Comprehensive Evaluation of IEC Measurement Procedures for Bifacial Solar Cells and Modules

Michael Rauer, Alexandra Schmid, Fan Guo, Frank Neuberger, Paul Gebhardt, Jochen Hohl-Ebinger

CalLab PV Cells & CalLab PV Modules Fraunhofer Institute for Solar Energy Systems ISE

37th EU PVSEC September 09, 2020

Measurement of Bifacial Silicon Solar Cells and Modules Motivation

Bifacial solar cells and modules become more and more important

[1] ITRPV, 11th Edition (2020).

Measurement of Bifacial Silicon Solar Cells and Modules **Motivation**

- Bifacial solar cells and modules become more and more important
- Strongest hindrance for market introduction^[2]: Missing standardized characterization of bifacial performance
- \rightarrow IEC technical specification (TS) 60904-1-2^[3]
 - Comparability to monofacial devices
 - Comparability among bifacial devices
- \rightarrow Two different methods for indoor measurement of bifacial devices proposed

[1] ITRPV, 11th Edition (2020). [2] R. Kopecek, Photovoltaics International 26 (2014): 32. [3] IEC 60904-1-2, Technical Specification, 2019.

AGENDA

- Introduction to IEC TS 60904-1-2
- Amendment Proposal 1
 - Motivation and Derivation
 - Evaluation: Partial Rear Shading
- Amendment Proposal 2
 - Motivation and Derivation
 - Evaluation: Low-Light Conditions
- Summary

AGENDA

Introduction to IEC TS 60904-1-2

- Amendment Proposal 1
 - Motivation and Derivation
 - Evaluation: Partial Rear Shading
- Amendment Proposal 2
 - Motivation and Derivation
 - Evaluation: Low-Light Conditions
- Summary

Measurement at Standard Testing Conditions (1000 W/m², 25°C, AM1.5g) from front

- Short-circuit currents I_{sc,front}
- Maximum power P_{mpp,front}

Measurement at Standard Testing Conditions (1000 W/m², 25°C, AM1.5g) from front and rear

- Short-circuit currents $I_{sc,front}^{STC}$, $I_{sc,rear}^{STC}$
- Maximum power $P_{mpp,front}^{STC}$, $P_{mpp,rear}^{STC}$

Measurement at **Standard Testing Conditions** (1000 W/m², 25°C, AM1.5g) from front and rear

Short-circuit currents I^{STC}_{sc,front}, I^{STC}_{sc,rear}
 Maximum power P^{STC}_{mpp,front}, P^{STC}_{mpp,rear}

→ Bifaciality coefficients: ^[3]

Measurement at Standard Testing Conditions (1000 W/m², 25°C, AM1.5g) from front and rear

Short-circuit currents $I_{sc,front}^{STC}$, $I_{sc,rear}^{STC}$ Maximum power $P_{mpp,front}^{STC}$, $P_{mpp,rear}^{STC}$

\rightarrow Bifaciality coefficients: ^[3]

Two different methods for indoor measurements ^[3]

Both-sided illumination (Bifacial method):

Front irradiance: $G_{\text{front}} = 1000 \text{ Wm}^{-2}$ Rear irradiance: $G_{rear} = 100$ to 200 Wm⁻²

Two different methods for indoor measurements ^[3]

Both-sided illumination (Bifacial method):

Front irradiance: $G_{\text{front}} = 1000 \text{ Wm}^{-2}$ Rear irradiance: $G_{rear} = 100$ to 200 Wm⁻²

Two different methods for indoor measurements

Both-sided illumination (Bifacial method):

Front irradiance: $G_{\text{front}} = 1000 \text{ Wm}^{-2}$ Rear irradiance: $G_{rear} = 100$ to 200 Wm⁻²

Single-sided illumination (equivalent irradiance (G_F) method):

Front irradiance: $G_F = 1000 \text{ Wm}^{-2} + \phi \cdot G_{rear}$

Measurement of P_{mpp} as function of G_{rear} additional to STC

Two different methods for indoor measurements

Module A **Both-sided illumination** Maximum power P_{mpp} [W] (Bifacial method): Front irradiance: $G_{\text{front}} = 1000 \text{ Wm}^{-2}$ Rear irradiance: $G_{rear} = 100$ to 200 Wm⁻² Single-sided illumination (equivalent irradiance (G_F) method): 300 Front irradiance: $G_{\rm E} = 1000 \, {\rm Wm^{-2}} + \phi \left(G_{\rm rear}\right)$ 50 100 150 200 0 Measurement of P_{mpp} as function of G_{rear} Rear irradiance [W/m²] additional to STC

