7th HPC 2016 / 4th ICMC 2016 Chemnitz, Germany, May 31-June 2, 2016

Experimental investigations on the machinability of tungsten carbides in orthogonal cutting with diamond coated tools

Michael Ottersbach Fraunhofer Institute for Production Technology IPT Aachen, Germany

Introduction and motivation The market for forming dies will continuously increase...

Introduction and motivation

Tungsten carbides are very challenging for milling operations

E-Modulus 210 [kN/mm²] 600 Hardness 900 [HV] 1650 K_{IC} 25 [MPa·m^{1/2}] 15 Steel Tungsten Carbide

Source: Thyssen Krupp Presta, Fraunhofer IPT, WZL

Properties of tungsten carbides when milling lead to:

- Failure of coatings and cutting edges breakages
- Unreproducible and uneconomical machining processes

First investigations show the potentials of milling tungsten carbides, but...

...lack of knowledge lead to :

- Short tool life time
- Unreproducible machining processes
- Bad workpiece quality
- High tool and process costs

© WZL/Fraunhofer IPT

Introduction and motivation Economical and scientific challenges

Economical question:

How to achieve reproducible and economical milling processes for forming tools made of tungsten carbides?

Scientific questions:

- 1) What is the thermo-mechanical loading when milling tungsten carbides?
- 2) What are the influencing factors and what is their impact on the milling process performance?
- 3) How can milling processes of tungsten carbides be adjusted to become reproducible and economical?

© WZL/Fraunhofer IPT

Structure

- **I** Introduction and motivation
- 2 Scope of research
- 3 Experimental investigations
- 4 Results
- 5 Summary and future activities

Scope of research **Thermo-mechanical loadings / Machinability**

Uncut chip thickness h_{cu} : 3-30 µm

WC-11,8Co; fine grain WC-17,5Co; fine grain *Rake angle y*:

0° (const) Cutting edge rounding r_{β} : 5 μm, 19 μm, 29 μm

© WZL/Fraunhofer IPT

Structure

- 1 Introduction and motivation
- 2 Scope of research
- **3** Experimental investigations
- 4 Results
- 5 Summary and future activities

Experimental investigations Fundamental qualification of work piece and tools

IPT

Experimental investigations Analysis of Machining Behaviour – Analogy Process

Structure

- **1** Introduction and motivation
- 2 Scope of research
- **3** Experimental investigations

4 Results

5 Summary and future activities

Results Chip formation of tungsten carbides

WC-17,5Co			WC-11,8Co		
v _c =70 m/min r _β =19 μm		v _c =70 m/min r _β =19 μm			
v _c =140 m/min r _β =19 μm		v _c =140 m/min r _β =19 μm			
	Process setup Orthogonal cutting	v _c =70 m/min r _β =5 μm			
	h _{cu} = 10 μm Tool geometry: $\alpha = 15^{\circ}; \gamma = 0^{\circ}$	v _c =70 m/min r _β =29 μm			

© WZL/Fraunhofer IPT

Results Evaluation of cutting force

• WC-17,5Co;1150 HV10

Influence of cobalt content on cutting force components

© WZL/Fraunhofer IPT

Influence of cobalt content on cutting force components

An increasing cobalt content effects decreasing force components

© WZL/Fraunhofer IPT

Influence of cutting velocity on cutting force components

Material and hardness WC-11,8Co;1400 HV10

Tool geometry

clearance angle: $\alpha = 15^{\circ}$ rake angle: $\gamma = 0^{\circ}$

Cutting edge radius $r_{\beta} = 19 \ \mu m$

Kienzle-Model

 $F_i = K_{i,1.1} \cdot b \cdot h_{cu}^{(1-m_i)}$

Cutting velocity

- v_c = 70 m/min
- v_c = 140 m/min

© WZL/Fraunhofer IPT

Influence of cutting velocity on cutting force components

An increasing cutting velocity effects slightly decreasing force components

© WZL/Fraunhofer IPT

Influence of tools' micro geometry on cutting force components

© WZL/Fraunhofer IPT

Influence of tools' micro geometry on cutting force components

force components but higher sensitivity against tool failures

© WZL/Fraunhofer IPT

Structure

- 1 Introduction and motivation
- 2 Scope of research
- 3 Experimental investigations
- 4 Results
- **5** Summary and future activities

Summary and Outlook Main results

- Ductile cutting with continuous chips of tungsten carbides up to h_{cu} = 25 µm is possible with diamond coated tools
- An increase of cobalt of the workpiece material shows longer chips with a high chip curvature
- Smaller cutting edge radii result in short chips and brittle fracture of the workpiece material
- A significant decrease of the cutting force is seen when using a tool with small cutting edge radius
- High sensitivity for tool failures when using tools with high cutting edge radii
- The cutting velocity just has a slight influence on the cutting forces but significantly influences the chip formation towards more brittle chips

Summary and Outlook Future work

- Evaluation of the influence of grain size on the machinability
- Variation of the tool's macro geometry
- Evaluation of thermal loads while machining tungsten carbides
- Analysis of surface integrity of the workpiece
- Transfer of fundamental knowledge to milling applications
- Verification and evaluation of achieved manufacturing process chain

Milling of tungsten carbides becomes possible

SPONSORED BY THE

Federal Ministry of Education and Research

MANAGED BY

© WZL/Fraunhofer IPT

Experimental investigations on the machinability of tungsten carbides in orthogonal cutting with diamond coated tools

Michael Ottersbach Fraunhofer Institute for Production Technology IPT Email: <u>Michael.ottersbach@ipt.fraunhofer.de</u> Phone: +49 241 8904 451

The research is financed by the Federal Ministry of Education and Research within the project »ProCarbiMill«, funding number 02PK2456.

