
A publication by Fraunhofer IESE

Testing and the UML

A Perfect Fit.

Author:
Hans-Gerhard Gross

In part supported by
the German Federal Department of Educa-
tion and Research under the MDTS Project
Acronym.

IESE-Report No. 110.03/E
Version 1.0
October 31, 2003

Fraunhofer Institut
Experimentelles

IESE

Software Engineering

Fraunhofer IESE is an institute of the
Fraunhofer Gesellschaft.
The institute transfers innovative software
development techniques, methods and
tools into industrial practice, assists com-
panies in building software competencies
customized to their needs, and helps them
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern

Executive Summary

Testing activities that are based on models are becoming increasingly popular.
UML models represent specification documents which provide the ideal basis for
deriving test cases. They are even more valuable if UML tools are used that sup-
port the automatic test case generation. This report presents a summary of
model-based testing techniques and test modeling techniques. These are the
two fundamental aspects of testing with the UML. The first is concerned with
deriving test information out of UML models, whereas the second concentrates
on how to model test behaviour with the UML.

Keywords: Model-based testing, test modeling, unified modeling language, test case gen-
eration, test criterion.
vCopyright Fraunhofer IESE 2003

vi Copyright Fraunhofer IESE 2003

Table of Contents

1 Introduction 1

2 Model-based vs. Traditional Testing 3
2.1 Traditional White-Box Coverage Criteria and the UML 3
2.2 Traditional Black-box Testing Techniques and the UML 5

3 UML Diagram Types and Testing 6
3.1 Usage Modeling with Use Case Diagrams 6
3.1.1 Concepts of Use Case Diagrams 6
3.1.2 Use Case Diagrams and Testing 9
3.2 Structural Modeling with Class/Object, Package,

Component, and Deployment Diagrams 14
3.2.1 Concepts of Structural Diagrams 15
3.2.2 Structural Diagrams and Testing 18
3.3 Behavioural Modeling with Statechart and Activity

Diagrams 23
3.3.1 Statechart Diagram Concepts 24
3.3.2 Statechart Diagrams and Testing 25
3.3.3 Activity Diagram Concepts 30
3.3.4 Activity Diagrams and Testing 31
3.4 Interaction Modeling with Sequence and Collaboration

Diagrams 32
3.4.1 Interaction Diagram Concepts 33
3.4.2 Interaction Diagrams and Testing 34

4 UML Testing Profile 37
4.1 Structural Aspects of Testing 38
4.2 Behavioural Aspects of Testing 38
4.3 Mapping to UML Testing Profile Concepts 40

5 Summary and Conclusion 42

6 References 43
viiCopyright Fraunhofer IESE 2003

viii Copyright Fraunhofer IESE 2003

Introduction
1 Introduction

Software testing is a widely used and accepted approach for verification and val-
idation of a software system, and it can be regarded as the ultimate review of its
specification, design and implementation. Testing is applied to generate modes
of operation on the final product that show whether it is conforming to its orig-
inal requirements specification, and to support the confidence in its safe and
correct operation. Appropriate testing should always primarily be requirements
and specification centered and not code based, which means that testing should
always aim to show conformance or non-conformance of the final software
product to some requirements or specification document. Structural code infor-
mation provides a big deal of information in order to guide the testing efforts
according to testing criteria, but it cannot replace specification documents as a
basis for testing.

The Unified Modeling Language (UML) has received much attention from aca-
demic software engineering research and professional software development
organizations. It has almost become a de-facto industry standard in recent years
for the specification and the design of software systems, and it is readily sup-
ported by many commercial and open tools such as Rational’s “Rose”, Ver-
imag’s “Tau”, or “VisualThought”. The UML is a notation for specifying system
artifacts including architechture, components and finer grained structural prop-
erties, functionality and behaviour of, and collaboration between entities, and
of course, at a higher level of abstraction, usage of a system. The UML may
therefore be used to model and specify a computer system completely and suffi-
ciently in a graphic and textual form, and drive its realization. It provides all the
concepts of lower level implementation notations.

The combination of both, modeling and testing, is represented by two orthogo-
nal dimensions that we have to consider under the subject:

– Model-Based Testing which is the development of testing artifacts on the
basis of UML models. In other words, the models provide the primary
information for developing the test cases and test suites, and checking the
final implementation of a system. This is briefly introduced and related to
traditional testing in Chapter 2: Model-based vs. Traditional Testing and
further elaborated in Chapter 3. .

– Test Modeling which is the development of the test artifacts with the
UML. In other words, the development of test software is based upon the
same fundamental principles as any other software development activitiy,
since they are in fact software artifacts with special testing purpose. So,
additionally to using the UML to derive testing artifacts and guide the test-
1Copyright Fraunhofer IESE 2003

Introduction
ing process, it can be applied to specify the structural and behavioural
aspects of the testing software. This is further elaborated in Chapter 4,
UML Testing Profile.

The subject that is described in this report is mainly driven by the discussions of
the Testing Panel of the 5th International Conference on the Unified Modeling
Language (UML 2002) in Dresden, Germany, that was initiated under the topic
of whether the UML and testing may be a perfect fit. The outcome of the Ger-
man national funded MDTS project suggests that they are a perfect fit as indi-
cated through the title of this report, so the document can be seen as a strong
advocator for model-based testing and test modeling with the UML. Further-
more, it can be regarded as an initial attempt to summarize ongoing work in
form of a state-of-the-art report on model-based testing techniques and model-
driven test development that is based on the UML.
2 Copyright Fraunhofer IESE 2003

Model-based vs. Traditional
Testing
2 Model-based vs. Traditional Testing

Testing that is based on the UML has many concepts in common with traditional
code-based testing techniques as described by Beizer [Bei90], for instance.
Source code can be seen as a concrete representation of a system, or parts
thereof, and UML models are more abstract representations of the same system.
More concrete representations contain more and more detailed information
about the workings of a system. It can be compared with zooming in on the
considered artifacts, generating a finer grained representation but gradually
loosing the overview on the entire system. Less concrete representations contain
less information about details but show more of the entire system. This can be
compared with zooming out to a coarser grained level of representation making
it easier to overview the entire system but loosing the details out of sight. The
advantage of using model-based development techniques and the UML for
development and testing is that a system may be represented entirely through
one single notation over all levels of detail, that goes from very high level and
abstract representations of the system showing only its main parts and most
fundamental functions, down to the most concrete possible levels of abstraction
similar and very close to source code representations. It means that in a develop-
ment project we are only concerned with removing the genericity in our descrip-
tive documents without having to move between and ensure consistency
among different notations. The same is true when testing is considered. Code-
based testing is concerned with identifying test scenarios that satisfy given code
coverage criteria, and exactly the same concepts can be applied to more abstract
representations of that code, i.e. the UML models. In that respect we can cer-
tainly also have model coverage criteria for testing. In other words, more
abstract representations of a system lead to more abstract test artifacts, and
more concrete representations lead to more concrete test artifacts of that sys-
tem. Therefore, in the same way in that we are removing the genericity of our
representations in order to receive finer grained levels of detail and enventually
our final source code representation of the system, in parallel we have to
remove the genericity of the testing artifacts for that system and move progres-
sively towards finer grained levels of testing detail. The testing profile that is the
subject of Chapter 4 supports this parallel development effort of the testing arti-
facts.

2.1 Traditional White-Box Coverage Criteria and the UML

Coverage is an old and fundamental concept in software testing. Coverage cri-
teria [Bei90] in testing are used, based on the assumption that only the execu-
tion of a faulty piece of code may exhibit the fault in terms of a malfunction or a
3Copyright Fraunhofer IESE 2003

Model-based vs. Traditional
Testing
deviation from what is expected. If the faulty section is never executed in a test
it is unlikely to be identified through testing, so program path testing tech-
niques, for example, are amongst the oldest software testing and test case gen-
eration concepts [War64] in software development projects. This idea of cover-
age has led to quite a number of structural testing techniques over the years
that are primarily based upon program flow-graphs [Bei90] such as branch cov-
erage [Bei90], predicate coverage [Bei90], or definition-use-(DU)-path-coverage
[Mar95], to name only a few. These traditional coverage criteria all have in com-
mon that they are based on documents (i.e. flow graphs, source code) very close
to the implementation level. Traditionally, these coverage criteria are only
applied at the unit level which sees the tested module as a white box for which
its implementation is known and available to the tester. On a higher level, in an
integration test, the individual modules are only treated as black boxes for
which no internal knowledge is assumed. An integration test is traditionally typ-
ically performed on the outermost sub-system that incorporates all the individu-
ally tested units, so that we assume white-box knowledge of that outermost
sub-component, but not of the integrated individual units. Traditional develop-
ments only separate between these two levels: white box test in unit testing,
and black box test in integration testing. Additionally, there may be an accep-
tance test of the entire system driven by the highest-level requirements. More
modern recursive and component-based development approaches do not advo-
cate this strict separation since individual units may be regarded as sub-systems
in their own right, i.e. components for which no internal knowledge is available,
or integrating sub-systems, i.e. also components, for which internal knowledge
may be readily available. Particularly in component-based developments where
we cannot really strictly separate units from sub-systems both approaches may
be readily applied in parallel according to whether only black-box information,
e.g. external visible functionality and behaviour, or additionally white-box infor-
mation, e.g. internal functionality and behaviour, are available.

Typical white-box strategies comprise statement coverage or node coverage on
the lowest level of abstraction. In this instance, test cases may only be developed
when the concrete implementation is available (i.e. for statement coverage), or
if at least the implementing algorithm is known in form of a flow-chart (i.e. for
node coverage). Statement coverage is typcially not feasible, or practical with
the UML, unless we produce a model that directly maps to source code state-
ments, but node coverage may be practical if it is based on a low-level UML
activity diagram. Activity diagrams are very similiar to traditional flow-charts,
although activity diagrams may also represent collaboration between entities
(i.e. through so-called swimlanes). Other coverage criteria such as decision cov-
erage, condition coverage, or path coverage, may also be applicable under the
UML but it always depends on the type and level of information that we can
extract from the model. Chapter 3 treats these items in much more detail for the
individual UML diagram types.
4 Copyright Fraunhofer IESE 2003

Model-based vs. Traditional
Testing
2.2 Traditional Black-box Testing Techniques and the UML

Most functional test-case generation techniques are based upon domain analy-
sis and partitioning. Domain analysis replaces or supplements the common heu-
ristic method for checking extreme values and limit values of inputs [Bei95]. A
domain is defined as a subset of the input space that somehow affects the pro-
cessing of the tested component. Domains are determined through boundary
inequalities, algebraic expressions that define which locations of the input space
belong to the domain of interest [Bei95]. A domain may map to equivalent func-
tionality or behaviour, for instance. Domain analysis is used for and sometimes
also refferred to as partitioning testing, and most functional test case generation
techniques are based on that. Equivalence partitioning, for example, is one tech-
nique out of this group that divides the set of all possible inputs into equivalence
classes. This equivalence relation defines the properties for which input sets are
belonging to the same partition. Traditionally, this technique is only concerned
with input value domains but with the advent of object technology it can be
extended to behavioural equivalence classes. UML behavioural models such as
state charts for example, provide a good basis for such a behavioural equiva-
lence analysis, i.e. test case design concentrates on differences or similarities in
externally visible behaviour that is defined through the state model.