360

© Fraunhofer ISE FHG-SK: ISE-INTERNAL

IEC Technical Specification 60904-1-2 Standardized Evaluation

Standardized parameters to quantify bifacial performance

BiFi: Measure for power gain by additional rear irradiance in W/(W/m²)

IEC Technical Specification 60904-1-2 Standardized Evaluation

Standardized parameters to quantify bifacial performance

- **BiFi:** Measure for power gain by additional rear irradiance in W/(W/m²)
- **P**_{mppBiFi10%}: Interpolated power at standardized rear irradiance of 100 W/m²
- **P**_{mppBiFi20%}: Interpolated power at standardized rear irradiance of 200 W/m²

Methods applicable in similar way:

"The same approach may be applied to assess the low-light behaviour of bifacial PV devices" [3]

Methods applicable in similar way:

"The same approach may be applied to assess the low-light behaviour of bifacial PV devices" [3]

Both-sided illumination (Bifacial method):

 $\begin{array}{ll} \mbox{Front irradiance: } G_{\rm front} \leq 1000 \ \mbox{W/m}^2 \\ \mbox{Rear irradiance: } G_{\rm rear} = 0.1 \cdot G_{\rm front} \ \mbox{to} \ \ 0.2 \cdot G_{\rm front} \\ \end{array}$

Front irradiance:
$$G_E = G_{front} + \bigoplus G_{rear}$$

 $\min(\bigoplus_{lsc}^{STC}, \bigoplus_{Pmpp}^{STC})$
No other bifaciality
coefficients specified
in 60904-1-2

Methods applicable in similar way:

"The same approach may be applied to assess the low-light behaviour of bifacial PV devices" [3]

Both-sided illumination (Bifacial method):

Front irradiance: $G_{\text{front}} \leq 1000 \text{ W/m}^2$ Rear irradiance: $G_{\text{rear}} = 0.1 \cdot G_{\text{front}}$ to $0.2 \cdot G_{\text{front}}$

Front irradiance:
$$G_E = G_{front} + \bigoplus G_{rear}$$

 $min(\bigoplus_{lsc}^{STC}, \bigoplus_{Pmpp}^{STC})$

Methods applicable in similar way:

"The same approach may be applied to assess the low-light behaviour of bifacial PV devices" [3]

Both-sided illumination (Bifacial method):

Front irradiance: $G_{\text{front}} \leq 1000 \text{ W/m}^2$ Rear irradiance: $G_{\text{rear}} = 0.1 \cdot G_{\text{front}}$ to $0.2 \cdot G_{\text{front}}$

Front irradiance:
$$G_E = G_{front} + \bigoplus G_{rear}$$

 $min(\bigoplus_{lsc}^{STC}, \bigoplus_{Pmpp}^{STC})$

Methods applicable in similar way:

"The same approach may be applied to assess the low-light behaviour of bifacial PV devices" [3]

Both-sided illumination (Bifacial method):

Front irradiance: $G_{\text{front}} \leq 1000 \text{ W/m}^2$ Rear irradiance: $G_{\text{rear}} = 0.1 \cdot G_{\text{front}}$ to $0.2 \cdot G_{\text{front}}$

Front irradiance:
$$G_E = G_{front} + \bigoplus G_{rear}$$

 $min(\bigoplus_{lsc}^{STC}, \bigoplus_{Pmpp}^{STC})$

AGENDA

- Introduction to IEC TS 60904-1-2
- Amendment Proposal 1
 - Motivation and Derivation
 - Evaluation: Partial Rear Shading
- Amendment Proposal 2
 - Motivation and Derivation
 - Evaluation: Low-Light Conditions
- Summary

Module A

Optimized for bifacial application:

- Flat junction box
- Slim module frame
- Only slight partial rear shading

Non-optimized for bifacial application:

Overlapping junction box

Wide module frame

Module

Rear side

→ Significant rear shading

Module A: Optimized for bifacial applications

No conspicuous features in I-V curves

Module A: Optimized for bifacial applications

- No conspicuous features in I-V curves
- Bifaciality coefficients approximately similar

