

Forum Safety & Security 2018

Rapid Innovation Toolkit for the development of
dependable cooperative applications

Dominique Seydel, Gereon Weiss
Application Architecture Design & Validation

Fraunhofer ESK
Munich, Germany

{dominique.seydel, gereon.weiss}@esk.fraunhofer.de

Abstract— Cooperative applications have an enormous
potential to improve future mobility systems. Though, special
challenges regarding safety and security arise out of the
connectivity and the distribution of the application among
heterogeneous systems. These include expensive and time-
consuming development and test phases. Especially, the
debugging of an application, whose sub-functions are located on
heterogeneous and partially mobile systems, requires a new kind
of testing environment. The test and validation of the overall
application is complex, as the wireless link implies varying timing
behaviour and less data confidence. For this purpose, the
proposed testbed integrates the DANA (“Description and
Analysis of Networked Applications”) Framework to achieve a
central overview of the overall application and the behaviour of
all systems involved. This software tool kit is able to find
deviations from the specified behaviour and also it can instantly
locate and identify erroneous functions. In this paper, we present
a solution for the complete development cycle of cooperative
automotive systems together with an exemplary development
flow for safety and security testing.

Keywords—automotive safety; cooperative applications;
security testing; validation; autonomous systems; ITS

I. INTRODUCTION
In comparison to the development of traditional ADAS

functions, testing and simulation of dependable connected
applications have to consider the interaction of heterogeneous
systems that are distributed within a wirelessly networked
architecture. As the communication link is more unreliable in
contrast to common input sensors, the application has to cope
with varying timing behaviour and less data confidence.
However, the higher complexity in the development process of
cooperative applications is justified by several advantages.
They result from the aspect that foreign road users are no
longer observed only from the outside in order to predict their
behaviour, but they provide insights into their status, their
intentions and their participation in cooperative maneuvers.
This results in an increased reliability of predicted vehicle
movements, which in turn can be used for safety functions and
allow an increased reaction time of dependable safety

functions. In terms of driving comfort, the traffic participant’s
cooperation allows a foresighted maneuver planning. As
depicted in Fig. 1, the achievable set of driving maneuvers
decreases when a possible impact approaches. The shorter the
time to a possible impact, the less safe driving maneuvers are
executable, as each maneuver has a required execution time.
The inclusion of cooperative applications has the advantage
that important information is available earlier and the
maneuvering space is increased. Therefore, one of the
questions that can be evaluated within the testbed is how much
data confidence of the received information is required for a
time-critical decision.

Another current question is whether parts of the application
functionality can be outsourced from the automotive platform
to enable a faster development and update cycle, reduce
hardware complexity and to group functions across vehicles.
The presented testbed can be used to evaluate whether a
function can be moved to the cloud or whether it is more
advantageous to deploy the function to an edge or fog
component. The architectural diversity resulting from this
outsourcing of functions raises new questions regarding the
dependability and security of the application, the end-to-end

Fig. 1 Connected applications enable an increased reaction time

for safety mechanisms

Forum Safety & Security 2018

quality of the service, scalability and the comprehensive
debugging process. The evaluation of the distributed
application within the proposed testbed, gives objective
statements on these questions.

By the current state of available tools, the development,
testing and certification of autonomous systems is complex,
costly in terms of time and equipment, potentially hazardous
and often incomplete. For instance, if it comes to complex
applications that require a distributed consensus, e.g. Merging
Assistance [1], an application distributed among various
foreign entities must be validated. Thus, it appears that
development and simulation environments are not yet ready to
rapidly develop prototypes of cooperative driving functions.

Therefore, we provide an approach for an integrated testing
environment that can cover the whole innovation cycle for
prototype development of cooperative automotive systems.
Incorporating safety and security aspects, it starts from the
design of applications over simulation to integrating and
validating the respective prototypes.

The following Chapter II gives an overview on an efficient
approach for the development of cooperative applications.
Further aspects of the simulation and testing phase are
discussed in Chapter III. The current scope of software analysis
is presented in Chapter IV. We conclude our work with
Chapter V and provide a brief outlook to next steps.

II. RAPID APPLICATION DEVELOPMENT

A. Application Development Cycle
The testbed supports all steps of the Vehicle-to-X (V2X)

application development life cycle, beginning from application
design, continuous integration into simulation environments,
testing environments over tools performing functional and
security analyses, up to a secure deployment and update
process. The application development flow of the innovation-
and testbed concept is shown in Fig. 2. It is also designed to
only use single aspects in a building-block style when
developing innovative applications.

The testbed provides the ezCar2x® framework, described in
[2], that allows testing connected applications within a
simulation environment, using network and traffic simulation
as well as within a field test environment, deployed on in-
vehicle communication hardware. The usage of the ezCar2x®
framework enables a continuous development cycle
implementing the DevOps approach, described in [3]. The
DevOps approach is designed to integrate the application under
development into the field test environment to evaluate its
behaviour under real conditions. The DevOps approach also
enables an iterative refinement of the application incorporating
results, e.g. erratic behaviour, and a diagnosis of the underlying
cause of the failure.

Additional analysis tools enable to examine the developed
application. On the one hand, our DANA tool for functional
validation can be used iteratively in every testing step [3]. For
the integration testing of the application, the analysis toolbox
provides application security testing methods in order to detect
software vulnerabilities in an early development stage. Using

static application security testing (SAST) as well as dynamic
application security testing (DAST) allows quick analyses
during integration testing in order to detect potential software
vulnerabilities.