The following chapter looks at the individual UML diagrams, introduces their
concepts and semantics, and discusses how they may be used in order to extract
black-box as well as white-box testing information.
5Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
3 UML Diagram Types and Testing

The UML provides diagrams according to the different views that we can have
on a system. These views can be separated into user view, architectural view,
which may be further sub-divided into structural and behavioural view, imple-
mentation view, and environmental view. These views can be associated with
the different diagram types of the UML. The user view is typically represented by
use case diagrams, and the structural view by class and object diagrams.
Sequence, collaboration, state chart and activity diagrams can be associated
with the functional and behavioural views on a system, and component and
deployment diagrams specify coarse-grained structure and organization of the
system in its environment (deployment). In essence, UML diagrams specify what
a system should do, how it should behave, and of course how it will be realized.
The entirety of all UML models therefore specifies the system completely and
sufficiently. The fundamental question here is which information can we extract
from a UML model for driving the testing of the system, or which testing activi-
ties can we base upon a UML model. In the following we will look at the individ-
ual UML diagram types, discuss their features and semantics and how they can
be used in order to derive testing information.

3.1 Usage Modeling with Use Case Diagrams

The initial phase of a development project is typically performed to gather infor-
mation about which user tasks will be supported by a prospective system. This
activity in the overall development process is termed usage modeling, and its
outcome is the specification of the system’s high-level usage scenarios. The
main artifact in the UML that is concerned with this type of high level usage
modeling is the use case diagram. Use case diagrams depict user communica-
tion with the system where the user represents a role that is not directly involved
in the software development process, or it represents other associated systems
that use the system under development.

3.1.1 Concepts of Use Case Diagrams

Use case diagrams specify high-level user interactions with a system. This
includes the users or actors as subjects of the system, and of course the objects
of the system with which the users interact. Thus, use case models may be
applied to define the coarsest-grained logical system modules. Use cases mainly
concentrate on the interactions between the stakeholders of a system and the
system at its boundaries. A use case diagram shows the actors of the system
6 Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
(the stakeholders), either in form of real (human) user roles, or in form of other
associated systems which are using the system under development as server.
Additionally, use case diagrams show the actual use cases and the associations
between the actors and the use cases. Each use case represents some abstract
activity that the user of the system may perform and for which the system pro-
vides the support. Overall, use case modeling is applied at initial requirements
engineering phases in the software life-cycle in order to specify the different
roles that are using the individual pieces of functionality of the system, the use
cases. Use case diagrams are often defined in terms of the actual business pro-
cesses that will be supported by a system. Figure 1 displays an example use case
diagram for an elevator system that indicates typical user interaction as well as
the interactions that a maintenance engineer may perform with the system.

Figure 1:
Use case diagram
for an elevator sys-
tem.

Elevator

user

Call
Cabin

Enter
Cabin

Select
Floor

Open
Door

Close
Door

Place Cabin
Request

Call
Help

Leave
Cabin

<<includes>>

Emergency
Stop

Release
Cabin

maintenance
engineer

<<uses>>

(Re-)Start
Elevator

Elevator

useruser

Call
Cabin

Enter
Cabin

Select
Floor

Open
Door

Close
Door

Place Cabin
Request

Call
Help

Leave
Cabin

<<includes>>

Emergency
Stop

Release
Cabin

maintenance
engineer
maintenance
engineer

<<uses>>

(Re-)Start
Elevator
7Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
Table 1:
Basic use case tem-
plate according to
[Coc96, Coc01] and
[Bok01]

Use case diagrams display only very limited information, so they are typically
extended by use case descriptions or use case definitions. A sole use case dia-
gram is quite useless for the concrete specification of what a system is supposed
to do. Each use case in a use case diagram is typically individually specified and
described according to a use case template. Each of these descriptions is
attached to a use case in the diagram. Table 1 shows an example use case tem-
plate with the individual topic definitions taken from [Coc96, Coc01] and
[Bok01]. This represents typical items of a use case that might be important for
expressing interaction with a system from a user’s perspective. Use case tem-
plates may be different according to the applying organization and the software
domain in which they are applied. Table 1 only represents an example of how to
describe a use case in general terms. Table 2 displays a concrete instance of this
template applied to the use case Select Floor of the elevator system shown in
Figure 1.

USE CASE # Short name of the use case indicating its goal.

Goal in Context Longer description of the goal in the context.

Scope & Level Scope and level of the considered system, e.g. black-box under design, Summary, Pri-
mary Task, Sub-function, etc.

Primary, Second-
ary Actors

Role name or description of the primary and secondary actors for the use case, peo-
ple, or other associated systems.

Trigger Which action of the primary/secondary actors initiate the use case.

Stakeholder &
Interest

Name of the stakeholder and interest of the stakeholder in the use case.

Preconditions Expected state of the system or its environment before the use case may be applied.

Postconditions
on success

Expected state of the system or its environment after successful completion of the use
case.

Postconditions
on failure

Expected state of the system or its environment after unsuccessful completion of the
use case.

Description Basic
Course

Flow of events that are normally performed in the use case (numbered).

Description Alter-
native Courses

Flow of events that are performed in alternative scenarios (numbered).

Exceptions Failure modes or deviations from the normal course.

NF-Requirements Description of non-functional requirements (e.g. timing) according to the numbers of
the basic/alternative courses.

Extensions Associated use cases that extend the current use case (<<extends>>-relation).

Concurrent Uses Use cases that can be applied concurrently to the current use case.

Revisions Trace of the modifications of the current use case specification.
8 Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
Table 2:
Use case description
according to the use
case template in
Table 1 for the ele-
vator system.

3.1.2 Use Case Diagrams and Testing

Use case descriptions are mainly used for requirements-based testing and high-
level test design. Testing with use cases can be separated into two groups
according to the source of information that will be used for test development.
The first one is testing that is based upon the use case diagram which is mainly
suitable for test target definition, and the second one is testing that is based
upon the information of the use case template which is more similar to typical
black-box testing although on a much higher level of abstraction. Both are con-
sidered in more detail in the following paragraphs.

...Revisions

NoneExtensions

Use Case 4.1: any other floor selections, Use Cases 4.2, 4.3, 4.4, 4.5Concurrent Uses

Floor/CabinDoors opens within 300 ms from selecting CurrentFloorNF-Requirements

[SelectedFloor == CurrentFloor] ring Bell AND open
Cabin/FloorDoor within 300 ms

Exceptions

1. [SelectedFloor < CurrentFloor] AND
[CabinDirection == Down] Cabin stops on the
SelectedFloor on its way down

2. [SelectedFloor > CurrentFloor] AND
[CabinDirection == Up] Cabin stops on the
SelectedFloor on its way up

3. [SelectedFloor < CurrentFloor] AND
[CabinDirection == Up] Cabin goes to
CurrentMaxFloor first and approaches SelectedFloor
on its return downwards

4. [SelectedFloor > CurrentFloor] AND
[CabinDirection == Down] Cabin goes to
CurrentMinFloor first and approaches SelectedFloor on
its return upwards

Description Basic
Course

[CabinPanel does not light up SelectedFloor indicator] OR
[Cabin does not stop in the SelectedFloor]

Postcondition on
Failure

[CabinPanel lights up SelectedFloor indicator] AND
[Cabin eventually stops in the SelectedFloor]

Postcondition on
Success

[SelectedFloor != CurrentFloor]Precondition

Analyst, Designer, Performance EngineerStakeholder

Select SelectedFloor number from the CabinPanelTrigger

UserPrimary Actor

Primary user taskScope & Level

Main user scenario for getting to a different floorGoal in Context

Select FloorUse Case # 4.1

...Revisions

NoneExtensions

Use Case 4.1: any other floor selections, Use Cases 4.2, 4.3, 4.4, 4.5Concurrent Uses

Floor/CabinDoors opens within 300 ms from selecting CurrentFloorNF-Requirements

[SelectedFloor == CurrentFloor] ring Bell AND open
Cabin/FloorDoor within 300 ms

Exceptions

1. [SelectedFloor < CurrentFloor] AND
[CabinDirection == Down] Cabin stops on the
SelectedFloor on its way down

2. [SelectedFloor > CurrentFloor] AND
[CabinDirection == Up] Cabin stops on the
SelectedFloor on its way up

3. [SelectedFloor < CurrentFloor] AND
[CabinDirection == Up] Cabin goes to
CurrentMaxFloor first and approaches SelectedFloor
on its return downwards

4. [SelectedFloor > CurrentFloor] AND
[CabinDirection == Down] Cabin goes to
CurrentMinFloor first and approaches SelectedFloor on
its return upwards

Description Basic
Course

[CabinPanel does not light up SelectedFloor indicator] OR
[Cabin does not stop in the SelectedFloor]

Postcondition on
Failure

[CabinPanel lights up SelectedFloor indicator] AND
[Cabin eventually stops in the SelectedFloor]

Postcondition on
Success

[SelectedFloor != CurrentFloor]Precondition

Analyst, Designer, Performance EngineerStakeholder

Select SelectedFloor number from the CabinPanelTrigger

UserPrimary Actor

Primary user taskScope & Level

Main user scenario for getting to a different floorGoal in Context

Select FloorUse Case # 4.1
9Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
Use case dia-
gram based
testing

The use case diagram does not permit typical test case design with pre- and
postconditions, input domains and return values because it does not go into
such a level of detail. However, we can define the following elements in a use
case diagram and their relations according to [Bin00] that may be suitable for
the purpose of testing:

– An actor can participate in one or several use cases: This will result in an
acceptance test suite for each individual actor and for each individual use
case, and the tests will reflect the typical usage of the system by that
actor.

– A use case involves one or several actors: Each test suite will comprise
tests that simulate the user’s interactions at the defined interaction point,
that is the use case functionality. If several actors are associated with the
same use case we may additionally have concurrent usage of some func-
tionality by different roles. For testing it means that we will have to inves-
tigate whether multiple concurrent usage is supported by the system as
expected. We might therefore have to define a test suite that takes such a
simulation into consideration.

– A use case may be a kind of some other use case (<<extends>>): If our
test criterion is use case coverage we will have to produce test suites that
comprise all feasible usage permutations of the base use case and its
extension. This is very similar to checking correct inheritance in object-ori-
ented testing [Bin00].

– A use case may incorporate one or more use cases (<<uses>>). For test-
ing, this is essentially the same as the previous item.

A use case diagram can additionally indicate high-level components. This is spe-
cifically supported through use case descriptions (discussed in the following sub-
sections). All the objects that are mentioned in a use case diagram or use case
description are feasible candidates for high-level components on a system archi-
tectural level. Therefore, use cases and structural diagrams (class and compo-
nent diagrams) are associated through the following relations, and this is actu-
ally how the semantic gap between use cases and architecture is bridged:

– A use case is implemented through one or several nested and interacting
components. Requirements-based testing should attempt to cover all
components that are participating in the implementation of a use case.
This is particularly important if requirements are changed. In that case, we
will have to trace the changes to the underlying component architecture
and amend the individual components accordingly. A regression test
should then be applied in order to validate the correctness of these
amendments.
10 Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
– A component supports one or more use cases. Here, the component
architecture is not functionally cohesive. In other words, individual compo-
nents are responsible for implementing non-related functionality, leading
to low cohesion in the components. This may be regarded bad practice
but it surely happens, and often it is a requirement. In such an instance
use cases represent different, and probably concurrent usage of the same
component, and that must be reflected in the validation. We might there-
fore have to define a test suite that takes the concurrency situation into
consideration as discussed before.