Module B: With partial rear shading

Kinks in rear *I-V* curve due to bypassing of strings by bypass diodes

Module B: With partial rear shading

- Kinks in rear I-V curve due to bypassing of strings by bypass diodes
- Large difference in bifaciality factors ϕ_{lsc} and ϕ_{Pmpp} as input parameters for G_E
- → To counter this issue, minimum criterion has originally been introduced to IEC TS 60904-1-2

$$\phi = \min(\phi_{lsc}, \phi_{Pmpp})$$

Amendment Proposal 1 Omission of Minimum Criterion

Amendment Proposal (1): Omission of minimum criterion

For all bifacial cells and modules:

 $\phi = \phi_{lsc}$

Physically more meaningful weight for rear irradiance:

 $I_{\rm sc}$ = const \cdot *G* for linear solar cells

AGENDA

- Introduction to IEC TS 60904-1-2
- Amendment Proposal 1
 - Motivation and Derivation
 - Evaluation: Partial Rear Shading
- Amendment Proposal 2
 - Motivation and Derivation
 - Evaluation: Low-Light Conditions
- Summary

- *I-V* measurement of modules A and B with bifacial method and G_{F} method using two-mirror setup*
- Measurement of P_{mpp} as function of G_{rear}

*Further details: A. Schmid, 32nd EUPVSEC, 2016.

- I-V measurement of modules A and B with bifacial method and $G_{\rm F}$ method using two-mirror setup*
- Measurement of P_{mpp} as function of G_{rear}
- as input for G_F method:

IEC TS 60904-1-2: $\phi = \min(\phi_{lsc}^{STC}, \phi_{Pmpp}^{STC})$ This study: $\phi = \phi_{lsc}^{G_{front}}$

*Further details: A. Schmid, 32nd EUPVSEC, 2016.

Module A: Optimized for bifacial applications

Both-sided illumination (*Bifacial method*): Front irradiance: $G_{front} = 1000 \text{ W/m}^2$ Rear irradiance: $G_{rear} = 100 \text{ to } 300 \text{ W/m}^2$

Module A: Optimized for bifacial applications

Both-sided illumination (*Bifacial method*): Front irradiance: $G_{front} = 1000 \text{ W/m}^2$ Rear irradiance: $G_{rear} = 100 \text{ to } 300 \text{ W/m}^2$

Module A: Optimized for bifacial applications

- **Both-sided illumination** (*Bifacial method*): Front irradiance: $G_{\text{front}} = 1000 \text{ W/m}^2$ Rear irradiance: $G_{rear} = 100$ to 300 W/m^2
- **Single-sided illumination** (G_F method):

This study: φ_ι

Module A: Optimized for bifacial applications

- Both-sided illumination (*Bifacial method*): Front irradiance: $G_{front} = 1000 \text{ W/m}^2$ Rear irradiance: $G_{rear} = 100 \text{ to } 300 \text{ W/m}^2$
- Single-sided illumination (G_E method):

Front irradiance: $G_{E} = G_{front} + \phi \cdot G_{rear}$

→ Good accordance between both methods for approaches of IEC TS 60904-1-2 and this study

Module B: With partial rear shading

Both-sided illumination (*Bifacial method*): Front irradiance: $G_{\text{front}} = 1000 \text{ W/m}^2$ Rear irradiance: $G_{rear} = 100$ to 300 W/m^2

Module B: With partial rear shading

- Both-sided illumination (*Bifacial method*): Front irradiance: $G_{front} = 1000 \text{ W/m}^2$ Rear irradiance: $G_{rear} = 100 \text{ to } 300 \text{ W/m}^2$
- Single-sided illumination (G_E method):

Front irradiance: $G_E = G_{front} + \bigoplus G_{rear}$ IEC TS: \bigoplus_{Pmpp} This study: \bigoplus_{Isc}

Module B: With partial rear shading

- Both-sided illumination (*Bifacial method*): Front irradiance: $G_{front} = 1000 \text{ W/m}^2$ Rear irradiance: $G_{rear} = 100 \text{ to } 300 \text{ W/m}^2$
- Single-sided illumination (G_E method):

Front irradiance: $G_{E} = G_{front} + \phi \cdot G_{rear}$

 \rightarrow <u>IEC TS 60904-1-2</u>: $G_{\rm E}$ and $P_{\rm mpp}$ underestimated

