40] with 5°C  steps. 
- Irradiance was varied within [50;1100] with 50 
W*m-2  steps. 
- Tfluid,in was varied within [20;80] with 5°C steps. 
 
 All values were simulated or calculated on 
the basis of the aperture area of the TSTCs. 
 

These 33,462 combinations of the inputs 
cover almost all possible situations. There are also 
unrealistic situations such as a Text=-20°C, Tint=40°C, 
G=1100 W*m-2, Tfluid,in=30°C. This situation is 
unrealistic because such a high indoor temperature 
would not happen in reality with such a low outdoor 
temperature. 

 
After all the combinations were calculated 

with the detailed model, the coefficients a1,int, a2,int, 
a1,ext and a2,ext of the simplified model were 
parameterized. The parameterization was done by 
using a solver to minimize the Root Mean Squared 
Error (RMSE) between detailed and simplified 
model. The parameterization leads to following 
formula: 

 
0.6989

4.506 ∗ 0.00095 ∗ ∗ 	
1.010 ∗ 0.003294 ∗ ∗  

(4) 

 
For these values, the RMSE for the 

efficiency η was equal to 0.0300.  
 
So the proposed formula is able to predict 

the efficiency η – and the resulting Quse -with a good 
accuracy.  

 
The coefficients determined show greater 

losses towards the exterior. This corresponds to the 
collector geometry, with a single glazing towards the 
exterior and a double glazing towards the interior.  
 

Influence of the set of simulations chosen 

 
To assess the impact of the set of 

simulations used to parameterize the formula, another 
set of simulations was used. This time, the simulation 
inputs were inspired by the standard EN 12 975-2. 
This standard gives indoor and outdoor measurement 
rules for determining  efficiency curves of opaque 
collectors: 
- The standard requires that at least four different 
values of Tfluid,in are used. We used 13 values, with 
Tfluid,in varying within [20;80] with 5°C steps. 
- Text and the irradiance were taken from weather data 
(Stuttgart, Germany). Situations were chosen where  
the irradiance on the collector surface is above 700 
W*m-2, as required by the standard. Ten pairs of Text 
and irradiance taken from a summer week were 
simulated. 
- Tint was varied within [15;35] with 5°C steps. This 
corresponds to the range of indoor temperatures you 
can encounter during a summer week in Germany. 
 
 All 650 combinations were simulated. The 
coefficients of the simplified formula were optimized 
to fit the simplified model to the detailed one in all 
650 simulations. 
 

The parameterization leads to the following 
formula: 

 
0.6989

4.792 ∗ 0.004805 ∗ ∗ 	
0.9566 ∗ 0.002373 ∗ ∗  

(5) 

 
For these values, the RMSE for η was equal 

to 0.0023.. 
 
 

The same process was done for 10 winter 
situations: 
- Tfluid,in was varied within [20;80] with 5°C steps. 
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important for the thermal simulation of building. We 
proposed to extrapolate Qint from formula (2), with: 
   

	 , ∗ ∗ 	 , ∗
∗

(3) 
 

 

 However, for the three sets of simulations 
used (all combinations including unrealistic cases, 
summer cases, and winter cases), formula (3) was not 
able to model Qint. For example, for the summer 
cases the RMSE value for Qint was 19.7 W*m-2. The 
mean value of Qint over all summer cases for the 
detailed model was 47.9 W*m-2

. Even when fitting 
the coefficients to decrease the RMSE on Qint 

(without regards to ), Formula (3) was not able to 
model Qint. The RMSE was, for example, equal to 
11.0 W*m-2 for the summer cases. On possible 
explanation is that the simplified model doesn’t take 
into account the edge effects and the energy flowing 
from the exterior directly to the interior through the 
edge.  

 

CONCLUSION 
 A new simplified model to calculate the 
efficiency of Transparent Solar Thermal Collectors 
(TSTCs) has been presented and compared with other 
models. 

 A detailed, validated model of a TSTC was 
used to parameterize the simplified model using 
different simulation data sets. 

 First investigations showed that the formula 
was not able to predict the heat flux Qint from the 
collector to the interior. However, the formula has 
been proven to accurately model the collector’s 
efficiency η  for several sets of simulations. The 
influence of the choice of  data set used to 
parameterize the simulations appears to be negligible. 

 This new simplified model is capable of 
modelling the collector gain. Further tests using  
other types of solar thermal façade collectors, such as 
[2] still need to be performed. The parameters can be 
fitted on the basis of measurement or on the basis of 
a physical model. It is still necessary to find a 
simplified model which is capable of predicting the 
heat flux Qint to the interior. 

 One long term goal is to  have a comparison 
tool for façade collectors, such as formula (1) for 
opaque collectors. Such a formula could be 
integrated in a future standard for façade thermal 
collectors. 

NOMENCLATURE 
 
Qint = heat flow from the component towards the 
interior in W*m-² aperture. 
Quse = heat flow removed by the fluid in W*m-² 
aperture. 

a1 =  linear heat loss coefficient in W*K-1*m-2. 
a2 = second order heat loss coefficient in W*m-2*K-2. 
G = irradiance on the collector area in W*m-². 

	 , ,   , mean fluid temperature. 

Text = ambient temperature. 
Tint = temperature of the building interior. 

, 	
	

 = equivalent ambient 

temperature. 
η0 = efficiency with no temperature difference 
between the fluid and the ambient temperature. 
a1,int = internal linear heat loss coefficient in  
W*K-1*m-2. 
a2,int = internal second order heat loss coefficient in  
W*m-2*K-2. 
a1,ext = external linear heat loss coefficient in  
W*K-1*m-2. 
a2,ext= external second order heat loss coefficient in  
W*m-2*K-2. 
G the total irradiance on the collector surface in 
W*m-². 
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