As said earlier, the use case diagram is mainly used for test target identification,
and in order to achieve test coverage on a very high level of abstraction. For
example Binder [Bin00] defines a number of distinct coverage criteria that can
be applied to use case diagrams in order to come up with a system-level accep-
tance test suite:

– Test or coverage of at least every use case.
– Test or coverage of at least every actor’s use case.
– Test or coverage of at least every fully expanded inclusion, extension and

uses combination.

These correspond to coverage of all nodes and arrows in a use case diagram,
and they are typical testing criteria similar to the traditional test coverage mea-
sures that are based on program flow-graphs as discussed in Chapter 2. Each of
these criteria represents a test of high-level user interaction. Because there is
only limited information we can only determine which user functionality we will
have to test, but not how we can test it. Each test target can be augmented
with information from the more concrete use case definitions in order to identify
more concrete test artifacts. Therefore, each test target will map to a test suite
and eventually, when more information is added, to a number of more concrete
test cases. The collection of all user level tests that are developed in that way
may be used for system acceptance testing.

Use case and
operation spe-
cification
based testing

Each specification of a use case according to the introduced use case template
corresponds to a component’s operation specification according to the opera-
tion description templates of typical development methods such as the KobrA
method [Atk01]. Each use case is attributed to one or more high-level or
abstract components that implement the use case’s described functionality. An
operation specification comprises such a full description of functionality and it is
attributed to a distinct concrete object or component in the overall system. For
example, a class method may be regarded as such an operation. KobrA’s opera-
tion specification template is displayed in Table 3. In contrast, a use case repre-
sents a piece of functionality that is not attributed to a particular object in the
system but to the entire system at its boundary. If we consider an individual
component to be a system in its own right, as it is the case in the KobrA
11Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
method, then the operation specifications of that component and its corre-
sponding system level use case specifications are essentially the same. The
entries in the two templates in Table 1 and Table 3 indicate this conceptual sim-
ilarity. Both templates define name and description, pre- and post conditions,
and exceptions that can be related to constraints. The fundamental difference
between the two items lies in the fact that use case descriptions in contrast to
operation specifications define no concrete input and output types that easily
map to input and output value domains, and that the pre- and postconditions
are not attributable to distinct objects in the system. In other words, use case
descriptions represent similar information as operation specifications although
on a much higher level of abstraction, and from a different viewpoint. Whereas
use case specifications are mainly used for communication outside the develop-
ment team (e.g. with the customer of the software), operation specifications are
more suitable for communication between the roles within the development
team (e.g. system designers, developers and testers). In any case, use case tem-
plate based testing and operation specification based testing represent both
typical functional or black box testing approaches because both representations
are merely concentrating on external expected behaviour. In other words, use
case descriptions specify behaviour on the system level, whereas operation spec-
ifications describe behaviour on the object or component level.

Table 3:
Operation specifica-
tion template
according to the
KobrA development
method.

More abstract representations such as use case models and use case descrip-
tions were not initially taken into account as basis for typical functional testing
approaches such as the ones mentioned in Chapter 2 because traditional testing
always used to be, and probably still is, focused on more low-level abstractions
and concrete representations of a system such as code. Therefore, these func-
tional testing techniques appear to be more optimally used in tandem with typi-

Name Name of the operation

Description identification of the purpose of the operation, followed by an informal descrip-
tion of the normal and exceptional effects

Constraints Properties that constrain the realization and implementation of the component

Receives Information input to the operation by the invoker

Returns Information returned to the invoker of the operation

Sends Signals that the operation sends to imported components (can be events or oper-
ation invocations)

Reads Externally visible information that is accessed by the operation

Changes Externally visible information that is changed by the operation

Rules Rules governing the computation of the result

Assumes Weakest pre-condition on the externally visible state of the component and on
the inputs (in receives clause) that must be true for the component to guarantee
the post condition (in the result clause)

Result Strongest post-condition on the externally visible properties of the component
and the returned entities (returns clause) that becomes true after execution of the
operation with the assumes clause
12 Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
cal operation-specification-type documents as primary source for test develop-
ment. However, since the two models, use case descriptions and operation
specifications are concerned with essentially the same information but on differ-
ent levels of abstraction, the functional testing techniques can also be based on
use case descriptions, although on a more abstract level, of course.

Examples for
use case tem-
plate based
testing.

The use case template depicted in Table 2 already contains a number of items
that are suitable for the definition of system level tests. The pre- and postcondi-
tions (on success) in the template and the description of the basic course map to
the abstract test cases 1.x to 4.x in Table 4. The tests are abstract since they do
not indicate concrete values for Selected/CurrentFloor variables, or the CabinDi-
rection. Each of these abstract tests may instantiate to quite a number of con-
crete test cases (indicated through the x) that represent different scenarios of
selecting floors and going up and down in an elevator. The test case 5.x in Table
4 represents an exception. It is derived from the Postconditions on Failure and
the Exceptions in the use case specification. This abstract test case could for
instance map to a concrete test for each possible CurrentFloor in order check
that this facility for opening the door is actually working on every single floor.

Table 4:
Abstract test cases
derived from the use
case specification
displayed in Table 2.

The tests in Table 2 are all based on fundamental testing techniques summa-
rized in the following [Jac92]:

– Test of basic courses, testing the expected flow of events of a use case.
– Test of odd courses, testing the other, unexpected flow of events of a use

case.
– Test of any line item requirements that are traceable to each use case.
– Test of features described in user documentation that are traceable to

each use case.

No. Pre-Condition Event Post-Cond. Result

1.x [SelectedFloor != CurrentFloor]
& [CabinDirection == Down]

SelectFloor (SelectedFloor <
CurrentFloor)

SelectedFloor
lights up

Cabin stops on Select-
edFloor

2.x [SelectedFloor != CurrentFloor]
& [CabinDirection == Up]

SelectFloor (SelectedFloor <
CurrentFloor)

SelectedFloor
lights up

Cabin stops on Select-
edFloor on next
DownRun

3.x [SelectedFloor != CurrentFloor]
& [CabinDirection == Down]

SelectFloor (SelectedFloor >
CurrentFloor)

SelectedFloor
lights up

Cabin stops on Select-
edFloor on next
UpRun

4.x [SelectedFloor != CurrentFloor]
& [CabinDirection == Up]

SelectFloor (SelectedFloor >
CurrentFloor)

SelectedFloor
lights up

Cabin stops on Select-
edFloor

5.x [SelectedFloor == CurrentFloor]SelectFloor (CurrentFloor) CurrentFloor
does not light
up AND Door
opens

Cabin does not stop
on SelectedFloor (Floor
is not added to
StopList)

...
13Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
The second two items in this list refer to more global information that is not nec-
essarily contained in the individual use case specification. The line Concurrent
Uses in the use case definition indicates that the use case itself may be invoked
concurrently, and that other use cases may be applied at the same time. In the
first case, we have to reflect the concurrency issue in the test suite for this use
case. It means we can have any odd combination of the 5 abstract tests (Table 4)
as a test sequence where every sequence maps to a single concrete test case
with multiple events, i.e. leading to a sequence of elevator instructions. This
identifies a fundamental specification deficiency in this example, and it shows
how test considerations may actually improve the specification and design of a
system before the tests are actually executed on the real thing. The use case
specification indicates no explicit policy for handling concurrent floor selection
requests. It means the specification says nothing about the sequence in which
these requests will be handled. Of course common sense would suggest that
the floors should be served in consecutive order of the cabin passing them. But
this is only common sense because we know how an elevator is supposed to
work, so we imply some domain knowledge. For other domains this might not
be entirely clear. Hence, an elevator that would serve the floor requests in a
temporal order of their appearence, that is the order in which users actually
press the buttons, would be a correct solution according to this specification,
and this is possibly not what the customer of an elevator has in mind.

Additional testing techniques that may be used in tandem with use case model-
ing and the specification of use cases are scenario-based techniques as
described in the SCENT Method, but it requires some additional modeling
efforts with dependency charts [RG99, RG00, RG00]. There are also distinct cov-
erage criteria coming with these techniques that may be applied in use-case-
based testing such as scenario-path coverage, event-flow coverage, or exception
coverage, or even statistical usage-based testing techniques [RRW98, RR98].

3.2 Structural Modeling with Class/Object, Package, Component, and Deployment Dia-
grams

High level structural modeling is typically the next development step after use
case modeling. Use case descriptions loosely associate system functionality with
components on a high system architectural level. In other words, we can already
define the very fundamental parts of the system in a typical devide-and-conquer
manner (decomposition) when we develop the use case descriptions. All objects
in the use case model have a good chance to become individually identifiable
parts during design, such as components or classes, objects, modules, or sub-
systems. Under the KobrA method [Atk01] they are all termed Komponents. If
we have defined the first components we will typically decompose the system
into smaller more manageable parts that are not immediately related to the
high-level usage models but are more concentrating on internal functional
aspects. This activity typically comes under the umbrella of system design and it
14 Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
is typically detached from the usage modeling activity. The design activity is usu-
ally more centered around technical requirements of the implementation, e.g.
available components, safety or timing aspects, etc., rather than functional user
requirements. Structural diagrams specify the architectural relationships
between components as the most fundamental building blocks of the system.

3.2.1 Concepts of Structural Diagrams

Component
Containment
Diagram Con-
cepts

Components are the basic construction entities in component-based develop-
ment. A system’s primary components are typically identified in the require-
ments engineering phase of a project through use case modeling and the defini-
tion of use case descriptions as outlined in the previous sections. This is typically
an outcome from distinct domain knowledge that determines the architecture,
or it is determined through naturally available system parts in that domain. The
identified high-level components may be brought into a hierarchy that repre-
sents the coarsest-grained structural organization of the entire system. In the
KobrA Method it is termed component containment model. Figure 2, for exam-
ple, displays the architectural organization of an elevator. Such a component
containment hierarchy plays a seminal role in KobrA’s development process
[Atk01]. KobrA uses the UML package symbol for representing components
since a component is a collection or package of a number of different specifica-
tion and documentation artifacts, e.g. a collection of UML models and tabular
representations such as operation specifications. This indicates the scoping of
such descriptive artifacts.

Each component in the hierarchy is described through a specification that com-
prises everything externally knowable about the component in terms of struc-
ture, function and behaviour, and a realization that comprises everything inter-
nally knowable about that component. The specification describes what a
component is and can do, and the realization how it does it. The subject compo-
nent indicated through the stereotype <<subject>> represents the entire system
under consideration. For this example it is the Elevator component. The context
realization, in this case the component Elevator Context describes the existing
environment into which the subject will be integrated. It contains typical realiza-
tion description artifacts. The anchor symbol represents containment relations,
or in other words, the development time nesting of a system’s components.