Module B: With partial rear shading

- Both-sided illumination (*Bifacial method*): Front irradiance: $G_{front} = 1000 \text{ W/m}^2$ Rear irradiance: $G_{rear} = 100 \text{ to } 300 \text{ W/m}^2$
- Single-sided illumination (G_E method): Front irradiance: $G_E = G_{front} + \phi \cdot G_{rear}$
- → <u>IEC TS 60904-1-2</u>: G_E and P_{mpp} underestimated → <u>This study</u>: Agreement significantly improved

Module B: With partial rear shading

- **Both-sided illumination** (*Bifacial method*): Front irradiance: $G_{\text{front}} = 1000 \text{ W/m}^2$ Rear irradiance: $G_{rear} = 100$ to 300 W/m^2
- **Single-sided illumination** (G_F method):

Front irradiance: $G_{\rm E} = G_{\rm front} + \phi \cdot G_{\rm rear}$

More systematic investigation of impact of partial rear shading

- Two different modules with different φ_{lsc}
 - 84 % (Module C)
 - 56 % (Module D)
- Coverage of rear by black opaque carton
 - One solar cell in string already affected by built-in shading
- Systematic variation of shading percentage
 - None, 20%, 30%, 40% of cell area

I-V measurement of front and rear at STC for different rear shading fractions

- *I-V* measurement of front and rear at STC for different rear shading fractions
- Difference in ϕ_{lsc} and ϕ_{Pmpp} due to built-in rear shading

- *I-V* measurement of front and rear at STC for different rear shading fractions
- Difference in ϕ_{lsc} and ϕ_{Pmpp} due to built-in rear shading
- Further reduction of rear *I-V* curve near mpp by additional shading

- *I-V* measurement of front and rear at STC for different rear shading fractions
- Difference in ϕ_{lsc} and ϕ_{Pmpp} due to built-in rear shading
- Further reduction of rear *I-V* curve near mpp by additional shading
- \rightarrow Reduction of ϕ_{Pmpp} , consistency of ϕ_{lsc}

How does this affect the G_{E} methods?

Single-sided illumination (*G_E method*):

IEC TS: Strongly affected by shading due to minimum criterion

Single-sided illumination (*G_E method*):

IEC TS: Strongly affected by shading due to minimum criterion

Single-sided illumination (G_F method):

- **IEC TS**: Strongly affected by shading due to minimum criterion
- This study: Not affected by shading due to constancy of ϕ_{lsc}

Single-sided illumination (*G_E method*):

- **IEC TS**: Strongly affected by shading due to minimum criterion
- <u>This study</u>: Not affected by shading due to constancy of ϕ_{lsc}

Both-sided illumination (*Bifacial method*):

- mpp not affected by shading for realistic measurement and shading scenarios
- Rear kinks superimposed by much larger front contribution

Single-sided illumination (*G_E method*):

- IEC TS: Strongly affected by shading due to minimum criterion
- <u>This study</u>: Not affected by shading due to constancy of φ_{lsc}

Both-sided illumination (*Bifacial method*):

- mpp not affected by shading for realistic measurement and shading scenarios
- Rear kinks superimposed by much larger front contribution
- Decrease in P_{max} for higher rear contribution

Single-sided illumination (*G_E method*):

- IEC TS: Strongly affected by shading due to minimum criterion
- <u>This study</u>: Not affected by shading due to constancy of φ_{lsc}

Both-sided illumination (*Bifacial method*):

- mpp not affected by shading for realistic measurement and shading scenarios
- Rear kinks superimposed by much larger front contribution
- Decrease in P_{max} for higher rear contribution

Difference between bifacial method and G_E methods

Difference between bifacial method and G_F methods

- **<u>IEC TS</u>**: Difference between methods increasing with increasing rear shading fraction
- This study: Improved agreement between bifacial and $G_{\rm E}$ methods

Difference between bifacial method and G_F methods

- IEC TS: Difference between methods increasing with increasing rear shading fraction
- This study: Improved agreement between bifacial and G_{F} methods

Application of $G_{\rm E}$ method using $\phi_{\rm lsc}$ essential to correctly consider partial rear shading

For evaluation of parameter *BiFi* please see proceedings paper

Difference between bifacial method and G_F methods

- IEC TS: Difference between methods increasing with increasing rear shading fraction
- This study: Improved agreement between bifacial and G_{F} methods

Application of $G_{\rm E}$ method using $\phi_{\rm lsc}$ essential to correctly consider partial rear shading