Component nesting always leads to a tree shaped structure, and it also repre-
sents client/servership. A nested component is typically always the server for the
component that contains it, and a nesting component is always the client of the
components which it contains. This is at least the case for creating a new
instance of a contained component. The super-ordinate component is the con-
text for the sub-ordinate component and it calls the constructor of the sub-ordi-
nate component. This can be seen as the weakest form of client/servership
between nested entities. Containment trees can also indicate client/server rela-
15Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
tionships between components that are not nested. This is indicated through an
<<acquires>> relationship between two components in which one component
acquires the services of another component as indicated between CabinDoor
(client) and CabinSensors (server) in Figure 2. This type of explicit client/server-
ship leads to an arbitrary graph.

A coarser-grained component on a higher level of decomposition is always com-
posed out of finer-grained components residing on a lower level of decomposi-
tion, and the first one “contains” or is comprised of the second ones. The nest-
ing relations between these entities are determined through so-called
component contracts. KobrA’s development process represents an iterative
approach to subsequently decomposing coarser-grained components into finer-
grained components until a suitable third-party component is found, or the sys-
tem is decomposed onto the lowest desirable level that is suitable for implemen-
tation.

Figure 2:
Example Compo-
nent Containment
Hierarchy of an ele-
vator.

Class Diagram
Concepts

Class diagrams and object diagrams are made up of classes or objects (class
instances) and their associations. The associations define the peer-to-peer rela-
tions between the classes/objects, so class/object diagrams are primarily used for
specifiying the static, logical structure of a system, sub-system, or a component,
or parts of these items. Associations come in different shapes with different
meanings. A normal association defines any arbitrary relationship between two
classes. It means, they are somehow interconnected. An aggregation is a special
association that indicates that a class (i.e. the aggregate) is comprised of an
other class (i.e. the part). This is also referred to as “whole-part-association” or
class nesting (similar to the containment model) and it is not specific about who

E levato rE levato r

< < M echa-
tron ics>>

C ab in

< < M echa-
tron ics>>

C ab in

< < M echa -
tron ics> >

F lo o r

< < M echa -
tron ics> >

F lo o r

< < M echa -
tron ics> >

F lo o rD o o r

< < M echa -
tron ics> >

F lo o rD o o r

< < M echa-
tron ics> >

C ab in D o o r

< < M echa-
tron ics> >

C ab in D o o r

< < E lec tron ics> >
C ab in Pan e l

< < E lec tron ics> >
C ab in Pan e l

< < E lec tron ics> >
F lo o rPan e l

< < E lec tron ics> >
F lo o rPan e l

< < E lec tron ics> >
C ab in Sen so rs

< < E lec tron ics> >
C ab in Sen so rs

< < pub lic> > < < pub lic> >

< < M echan ics> >
S lid eR a il

< < M echan ics> >
S lid eR a il

< < M echa-
tron ics> >

D rive

< < M echa-
tron ics> >

D rive

E levato r
C o n text
E levato r
C o n text

< < acqu ires> >
16 Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
creates and owns the sub-ordinate classes. Ownership between classes is indi-
cated through the composition aggregation. This is a much stronger form of
aggregation in which the parts are only created and destroyed together with the
whole. Generalization is a form of association that indicates a taxonomic rela-
tionship between two classes, that is a relationship between a more general
class and a more specific class. In object technology terminology this is also
referred to as inheritance relationship. A refinement association indicates a rela-
tionship between two descriptions of the same thing, typically on two distinct
abstraction levels. It is similar to the generalization association, although the
focus here is not on taxonomy but on different levels of granularity or abstrac-
tion. Dependency is another form of association that expresses a semantic con-
nection between two model elements (e.g. classes) in which one element is
dependent upon another element. In other words, if the non-dependent class is
changed, it typically leads to a change in the dependent class. Multiplicity
parameters at associtations indicate how many instances of two interconnected
classes will participate in the relation.

Class symbols have syntax too. They are consisting of a name compartment, an
attribute compartment, and an operation compartment. The latter two define
the externally visible attributes and operations that the class or object is provid-
ing at its interface, and which may be used by external clients of the class in
order to control and access its functionality and behaviour. Figure 3 shows an
example class diagram of the elevator system.

Figure 3:
Example Class Dia-
gram of an elevator.

<<Subject>>
Elevator

startElevator ()
moveNextUp (Floor)
moveNextDown (Floor)
cabinRequest (CabinRequest)
floorRequest (Floor, Request)
openCabinDoor ()
closeCabinDoor ()
openFloorDoor (Floor)
closeFloorDoor (Floor)
cabinPosition (Position)

<<Komponent>>
<<Mechatronics>>

Cabin

<<Komponent>>
<<Mechatronics>>

Floor

<<Komponent>>
<<Mechatronics>>

Drive

<<Komponent>>
<<Mechanics>>

SlideRail

<<Komponent>>
Elevator Context

driveUp (Floor)
driveDown (Floor)

FloorRequest (Floor, FloorRequest)
CabinRequest (Cabin, CabinRequest)

openDoor ()
closeDoor ()
selectFloor ()
emergencyStop ()
callHelp ()

requestUp ()
requestDown ()
17Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
Package, Com-
ponent and
Deployment
Diagram Con-
cepts

A package diagram may comprise classes/objects, components, and packages. A
package is only a grouping mechanism that can be linked to all types of other
modeling elements, and that can be used to organize semantically similar, or
related items into a single entity. Sub-systems, components and containment
hierarchies of classes may also be referred to as packages since all these con-
cepts encapsulate various elements within a single item in the same way as a
package. For example, the KobrA development method [Atk01] uses the pack-
age symbol for specifying a Komponent (KobrA Component) since it represents
a grouping of all descriptive documents and models that collectively define a
component in terms of functionaliy, behaviour, structure, and external and
internal quality attributes.

A component diagram organizes the logical classes and packages into physical
components when the system is executed. It represents a mapping from the log-
ical organization of a system to the physical organization of individually execut-
able units. Its main focus is on the dependency between the physical compo-
nents in a system. Components can define interfaces that are visible to other
components in the same way as classes, so that dependencies between compo-
nents can also be expressed as access to interfaces. Class and component dia-
grams are similar with respect to this property since they can both specify associ-
ations between modeling elements. The KobrA method [Atk01] advocates a
special type of component diagram, the component containment hierarchy.
KobrA is inherently component oriented from the very beginning of a develop-
ment project. Components are therefore identified and handeled right from the
early project life cycles.

A deployment diagram shows the actual physical software/hardware architec-
ture of a deployed system including computer nodes and types, and hardware
devices, along with their relations to other such entities. Important specifications
in a deployment diagram are for example which executable components will be
assigned to which physical nodes in a network, on which underlying component
platforms, run-time support systems etc.

3.2.2 Structural Diagrams and Testing

Intuitively, it might seem odd to combine structural issues with testing activities
because testing is always based on function or behaviour rather than structure,
so that the value of structural diagrams for testing appears to be very limited at
a glance. However, this is only the case for deriving concrete test cases from
structural models. This is clearly not feasible, since structural diagrams do not
provide enough information for the definition of test cases, i.e. pre-/postcondi-
tioins, and behaviour. Test case design can only be done in tandem with func-
tional descriptions and behavioural models. What we can identify from struc-
tural models is what should be tested in a system that consists of many
interacting entities, in other words we can use structural models for test target
18 Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
definition in the same way as use case models. In class diagrams we are simply
more concrete about things, and this is what we can actually exploit in terms of
testing, and we can add that information to the information that we derived
from use case models.

Structure represents the logical organization of a system, or the pairwise rela-
tions between the individual components. These pairwise relations are described
through contracts that specify the rights and responsibilities of the parties that
participate in a contract. When two components establish such a mutual rela-
tionship we have to check the contract on which this relationship is founded.
So, when we go through the structural models of a development project we can
identify a list of contracts for each of which we can formulate a test target that
maps to a test suite, or a tester component.

Component
Containment
Diagrams and
Testing

KobrA component containment hierarchies [Atk01] can be seen as the most
general and most abstract logical structural models. They display component
nesting and consequently client/server relations between a super-ordinate com-
ponent and its contained sub-ordinate components, represented through the
anchor symbol, as well as client/server relations between components on the
same or neighbouring hierarchic levels, represented through arbitrary
<<acquires>> relations. Both concepts indicate that one component is require-
ing the services of another component, so there must be an interface definition
between the two parties in that client/server relationship. In object terminology
this is equivalent with a class attribute. Each connection in a containment hierar-
chy therefore relates to a test target and consequently to a test suite, or an addi-
tional tester component that specifically concentrates on testing that connec-
tion. This is illustrated in Figure 4. A test of the sub-system in Figure 4 requires
that the communication between all integrated components is tested in combi-
nation. The Cabin component expects to get some features from its sub-ordi-
nate components and in return these components expect to be used by Cabin in
a certain way. This is a mutually accepted contract between these parties. In the
same way, the CabinDoor component expects to get a distinct service from the
CabinSensors component (indicated through the <<acquires>> relation). These
mutual expectations can be represented through test suites that can be exe-
cuted as unit tests on the individual components before the sub-system is inte-
grated. Each test suite will only contain tests that simulate the access of the
respective client component on the server. If all the tests in all the test suites
pass, we expect that the integration will be successful, and that the sub-system
or component Elevator Cabin will expose no more failures, given that we have
applied adequate test sets.
19Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
Figure 4:
Each client/server
relation relates to a
test suite or tester
component.

The services that are exchanged through the connections of a containment hier-
archy are more specifically defined in class/object diagrams and behavioural
models, so that the actual test case definitions can only be carried out together
with the other models that specifiy functionality and behaviour. Here we are
only concerned with test target identification.

Containment diagrams also contain information about the time in the develop-
ment and deployment cycle of a system for performing a test. Components are
the fundamental building blocks in a component-based development, so they
are unlikely to be torn apart and have their internal parts being integrated into
other entities. Components typically stay as they are and they are reused as they
are. Everything inside a component’s encapsulating boundary is therefore quite
likely to stay the same all the time. So, inside a component during component
development we are only concerned with development-time testing. Once the
component’s subordinate parts are successfully integrated and they pass their
internal tests we are done, and we will never touch the thing again. We can
therefore remove any built-in testing infrastructure that has been used during
component testing. However, at the component’s external boundary we should
leave all the built-in testing infrastructure where it is. We can execute that
whenever the component is integrated with other components to form a new
system, i.e. at component integration and deployment time. In that respect all
components are individual building blocks that are capable of checking their
own deployment environment whenever they are reused in a new system. This
technique is termed built-in contract testing and fully described in [Gro02a,
Gro02b].

Class Dia-
grams, Pack-
age, Compo-
nent and
Deployment
Diagrams and
Testing

All the other structural diagrams in the UML such as class, package, component,
and deployment diagrams are used to express the implementation and deploy-
ment of components, for example class diagrams in KobrA are mainly used in
component specifications and realizations, but they can also express the distri-
bution of logical software components over hardware nodes. Packages, compo-
nents and classes are very similar concepts, and the component term combines
their individual particularities, i.e. the component provides a scoping mechanism

<<M echa-
tron ics>>

Cabin

<<M echa-
tron ics>>

Cabin

<<M echa-
tron ics>>

CabinD oor

<<M echa-
tron ics>>

CabinD oor

<<Electronics>>
CabinPanel

<<Electronics>>
CabinPanel

<<Electron ics>>
CabinSensors

<<Electron ics>>
CabinSensors

<<public>>

<<acquires>>

Tester

Tester

Tester

Tester
20 Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
in order to package a variety of concepts and artifacts such as classes and mod-
ules. Components do provide interfaces in the same way as classes do, and
maybe packages as well, and they have states. In fact, a component’s class
properties are provided through the classes that the component contains. All
testing concepts of the previous paragraphs are therefore applicable to classes
and packages, that is test target definition and identification of client-servership
contracts that need to be tested. The different diagrams merely represent slight
variations of the modeled subjects, or different views. The fundamental differ-
ence between classes and components, for example, is that class interactions
are likely to stay fixed for a longer period of time. Components may be seen as
the fundamental building blocks of systems, and they are often reused and inte-
grated in different contexts, and classes can be seen as the fundamental build-
ing blocks of components, so they are not so readily reused because compo-
nents are not so much subjected to permanent change. The difference in the
diagrams with respect to testing is not so much concerned with extracting dif-
ferent testing information from the models but more with the strategy of when
tests will be ideally executed. The fundamental idea of defining locations for
performing integration tests is the same in all diagram types. But we can extract
more information on when to perform these tests. A class diagram shows inter-
action between the fundamental building blocks of a component. They are likely
to stay as they are during the lifetime of the component. So we integrate and
test that integration once and for all. Compoents are the building blocks of sys-
tems. So whenever we put components together in order to come up with a
new system, we will check this integration through a test. Some components
will be assigned dynamically others will stay as they are. Component diagrams
show this type of organization, so that we can identify fixed contracts and loose
contracts that are likely to change and will need re-testing. Deployment dia-
grams represent a different view on the same problem. Here we assign compo-
nents to nodes in a distributed environment. Some nodes will stay the same
throughout the life span of a system and only need an initial check, but others
might undergo constant change, so that we will have to perform an integration
test whenever a node is changed. The fundamental idea of test target definition
with structural diagrams does not change. We can still see from a structural dia-
gram which interactions should be tested under which circumstances.

Built-In Con-
tract Testing
based on com-
ponent-con-
tainment trees

The development of testing artifacts that are permanently built into software
components according to the built-in contract testing paradigm [Gro02a,
Gro02b] are heavily dependent upon structural models. Component contain-
ment trees identify the units of reuse in a component-based system, and they
define the interfaces between the components that have to be augmented with
permanent built-in contract testing interfaces and tester components. Class dia-
grams define structure that is typically more resilient to permanent change, so
they define interfaces between components that will typically stay as they are
for some longer period of time. Therefore, these contracts identify locations for
removable built-in contract testing interfaces and tester components. The devel-
opment principles for component containment trees and class diagrams are the
21Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
same with respect to built-in contract testing. They are fully described in
[Gro02a, Gro02b]. Figure 5 displays the structural organization of a Resource
Information Network that is used as a case study in the MDTS project funded by
the German Federal Ministery of Education and Resarch [MDTS]. The built-in
contract testing approach proposes a number of additional components in order
to make this system fully testable for an integration test. Figure 6 displays this
architecture. First of all, it adds testable interfaces to each component in the sys-
tem that will be tested by a tester component. This turns a normal component
into a testable component indicated through the term “Testable” in the compo-
nent name. In object technology this is typically achieved through extending the
main class in the component by operations that are setting and checking inter-
nal states or assertions. The development of these operations is driven by the
behavioural model of a component. The second step is to add a tester compo-
nent to each component that uses another component’s interfaces. Figure 6 dis-
plays a number of tester components for some original component. They can
also be put together. The tester components comprise the actual test cases and
they simulate the behaviour of a client on the server for which they have been
developed. The testing architecture is permanently built into the components,
so that if they are integrated with other new components they can automatically
check their deployment environment.

Figure 5:
Component Con-
tainment of the
Resource Informa-
tion Network (RIN)
System.

RIN
Context

RIN
Context

RIN =
Resource

Information
Network

ApplicationApplication

RIN
Client

RIN
Client

RIN
Server

RIN
Server

RIN
System Plugin

RIN
System Plugin

<<acquires>>

<<acquires>>
22 Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
Figure 6:
Component Con-
tainment Hierarchy
of the RIN System
with a complete
built-in contract
testing architecture.

Additional structural diagram based testing techniques are more geared
towards implemenation-specific items, and they focus on such things as multi-
plicity of associations between classes representing boundary conditions on
these associations, or testing of established required relationships, missing links,
wrong links, dynamic class allocation, and acquisition. These testing concepts
are further elaborated in [Bin00].

3.3 Behavioural Modeling with Statechart and Activity Diagrams

Structural modeling is part of system decomposition, and it identifies the sub-
parts of the system that will be individually tackled in separate development
efforts. Each part can be subdivided further into even smaller units. If such a
part or component has been identified, its behaviour must be described, this
comprises its externally visible behaviour at its provided interface as well as the
externally visible behaviour at its required interface. The UML supports behav-
ioural modeling through satechart diagrams and activity diagrams.

Statechart diagrams represent the behaviour of an object by specifying its
responses to the receipt of events. Statecharts are typically used to describe the
behaviour of class or component instances, but they can also be used to
describe the behaviour of use-cases, actors, or operations. Related to statechart

RIN
Context

RIN
Context

RIN =
Resource

Information
Network

ApplicationApplication

Testable RIN
Client

Testable RIN
Client

Testable RIN
Server

Testable RIN
Server

Testable RIN
SystemPlugin
Testable RIN
SystemPlugin

<<acquires>>

<<acquires>>

SystemPlugin
Tester

SystemPlugin
Tester

<<tests>>

<<acquires>>

Plugin
ServerTester

Plugin
ServerTester

<<tests>>

Server
ClientTester

Server
ClientTester

Client
ServerTester

Client
ServerTester

PluginTesterPluginTester

<<tests>>

<<tests>>

<<tests>>

Application
ClientTester
Application
ClientTester

<<tests>>
23Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
diagrams are activity diagrams that concentrate on internal behaviour of an
instance, in other words the control-flow within its operations. Both diagram
types are essentially based upon the same fundamental concepts.

3.3.1 Statechart Diagram Concepts

Statechart diagrams are made up of states, events, transitions, guards, and
actions. A state is a condition of an instance over the course of its life in which it
satisfies some condition, performs some action, or waits for some event. A state
may comprise other encapsulated sub-states. In such a case, a state is called a
composite state. A special state, the starting state indicates the first condition
throughout the life cycle of an instance if it comes to life. Another special state,
the end state indicates the last condition throughout the life cycle of an instance
before it dies.

An event is a noteworthy occurence of something that triggers a state transi-
tion. Events can come in different shapes and from different sources:

– A designated condition that becomes true. The event occurs whenever
the value of an expression changes from false to true.

– The receipt of an explicit signal from somewhere.
– The receipt of a call of an operation.
– The passage of a designated period of time.

Events trigger transitions. If an event does not trigger a transition, it is discarded.
In this case it has no meaning for the behavioural model. Events are therefore
only associated with transitions. A simple transition is a relationship between
two states indicating that an instance that is residing in the first state will enter a
second state provided that certain specified conditions are satisfied.The trigger
for a transition is an event. A concurrent transition may have multiple source
states and and multiple target states. It indicates a syncronisation or splitting of
control into concurrent threads without concurrent sub-states. A transition into
the boundary of a composite state is equivalent with a transition to the starting
state of the composite sub-state model. A transition may be labeled by a transi-
tion string with the following format:

event_name (parameter_list)
[guard_condition] / action_expression

Here, a guard represents a conditional expression that only lets an event trigger
a transition if the conditional expression is valid. It is a boolean expression writ-
ten in terms of the parameters of the triggering event, plus attributes and links
of the object that owns the state model. An action expression is a procedural
expression that will be executed if the transition is performed.
24 Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
3.3.2 Statechart Diagrams and Testing

State-based testing concentrates on checking the correct implementation of the
component’s state model. Test case design is based on the individual states and
the transitions between these states. In object-oriented or component-based
testing effectively any type of testing is state-based as soon as the object or
component exhibits states, even if the tests are not obtained from the state
model. In that instance, there is no test case without the notion of a state or a
state-transition. In other words, pre- and post-conditions of every single test
case must consider states and behaviour. Binder [Bin00] presents a very thor-
ough investigation of state-based test case generation, and he also proposes to
use so-called state reporter methods that effectively access and report internal
state information whenever invoked. These are essentially the same as the state
information operations that are defined by the built-in contract testing technol-
ogy (state checking operations) that has been developed in the European Union
funded project Component+ [Comp+]. The following paragraphs describe the
main test case design strategies for state-based testing:

Piecewise cov-
erage

Piecewise coverage concentrates on exercising distinct specification pieces, for
example coverage of all states, all events, or all actions. These techniques are
not directly related to the structure of the underlying state machine that imple-
ments the behaviour, so it is only accidentally effective at finding behaviour
faults. It is feasible to visit all states and miss some events or actions, or produce
all actions without visiting all states or accepting all events. Binder discusses this
in greater detail [Bin00].

Transition cov-
erage

Full transition coverage is achieved through a test suite if every specified transi-
tion in the state model is exercised at least once. As a consequence, this covers
all states, all events and all actions. Transition coverage may be improved if every
specified transition sequence is exercised at least once, this is referred to as n-
transition coverage [Bin00], and it is also a method sequence based testing tech-
nique.

Round-trip
path coverage

Round-trip path coverage is defined through the coverage of at least every
defined sequence of specified transitions that begin and end in the same state.
The shortest round-trip path is a transition that loops back on the same state. A
test suite that achieves full round-trip path coverage will reveal all incorrect or
missing event/action pairs. Binder discusses this in greater detail [Bin00].

Implementa-
tion of tester
components
for built-in
contract test-
ing

The coverage criteria described in the previous paragraphs can be applied to fill
the built-in contract tester components with life. Every component of the system
has a tester component associated with it, as indicated in Figure 6 for the RIN
system example. The tester component is capable of checking the component’s
run-time environment in situ when it is integrated (at deployment) [Gro02a,
Gro02b]. The test cases are developed according to the component’s expecta-
tions towards its other associated components. In KobrA, a component’s expec-
25Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
tation is defined through a realization behavioural model. In other words, every
component has a model of the behaviour that it expects to get from its associ-
ated sub-components. Such realization behavioural models could for example
look like the state chart diagrams in Figure 8 to Figure 10. These are in fact
KobrA specification behavioural models of the respective components, defining
which behavioural features these components are providing, but if the entire
RIN system is integrated, superordinate realization models have to map exactly
to subordinate specification models. This mapping is not a problem of testing,
but of component composition and integration, so specification behavioural
models must be the same as realization behavioural models of superordinate
system parts. Otherwise we cannot integrate the components and test their
interactions. Figure 7 displays the principle of the contract testing architecture.
Each tested component provides a testing interface that extends the original
component (shaded in Figure 7), and it provides testing operations that associ-
ated client tester components may use to support the testing. Each testing com-
ponent (client) owns a server tester component. This contains tests that check
the server’s compliance to its contract with the client.

From the behavioural models in Figure 8 to Figure 10 we can devise a number of
tests for tester components that follow the built-in contract testing paradigm.
For example they can abide by the transition coverage criterion described in the
previous paragraphs. The following tables, Table 5 to Table 8, illustrate the test
cases that we can derive from these models (note, that they are not complete).