Criterion for applicability of $G_{\rm E}$ method using ϕ_{lsc} in proceedings paper

AGENDA

- Introduction to IEC TS 60904-1-2
- Amendment Proposal 1
 - Motivation and Derivation
 - Evaluation: Partial Rear Shading
- Amendment Proposal 2
 - Motivation and Derivation
 - Evaluation: Low-Light Conditions
- Summary

Amendment Proposal 2 Generalized Bifaciality Coefficients

Nonlinear bifacial solar cell

- Front and rear I_{sc} and P_{mpp} depend differently on irradiance
- → Bifaciality coefficients also depend on irradiance ^[1,2]

Amendment Proposal 2 Generalized Bifaciality Coefficients

Nonlinear bifacial solar cell

- Front and rear I_{sc} and P_{mpp} depend differently on irradiance
- → Bifaciality coefficients also depend on irradiance ^[1,2]

Generalized bifaciality coefficients

Evaluation of ϕ_{lsc} at irradiance of measurement

$$I_{sc} \text{ bifaciality:} \quad \varphi_{lsc}^{G} = \frac{I_{sc,rear}(G)}{I_{sc,front}(G)}$$

Amendment Proposal 2 Generalized Bifaciality Coefficients

Amendment Proposal (2):

Application of generalized bifaciality coefficients evaluated at irradiance of measurement

- Amendment only for low-light conditions
- Similar to IEC TS for measurements at STC

Low-Light Performance of Nonlinear Bifacial Solar Device Results

- Simulation of different bifacial PERC solar cells by PC1D^[1]
- Difference in $P_{mppBiFi20\%}$ between G_E method and bifacial method determined for different front irradiance levels

[1] M. Rauer, 36th EUPVSEC, Marseille, 2019.

Low-Light Performance of Nonlinear Bifacial Solar Device Results

- Simulation of different bifacial PERC solar cells by PC1D^[1]
- Difference in P_{mppBiFi20%} between G_E method and bifacial method determined for different front irradiance levels
- \rightarrow <u>IEC TS:</u> G_{E} method overestimates power of bifacial device in low-light conditions
- → <u>This study</u>: Overestimation significantly less strong by generalized bifaciality coefficients

Application of ϕ_{lsc} evaluated at G_{front} leads to better agreement between two methods in low-light conditions

Low-Light Performance of Nonlinear Bifacial Solar Device Results

- Simulation of different bifacial PERC solar cells by PC1D^[1]
- Difference in P_{mppBiFi20%} between G_E method and bifacial method determined for different front irradiance levels
- \rightarrow <u>IEC TS:</u> G_{E} method overestimates power of bifacial device in low-light conditions
- → <u>This study</u>: Overestimation significantly less strong by generalized bifaciality coefficients

For evaluation of parameter *BiFi* please see proceedings paper

For evaluation of linear PERC solar cell please see proceedings paper

62

Amendment Proposals Summary

- Comprehensive comparison of bifacial method and G_E method as proposed by IEC TS 60904-1-2
- Analysis of bifaciality coefficients ϕ_{lsc} and ϕ_{Pmpp} as input parameters for calculation of G_E

Proposal of amendments to IEC TS 60904-1-2:

- Application of ϕ_{lsc} only for calculation of G_E and omission of minimum criterion
- Evaluation of bifaciality coefficients at the front irradiance of measurement

Evaluation of amendments: Partial rear shading and low-light conditions

- IEC TS 60904-1-2: Significant deviations between bifacial and G_E methods
- <u>This study</u>: Considerably improved agreement between methods

Thank you very much for your attention!

Michael Rauer

michael.rauer@ise.fraunhofer.de www.ise.fraunhofer.de

This project has received funding from the EMPIR programme cofinanced by the Participating States and from the European Union's Horizon 2020 research and innovation programme within the project "PV-Enerate" (number 16ENG02).

ative is co-funded by the European Union's Horizon 2020 research and innovation programme and the EMPIR Participating States

Publications of Fraunhofer ISE at EU PVSEC 2020 available on: http://www.ise.fraunhofer.de/eupvsec2020

65

Thank you very much for your attention!

Fraunhofer ISE CalLab PV Cells & CalLab PV Modules

 \rightarrow Calibration services for research and industry

- \rightarrow Measurements of all kinds of solar cells (single/multi junction)
- → Accredited as ISO 17025 DAkkS laboratory