Figure 7:
Typical general built-
in contract testing
architecture.

Server Tester

ServerClient
client

Explicit
server

Explicit
server

Run Time System

Client/Server

Run Time System
Tester

Testable
Client/Server

Testable
Server

Server Tester
<<explicitly
acquires>>

<<explicitly
acquires>>

<<implicitly
acquires>>

<<implicitly
acquires>>

<<implicitly
acquires>>

<<implicitly
acquires>>
26 Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
Table 5:
Test cases for the
Plugin Tester com-
ponent of the RIN
system.

Table 6:
Test cases for the
Server ClientTester
component of the
RIN system.

Table 7:
Test cases for the
Plugin ServerTester
component of the
RIN system.

Table 8:
Test cases for the
SystemPluginTester
component for the
RIN system.

No. Initial State Event Expected Outcome Final State

1 Registered & Active CRINSystem::ProcessData Request to Plugin Registered & Active

No. Initial State Event Expected Outcome Final State

1 Registered ICallBackObj::ReceiveData-
FromServer

Answer for a Client Registered

No. Initial State Event Expected Outcome Final State

1 Registered ICRinServerSink::OnData-
FromPlugin

Answer for the
Server

Registered

No. Initial State Event Expected Outcome Final State

1 Registered & Active IIDCOMRinServer::Pro-
cessRequest("bypass")

Same message returned from the
server to the client

Registered & Active

2 Registered & Active IIDCOMRinServer::Pro-
cessRequest("repeat")

The request remains automatically
inside the plugin to repeat every-
time it was programmed

Registered & Active

3 Registered & Active IDCOMRinServer::Process-
Request("cancel")

This cancels a specific request
which remains active

Registered & Active

4 Registered & Active IDCOMRinServer::Process-
Request("abstime"+

The request is executed in a date
and time determined by the mes-
sage

Registered & Active

4.1 "MemoryLoad") Value of the total memory usage

4.2 "TotalPhys") Value of the total physical memory
usage

...

11 waiting IDCOMRinServer::Process-
Request("bypass")

Error waiting

12 waiting IDCOMRinServer::Process-
Request("repeat")

Error waiting

13 waiting IDCOMRinServer::Process-
Request("cancel")

Error waiting

14 waiting IDCOMRinServer::Process-
Request("abstime"+

Error waiting

14.1 “MemoryLoad”) Error

...
27Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
Design of built-
in testing inter-
faces for built-
in contract
testing.

The development of the testing interface that extends each server component, is
also based on the server’s behavioural model. Every identified abstract state in
the server’s state chart diagram defines a distinct domain of feasible attribute
combinations. Pre- and postconditions of operation invocations are dependent
upon these domains. In other words, an operation can only be performed prop-
erly by a component if some conditions are satisfied, these are the precondi-
tions, and the initial state of a component is part of that. This is termed the cli-
ent’s contract. The server performs its operation and adjusts its attributes
according to some other conditions, these are the postconditions, and the final
state of a component is part of that. If the client does not abide by its own con-
tract, the server is not obliged to fulfill its side of the contract either. Built-in
contract testing is a way of checking that such client/server interactions are cor-
rect.

In built-in contract testing every identified state can be represented by a state
checking operation that essentially assesses whether all attributes are within the
required domain for the state. This is important for state-based testing since not
every state is also an output state. A testing interface that provides a built-in
access mechanism to the component therefore adds considerable value to a
component’s testability and observability. Faults can therefore be detected
when they appear and not when we observe some failure in a subsequent out-
put state.

Additionally to developing a state checking mechanism, built-in contract testing
also offers the concept of a built-in state setting mechanism. This brings the
component into a state from which a transaction will be called in a test. This has
the advantage that a test case can renounce the definition of a sequence of
operations to get into a distinct state that is interesting for a test. However, state
setting mechanisms are often difficult to develop. Figure 8 to Figure 9 show the
testing interfaces for the RIN components that are partially derived from the
respective state models. The other operations in the testing interfaces are based
on typical built-in assertion concepts.
28 Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
Figure 8:
Behavioural model
for the RIN System
server component
plus structural
model for its testing
interface.

Figure 9:
Behavioural model
for the RIN client
component plus
structural model for
its testing interface.

waiting

registered

<<DCOM Signal>>
DCOM::QueryInterface

<<DCOM Signal>>
DCOM::Release

CDCOMRinServerObj::RegisterCallback

CDCOMRinServerObj::RegisterCallback

<<DCOM Signal>>
DCOM::Release

<<DCOM Signal>>
DCOM::Release
[#Clients = 1]

CRinServerSink::OnDataFromPlugin

RIN Server Behavioural ModelTestable RIN Server Structural Model

RIN Server

Testable
RIN Server

<<testing interface>>
isRegistered (Client) : Boolean
MessageInServer
(TestActive, Message) : Boolean
isActive (Plugin) : Boolean

State is input for
Testing Interface:

isRegistered

registered

ICallBackObj::ReceiveDataFromServer

active

IDCOMRinServerObj::
~IDCOMRinServerObj

IDCOMRinServerObj::
RegisterCallBackObj

IDCOMRinServerObj::ProcessRequest

RIN Plugin

Testable
RIN Plugin

<<testing interface>>
isRegistered () : Boolean
MessageInPlugin
(Message) : Boolean

testExecute () : void

RIN Client Behavioural ModelTestable RIN Client Structural Model

State is input for
Testing Interface:

isRegistered
29Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
Figure 10:
Behavioural model
for the RIN plugin
component plus
structural model of
its testing interface.

3.3.3 Activity Diagram Concepts

Activity diagrams can be reagarded as variations of statechart diagrams in which
the states represent the performance of activities in a procedure and the transi-
tions are triggered by the completion of these activities. Activity diagrams depict
flow of control through a procedure, so they are very similar to traditional con-
trol-flow graphs, although activity diagrams are more flexible in that they may
additionally define control-flow through multiple instances (i.e. procedural col-
laboration between objects). This is achieved through so-called swimlanes that
group activities with respect to which instance is responsible for performing an
activity. Essentially, an activity diagram describes flow of control between
instances, that is their interactions, and control flow within a single instance.
Activity diagrams can therefore be used to model procedures at all levels of
granularity even at the business process level.

An activity diagram is comprised of actions and results. An action is performed
in order to produce a result. Transitions between actions may have attached
guard conditions, send clauses and action expressions. Guard conditions have
the same purpose as in statechart diagrams, and send clauses are used to indi-
cate transitions that affect other instances. Transitions may also be sub-divided
into several concurrent transitions. This is useful for specifying parallel actions
that may be performed in different objects at the same time.

active

CRinSystem::CRinSystem

CRinSystem::~CRinSystem

CRinSystem::ProcessData

RIN Plugin

Testable
RIN Plugin

<<testing interface>>
isActive (Plugin) : Boolean
MessageInPlugin
(Message) : Boolean

testExecute () : void

RIN Plugin Behavioural ModelTestable RIN Plugin Structural Model

State is input for
Testing Interface:

isActive
30 Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
3.3.4 Activity Diagrams and Testing

UML activity diagrams are mainly used for typical structural testing activities, it
means they provide similar information as source code or control flow graphs in
traditional white-box testing, although on a much higher level of abstraction if
necessary. Developing activity diagrams may be seen in most cases as program-
ming without a specifc programming language.

Testing of con-
trol-flow
within a single
instance

Control-flow testing within an instance corresponds to a typical white-box unit
test, though the value of white-box testing is limited in component develop-
ment and testing. Component-based testing is more concerned with the inte-
gration of objects and their mutual interactions rather than with their individual
internal workings. For unit testing, activity diagrams provide typical traditional
code coverage measures, although on a higher level of abstraction. An activity
may be a single low-level statement, a block of such statements, or even a full
procedure with loops and decisions. Typical code coverage criteria can be
adapted easily to cope with activity diagram concepts. Traditional control flow
graphs and UML activity diagrams are essentially the same, and Beizer [Bei90]
treats control flow-based testing thoroughly. We can identify several flows of
control in activity diagrams that we can map to traditional coverage criteria
according to Beizer:

– testing the control flow graph (traditional coverage criteria [Bei90]).
– control flow coverage (solid arrow)
– message flow coverage (dashed arrow)
– signal flow coverage (dashed arrow).

Testing of con-
trol-flow
between
instances

Much more interesting for component-based testing with the UML is activity
that is spread over a number of different objects. This reflects the collaborations
of objects, their mutual effort toward a single goal. In this case it is the proce-
dure of the activity. Such higher-level procedures cross component or object
boundaries. At a boundary between two objects any flow of control is trans-
lated into some operation invocations between the objects. The client object
calls the methods of the server object. Here we have a typical contract at the
particular connection between the two objects, so for testing we have to go
back to the structural model and the behavioural model of each entity and
derive appropriate test cases for assessing this interaction point.

High-level transactions are typically composed out of lover-level transactions of
many different objects. If we base our testing on higher-level transactions, for
example on transactions in a use case model, activity diagrams display which
objects are participating in a transaction. Each modeled transaction defines all
its associated objects. So, when we start testing our system, we know which
objects we will have to assemble and create, or for which objects in a transac-
tion chain we have to devise test stubs. Figure 11 shows an activity diagram for
the RIN system. If we would like the check the transaction “Process Request”,
31Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
the activity diagram tells us which objects we have to develop (in code, or com-
piled), that is the “RIN Client”, the “RIN Server” and the “RIN Plugin”, and how
they interact for performing the transaction. These are the sequences of transac-
tions that are taking place between the objects.

Figure 11:
High-level RIN sys-
tem activity dia-
gram for processing
a request.

3.4 Interaction Modeling with Sequence and Collaboration Diagrams

Interaction modeling represents a combination of dynamic and structural mod-
eling. It mainly concentrates on the dynamic interactions between instances. The
UML provides two diagram types for modeling dynamic interaction: Sequence
Diagrams and Collaboration diagrams. They are both introduced in the next
paragraphs.

Process
Request

RIN Client RIN Server RIN Plugin

Request

Checked
Request

Enqueue
Request

Syntax
Check

Process
Data

Checked
Request

Perform
Request

Send Back
Result

Result

Send Back
Result

Result

High-level transaction
that will be tested, and

that is spread over
many instances.

Objects that are
Participating in the

Transaction.
32 Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
3.4.1 Interaction Diagram Concepts

Sequence diagrams and collaboration diagrams define the interactions on the
basis of which objects communicate. This includes also how higher level func-
tionality, or a scenario, is spread over multiple objects, and how such a scenario
is implemented through sequences of lower level method invocations. Sequence
and collaboration diagrams show the same essential information content, but
with a different focus, and they are both quite similar to activity diagrams.

A sequence diagram shows interactions in terms of temporally ordered method
invocations with their respective input and return parameters. The vertical axis
shows the passage of time, and the horizontal axis the objects that participate in
an interaction sequence. Through its focus on time passage, sequence diagrams
also illustrate the life time of objects, it means through wich occurences they are
created and destroyed. Labels can indicate timing properties for individual
occurencs, so sequence diagrams are valuable for modeling and specifying real-
time requirements. Messages that are sent between the instances can be syn-
chronous, meaning that a subactivity is completed before the caller resumes
execution, or asynchronous, meaning that the caller resumes execution immedi-
atly without waiting for the subactivity to finish. The calling object and the
called object execute concurrently in the second instance. This is important for
embedded system development. Messages in sequence diagrams can take the
same format as transition labels in state chart diagrams, although they do no
have the action expression. In other words, a message can also be made condi-
tional through a guard expression. The format of a message is defined as fol-
lows:

[guard_condition] message_name (parameter_list)

A sequence diagram starts with a single interaction, this is the considered sce-
nario, that triggers the whole sequence of messages which are spread over the
participating objects. Figure 12 displays an example sequence diagram for the
Resource Information Network system.

A collaboration diagram focuses more on structure and how it relates to
dynamic interactions. It is similar to a class or object diagram, since it may also
show internal realization of an object, that is its subordinate objects. Essentially,
a collaboration diagram shows the same interactions as the corresponding
sequence diagram. Although, here messages are numerically ordered and asso-
ciated with a single interaction between two objects, rather than sequentially
associated with a life line as it is the case in sequence diagrams. An interaction is
a call path within the scope of a collaboration [Bin00]. Interactions in a collabo-
ration diagrams have the following format:

sequence_number : [guard_condition]
message_name (parameter_list)
33Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
sequence_number : * [iteration_condition]
message_name (parameter_list)

The sequence number is an integer or sequence of integers which indicates the
nesting level of a transaction sequence: 1 always starts the sequence, 1.1 repre-
sents the first sub-transaction on the first nesting level, 1.2 represents the sec-
ond sub-transaction on the first nesting level, etc. 1.2a and 1.2b represent two
concurrent messages which are sent in parallel. The asterisk indicates repeated
execution of a message. Repetitions are more specifically defined thorugh itera-
tion conditions. These are expressions that specify the number of repetitive mes-
sage executions. Figure 13 shows the corresponding collaboration diagram
according to the sequence diagram in Figure 12.

Figure 12:
Example sequence
diagram, RIN sys-
tem initialization of
the server.

3.4.2 Interaction Diagrams and Testing

Sequence and collaboration diagrams are typical control-flow diagrams
although with slightly different foci. As the term interaction diagram implies
they concentrate on control flow through multiple interacting instances. For
testing, the two diagram types may be represented as abstract control-flow
graphs that span multiple entities. With that respect we can apply all typical tra-
ditional control-flow graph based test coverage criteria as outlined in [Bei90].
This, of course, includes path and branch coverage criteria as well more exotic
things such as round-trip scenario coverage [Bin00]. Since UML diagrams are
always also more abstract than traditional control-flow graphs the test targets
may be more abstract. Binder identifies some typical problems that may be dis-
covered through sequence diagram-based testing [Bin00]:

Client

::DCOM

QueryInterface(RinServer)

::DCOMRinServerCreate()

:ICDCOMRinServerObj

:DCOMRinClient

:DCOMRinClient:
CCallBackObj

Create()

RegisterCallBack(User, CCallBackObj)
Creation of

objects
necessary
to attend
clients

::DCOMRinServer:
CDCOMRinServerObj

T1

T2
34 Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
– Incorrect or missing output
– Action missing on external interface.
– Missing function/feature (interface) in a participating object.
– Correct message passed to the wrong object.
– Incorrect message passed to the right object.
– Message sent to destroyed object.
– Correct execption raised, but caught by the wrong object.
– Incorrect exception raised to the right object.
– Deadlock.
– Performance.

The items in the list make the nature of interaction diagrams and their value for
testing apparent. Additionally to typical control-flow issues these diagrams put
considerable weight on collaboration and how that may be checked.

From the sequence diagram in Figure 12 we may derive the test sequence dis-
played in Table 9.

Table 9:
Test sequence for
checking the initial-
ization procedure of
the RIN server
derived from the
sequence diagram in
Figure 12.

Any sequence may be augmented with additional timing specifications that are
typically coming from high-level user requirements. For example, the registration
of the RIN server in the DCOM environment may not take longer than 300 milli-
seconds. This is a timing requirement that will be attached to the sequence of
several operation invocations as displayed in Figure 12. A test of this perfor-
mance specification requires some additional infrastructural amendments in a
tester component. In the test environment we need to read the timer before
and after test execution and we have to amend the evaluation of the verdict
that in this particular instance requires the calculation of the execution time. The
test sequence in Table 9 will then be extended by timer operation calls as dis-
played in Table 10.

No. Initial State Event Expected Outcome Final State

1 RinServer is not reg-
istered in DCOM

DCOM::QueryInterface
(RinServer)

Return RINServerObject to Client DCOM RinServer is
registered & Active

2.1 DCOM RinServer is
registered & active

RINClientCallBack-
Obj::Create ()

Reference to the RinClientCall-
backObj

2.2 IDCOMRinServer::Regis-
terCallBack (User, RINCli-
entCallBackObj)

OK DCOM RinServer
registered & active
AND CallBackObj
registered
35Copyright Fraunhofer IESE 2003

UML Diagram Types and Testing
Table 10:
Timer calls in a test
sequence for perfor-
mance assessment.

Figure 13:
Example collabora-
tion diagram, RIN
system initialization
of the server.

This chapter has concentrated on the individual UML diagram types and how
they can be used in order to derive testing information. We have seen that typi-
cal structural models are more suitable for test target definition, and the devel-
opment of testing architecture for a system. Test cases require more information
and in particular more concrete information, specifically about functionality and
behaviour. UML behavioural models are therefore indispensible for deriving a
system’s concrete tests that fill the testing infrastructure derived from structural
models with life. The next chapter shows how the UML can be used to specify
and model all the testing artifacts that are neccessary to check a system through
a UML Testing Profile. Testing is just another functionality, so it can be modeled
and designed just as any other functionality. Although, the testing profile pro-
vides additionally to the standard UML concepts that specifically support test
development.

No. Initial State Event Expected Outcome Final State

1.1 ReadTimer (StartTime)

1.2 RinServer is not reg-
istered in DCOM

DCOM::QueryInterface
(RinServer)

Return RINServerObject to Client DCOM RinServer is
registered & Active

2.1 DCOM RinServer is
registered & active

RINClientCallBack-
Obj::Create ()

Reference to the RinClientCall-
backObj

2.2 IDCOMRinServer::Regis-
terCallBack (User, RINCli-
entCallBackObj)

OK DCOM RinServer
registered & active
AND CallBackObj
registered

2.3 ReadTimer (StopTime)

: :D C O M R in
C lie n t ::D C O M

1 : Q u e ry In te r fa c e
(R in S e rv e r) : :D C O M R in

S e rve r
1 .1 : C re a te ()

1 .2 : IC D C O M
R in S e rv e rO b j

: :D C O M R in S e rve r:
C D C O M R in S e rve rO b j

1 .1 .1 : C re a te ()

: :D C O M R in C lie n t:
C C a llB a c kO b j

2 : C re a te ()

3 : R e g is te rC a llB a c k (U s e r , C C a llB a c k O b j)
36 Copyright Fraunhofer IESE 2003

UML Testing Profile
4 UML Testing Profile

The OMG’s Unified Modeling Language is initially concentrating on architectural
and functional aspects of software systems. This manifests itself in the different
UML diagram types:

– Use Case Diagrams describe the high-level user view on a system and its
externally visible overall functionality.

– Structural Diagrams are used for describing the architectural organization
of a system or parts thereof.

– Behavioural Diagrams are used to model the functional properties of these
parts and their interactions.

– Implementation Diagrams can be used to describe the organization of a
system during run-time, and how the logical organization of an applica-
tion is implemented physically.

Testing also involves the description and definition of testing architectures, test-
ing behaviour and physical testing implementation including the individual test
cases. So, test development essentially comprises the same fundamental con-
cepts and procedures as any other normal software development that is merely
concentrating on function rather than testing. The testing infrastructure for a
system is also software after all. Out of this motivation, the OMG has initiated
the development of a UML testing profile that is specifically addressing typical
testing concepts in model-based development.

The UML testing profile is an extension of the core UML, and it is also based
upon the UML metamodel. The testing profile particularly supports the specifica-
tion and modeling of software testing infrastuctures. It follows the same funda-
mental principles of the core UML in that it provides concepts for the structural
aspects of testing such as the definition of test components, test contexts and
test system interfaces, and behavioural aspects of testing such as the definition
of test procedures, test setup, execution and evaluation. The core UML may be
used to model and describe testing functionality since test software develop-
ment can be seen as any other development for functional software properties.
However, software testing is based on a number of very special addititional con-
cepts that are introduced in the following and defined through the testing pro-
file.
37Copyright Fraunhofer IESE 2003

UML Testing Profile
4.1 Structural Aspects of Testing

The UML testing profile defines the test architecture that copes with all struc-
tural aspects of testing in the UML. The test architecture contains test compo-
nents and test contexts and defines how they are related to the specified system
under test (SUT), the sub-system, or component under test (i.e. the tested soft-
ware). A test context represents a collection of test cases, associated with a test
configuration that defines how the test cases are applied to the SUT. A test con-
figuration may comprise a number of test components and describes how they
are associated with the tested component (SUT). A very special test component
is the arbiter. It evaluates the test results and assigns an overall verdict to a test
case. Feasible verdicts for a test result are pass, inconclusive, fail and error. Fig-
ure 14 summarizes the structural concepts of the testing profile.

Figure 14:
Structural concepts
of the testing pro-
file.

4.2 Behavioural Aspects of Testing

The test behaviour is defined through a number of different concepts in the
testing profile. The most important concept is undoubtedly the test case. It spec-
ifies what will be tested, with which inputs and under which conditions. Each
test case is associated with a general description of its purpose. This is termed
test objective and it essentially defines the test case. Each execution of a test
case may result in a test trace. This represents the different messages that have
been exchanced between a test component and the SUT. Finally, a test case also
comprises its verdict. This indicates whether the test passed or failed. Figure 15
summarizes the concepts that are related to a test case.

Test Context

<<subject>>
Test Architecture

Test Component

SUT

Test
Configuration

ArbiterTest Case

1.. *1.. *

1.. *
38 Copyright Fraunhofer IESE 2003

UML Testing Profile
Figure 15:
Concepts associ-
ated with a test
case.

The behaviour of a test case comprises a test stimulus that sends the test data to
the SUT in order to control it, and the test observation that represents the reac-
tions of the SUT to the sent stimulus. The assessment of the SUT’s reactions to a
stimulus is performed by a validation action. Its outcome is the verdict for the
test case. A pass verdict indicates that the SUT adheres to its expectations, a fail
verdict indicates that the SUT differs from its expectations, an inconclusive ver-
dict means that neither pass nor fail can be assigned, and the error verdict indi-
cates an error in the testing system. The test behaviour is summarized in Figure
16.

Figure 16: Concepts
of the behaviour of
a test case.

Stimuli that are sent to an SUT and observations that are received from an SUT
represent the test data of a test case. They are referred to as test parameter. A
test parameter may comprise any combination of arguments, data partitions, or

<<subject>>
Test Case

Test Objective
<<defines>>

Test Trace
<<enumeration>>

Verdict

Pass
Fail
Error
Inconclusive

<<enumeration>>
Verdict

Pass
Fail
Error
Inconclusive

Test Behaviour

<<subject>>
Test Behaviour

Test Observation
<<enumeration>>

Verdict

Pass
Fail
Error
Inconclusive

<<enumeration>>
Verdict

Pass
Fail
Error
Inconclusive

Validation
Action

Test Stimulus
39Copyright Fraunhofer IESE 2003

UML Testing Profile
coding rules. An argument is a concrete physical value of a test parameter, and
a data partition is a logical value of a test parameter such as an equivalence class
of valid arguments. Coding rules are required if the interface of the SUT is based
upon distinct encodings, e.g. XML, that must be respected by the testing sys-
tem. Figure 17 gives an overview on the test data associations in the testing pro-
file.

Figure 17:
Test data concepts
in the testing profile.

The previous sections have briefly introduced the concepts of the UML Testing
Profile. In the following we look at how the UML and the testing profile are
related.

4.3 Mapping to UML Testing Profile Concepts

Test Objective The test objective is a general description of what should be tested. In the most
general sense. For example the test objective that can be derived from a behav-
ioral model is clearly the test of behavior. Since this is too broad a terminology,
and a test objective is associated with a test case in the testing profile we can be
more specific and identify a number of test objectives each of which maps to
one or more test cases. The following items represent test objectives that can be
associated with a state model:

– Piecewise Coverage: Piecewise coverage concentrates on exercising distinct
specification pieces, for example coverage of all states, all events, or all
actions. These techniques are not directly related to the structure of the
underlying state machine that implements the behavior, so it is only acciden-
tally effective at finding behaviour faults. It is feasible to visit all states and
miss some events or actions, or produce all actions without visiting all states
or accepting all events. Binder discusses this in greater detail [Bin00].

<<subject>>
Test Parameter

Test Observation

Data
Partition

Test Stimulus

Argument

Coding
Rule

* *

* *

*

40 Copyright Fraunhofer IESE 2003

UML Testing Profile
– Transition Coverage: Full transition coverage is achieved through a test suite
if every specified transi-tion in the state model is exercised at least once. As a
consequence, this covers all states, all events and all actions. Transition cover-
age may be improved if every specified transition sequence is exercised at
least once, this is referred to as n-transition coverage [Bin00].

– Round-trip Path Coverage: Round-trip path coverage is defined through the
coverage of at least every defined sequence of specified transitions that
begin and end in the same state. The shortest round-trip path is a transition
that loops back on the same state. A test suite that achieves full round-trip
path coverage will reveal all incorrect or missing event/action pairs. Binder
discusses this in greater detail [Bin00].

In the same way, we have can define the test of structure as a test objective that
may be associated with a strucutral model. Although we would have to define
more specifically what we mean by “test of structure”.

Test Stimulus A transition maps to a test stimuls. A stimulus is some transaction that is carried
out on the tested object. A stimulus maps to a single operation invocation, or a
series of operation invocations or events on a tested instance. A stimulus repre-
sents the input that is going to the tested instance. Sometimes, a distinct stimu-
lus may only be sent to a tested object if some conditions or constraints hold
(e.g. a distinct state). Such a state is also referred to as a pre-condition for send-
ing the stimulus and it typically involves the execution of some previous stimuli
in order to get an object into that distinct state. A state in the state model can
map to a sequence of stimuli, and it consequently represents a history of transi-
tions. A test stimulus can also comprise more. For example in built-in contract
testing a stimulus may be considered, additionally to the call of the actual tested
operation, the sequence of testing interface invocations in order to bring a com-
ponent into a state from which a test will be performed.

Test Observa-
tion

A state represents part of a test observation. This is the final state after a test
event has been executed. The test observation represents the output data from
the tested instance. For example, an action expression maps to an observation,
the return value of an event maps to an observation.

Verdict The verdict is the assessment of whether the tested instance is correct or not.
The evaluation of the test observation maps to a verdict for a single test stimu-
lus. For this of course we need some sort of an oracle that defines the correct
expected outcome of a test.

Test Case A test case subsumes the previous items and compounds them into a single con-
cept. It may comprise a test objective, a number of stimuli and observations as
well as a verdict.
41Copyright Fraunhofer IESE 2003

Summary and Conclusion
5 Summary and Conclusion

This report is motivated through the testing panel of the 5th International Con-
ference on the Unified Modeling Language (UML 2002) that was focusing on
the question of whether the UML and Testing may be a perfect fit. As it turns
out, the UML and Testing are indeed a perfect fit and supplement each other in
the two single most important respects: the UML as basis for the generation of
testing artifacts, and the UML for the specification, design and modeling of test
software. The first one sees the UML as the basis from which all testing for a
software project is derived. Chapter 3 outlines which testing artifacts may be
derived from which UML diagrams. It is important to note that testing which is
traditionally perceived as a late activity in the development life-cycle, can also be
developed on the basis of high-level specification and realization documents.
One of the major outcomes of this work is that the testing for a system can be
specified and designed in tandem with its normal functionality, and most nota-
bly, this can be performed at all decomposition levels and at all abstraction levels
during development. As soon as more and more information about the work-
ings of a system becomes available throughout the entire development effort,
we can use that information and make the testing of the system more and more
concrete. This way of developing the system and the testing of the system in
parallel distributes the testing effort throughout the entire development cycle,
instead of simply adding testing as a seperate effort after implementation, as it
is the case in most traditional software development approaches. The system
and the testing of the system are always in the same stage in terms of abstrac-
tion and decomposition. The testing and thus the test execution will therefore
become available as soon as the final system becomes available and ready to
execute. The second one simply adds concepts that are specific to testing to the
core UML. This alleviates test development considerably, because the designers
of the test software can simply use these concepts as basic building blocks. This
is the case for all design patterns, not only for the ones related to testing. The
UML Testing Profile was briefly summarized in Chapter 4. Overall, this report is a
strong advocator for system modeling with the UML, because it is not merely a
convenient and easy-to-learn notation for the design and specification of sys-
tems, but additionally it supports the quality assurance efforts throughout the
system’s life-cycle in a convenient way.
42 Copyright Fraunhofer IESE 2003

References
6 References

[AM01] Amyot, D., Mussbacher, G., Bridging the Requirements/Design Gap
in Dynamic Systems with Use Case Maps, Tutorial, 23rd Int. Conf.
on Software Engineering (ICSE-2001), Toronto, Canada, May 12-
19, 2001.

[AM00] Amyot, D., Mussbacher, G., On the Extension of UML with Use Case
Map Concepts, 3rd Int. Conf. on Unified Modeling Language (UML-
2000), York, UK, September 2000.

[Atk01] Atkinson, C., et al., Component-based Product Line Engineering
with UML, Addison-Wesley, 2001.

[Bei90] Beizer, B., Software Testing Techniques. Van Nostrand Reinhold,
New York, 1990.

[Bei95] Beizer, B., Black-box Testing, Techniques for Functional Testing of
Software and Systems, John Wiley & Sons, New York, 1995.

[Bin00] Binder, R.V., Testing Object-Oriented Systems: Models, Pattern and
Tools, Addison-Wesley, 2000.

[Bok01] Bokhorst, L.(ed.), Requirements Specification Description Template,
ITEA DESS Project (Software Development Process for Real-Time
Embedded Software Systems), Deliverable D.1.8.4, November,
2001.

[Coc96] Cockburn, A., Basic Use Case Template, Technical Report
TR.96.03a, Human and Technology, Salt Lake City, April 1996.

[Coc01] Cockburn, A., Writing Effective Use Cases, Addison-Wesley, Boston,
2001.

[Comp+] EU-IST Component+ Project. http://www.component-plus.org.

[Gro02a] Gross, H.-G., Component+ Methodology -- Built-in Contract Test-
ing: Technological Foundations. IESE Technical Report 073.02/E,
Kaiserslautern, December 2002.

[Gro02b] Gross, H.-G., Component+ Methodology -- Built-in Contract Test-
ing: Method and Process. IESE Technical Report 030.02/E, Kaiser-
slautern, October 2002.
43Copyright Fraunhofer IESE 2003

References
[Jac92] Jacobson, I., et al., Object-oriented software engineering. Addison-
Wesley, Reading, Mass., 1992.

[Mar95] Marick, B., The Craft of Software Testing: Subsystem testing. Pren-
tice Hall, Englewood Cliffs, New Jersey, 1995.

[MDTS] BMBF Project MDTS: Model-driven Develpoment of Telecommunica-
tion Systems, http://www.fokus.fhg.de/mdts.

[Mey97] Meyer, B., Object-Oriented Software Construction, Prentice-Hall,
1997.

[PW99] Probert, R., Williams, A.W., Fast Functional Test Generation using
an SDL Model, 12th Int. Workshop on Testing of Communicating
Systems (IWTCS’99), Budapest, Hungary, September 1-3, 1999.

[RG99] Ryser, J., Glinz, M., A practical approach to validating and testing
software systems using scenarios. Quality Week Europe, Brussels,
1999.

[RG00] Ryser, J., Glinz, M., SCENT: A method employing scenarios to sys-
tematically deriving test cases for system test. University of Zürich,
Institute of Informatics, Technical Report, 03/2000.

[RG00] Ryser, J., Glinz, M., Using dependency charts to improve scenario-
based testing. 17th International Conference on Testing Computer
Software (TCS‘2000), Washington, 2000.

[RR98] Regnell, B., Runeson, P., Combining scenario-based requirements
with static verification and dynamic testing. 4th International Work-
shop on Requirements Engineering: Foundation for Software Qual-
ity (REFSQ’98), Pisa, Italy, June 8-9, 1998.

[RRW98] Regnell, B., Runeson, P., Wohlin, C., Towards integration of use
case modeling and usage-based testing. 4th International Work-
shop on Requirements Engineering: Foundation for Software Qual-
ity (REFSQ’98), Pisa, Italy, June 8-9, 1998.

[War64] Warner, C.D., Evaluation of program testing. TR 00.1173, IBM Data
Systems Division Development Laboratories, Poughkeepsie, N.Y.,
July 1964.
44 Copyright Fraunhofer IESE 2003

Copyright 2003, Fraunhofer IESE.
All rights reserved. No part of this publication may
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including,
without limitation, photocopying, recording, or
otherwise, without the prior written permission of
the publisher. Written permission is not needed if
this publication is distributed for non-commercial
purposes.

Document Information

Title: Testing and the UML -
A perfect Fit.

Date: October 31, 2003
Report: IESE-110.03/E
Status: Final
Distribution: Public

	Testing and the UML
	Executive Summary
	Table of Contents
	1 Introduction
	2 Model-based vs. Traditional Testing
	2.1 Traditional White-Box Coverage Criteria and the UML
	2.2 Traditional Black-box Testing Techniques and the UML

	3 UML Diagram Types and Testing
	3.1 Usage Modeling with Use Case Diagrams
	3.2 Structural Modeling with Class/Object, Package, Component, and Deployment Diagrams
	3.3 Behavioural Modeling with Statechart and Activity Diagrams
	3.4 Interaction Modeling with Sequence and Collaboration Diagrams

	4 UML Testing Profile
	4.1 Structural Aspects of Testing
	4.2 Behavioural Aspects of Testing
	4.3 Mapping to UML Testing Profile Concepts

	5 Summary and Conclusion
	6 References