One main feature of the testbed is a combined simulation
and field testing approach, where virtual and real traffic
participants can be tested in a synchronized environment. This
feature is detailed in Chapter III.B.

Finally, the application is built and subsequently signed
within the software repository and pushed to the update server,
which is part of the back end. The update server again signs the
application and deploys it to V2X devices.

B. Application Design
For the initial development step of designing a cooperative

driving function, the testing environment comprises interfaces
to common automotive modelling tools, like Matlab Simulink
or ADTF. The deployed application uses the ezCar2x®
framework, an ETSI ITS (Intelligent Transport Systems)
compliant communication stack, which can either run on real
communication hardware or on a virtual node within a network
simulation. Furthermore, application security testing can be
conducted with static and dynamic methods.

If enhanced safety mechanisms are required for the
intended application, state-of-the-art software methods, e.g.
graceful degradation strategies [4] or model-based
communication [5], can be incorporated into the application
model within this development step as well. For example, a
connected application with safety-critical functionality, as
Platooning, strongly depends on Quality of Service (QoS)
parameters of the communication link. Our safety function for
Resilient Control uses these QoS parameters, such as the
current Packet Loss Rate (PLR), to decide which degradation
mode is sufficient, e.g. readjusting the distance to the vehicle
ahead. The safety mechanisms for resilient control are
developed as generic component and can be integrated into
common automotive software architectures, as AUTOSAR,
AUTOSAR Adaptive and further concepts. Also existing
architectures from non-safety domains like infotainment, as
developed by the GENIVI Alliance, can be integrated to handle
the unreliability of the communication link.

Another aspect that is getting more relevant for application
design and validation are so-called Plastic Architectures. Parts

Fig. 2 Application Development Cycle using the Testbed Services

Forum Safety & Security 2018

of an application can be distributed over several entities. For
example, in the case of a Collision Warning application [6] this
includes the interaction of the originating, the warning and
optionally edge or cloud components form the overall function.
As the specific architecture may frequently change, the
architectures change depending on the context, thus becoming
formable or plastic. Also, in future parts of the application can
be dynamically relocated during runtime, e.g. from cloud over
edge to in-vehicle components. Thereby, the system boundaries
dynamically change depending on the current communication
relations. Although, there are concepts to solve the underlying
network aspects [7], these runtime conditions have already to
be covered within the design phase of the specific applications.

III. SIMULATION & TESTING
One goal of simulation and testing for cooperative

automated driving is to achieve a fail-operational behaviour of
the application, even if the context information is unconfident.
Therefore, the coverage of the test cases used within the
simulation environment and during virtual testing should be as
realistic and as comprehensive as possible. This is achieved by
(automatically) defining reference scenarios and generating
variations from them, e.g. by stochastic variations [8].

One of the parameter variations is the realistic behaviour of
the communication channel during a certain driving scenario.
Therefore, a network simulation tool, e.g. ns-3 or OMNET++,
and a traffic simulation tool, e.g. SUMO, VTD or CarMaker,
are integrated into the simulation environment. Our testbed
could also be integrated with other microscopic and
macroscopic traffic simulation tools, as each of them has
advantages when testing a specific connected application.

A. Simulation Environment
The suggested concept combines three different simulation

aspects into one integrated simulation environment.

The first component is a traffic simulator that is used to
model and run driving test cases on a realistic road network.

The second component is a network simulation tool for
evaluating applications under real communication conditions.
For the heterogeneous use of common vehicular
communication technologies, e.g. 802.11p, 4G or LTE, the
ezCar2x® framework provides additional network layer
components. The network simulation tool also facilitates
interfaces to control traffic simulation and integration
hardware-in-the-loop tests or vehicle-in-the-loop tests (as for
Virtual Platooning), e. g. including RSUs.

The third component of the testbed is for test control.
Traces from all simulation components are monitored and
analyzed within the test control component. For ensuring the
security of cooperative systems, testing covers white-, gray-,
and black-box approaches (e.g. Data-Flow Analysis, Fuzzing
or Penetration Testing). In order to validate the applications,
test cases have to reach full coverage and should therefore be
generated (semi-)automatically for each application.

B. Integrated and Hybrid Simulation
As already described in Chapter II.A, the application

implementation is deployed on each virtual V2X node within

the network simulation environment. Together with the
ezCar2x® Framework each virtual node can be equipped with
developed applications and also with V2X communication
ability. Hence, its interaction with other nodes can be simulated
as realistically as possible.

The interaction between all virtual nodes is realized using a
virtual wireless channel. Thereby, we consider the specific
characteristics of each communication technology by using
individual channel models, e.g. dedicated models for ITSG5,
LTE or 5G. This virtual wireless channel can also be used to
integrate real hardware into the simulation by using a channel
proxy and creating a mirror node for each hardware component
within the network simulation.

The network simulation is coupled with a macroscopic
traffic simulation for large scale traffic scenarios, e.g., to test
security mechanisms for V2X messages, and with a
microscopic traffic simulation for smaller driving scenarios,
e.g. Cooperative Merging [6] or Platooning. The coupling via a
control interface is needed to synchronize the behaviour of
communication nodes and traffic participants in each
simulation for the given driving scenario.

The environment can be extended with hybrid simulation
capabilities by including hardware-in-the-loop. A RSU
comprising an application, e.g. Smart Lighting, can be
integrated into the simulation loop, by connecting it to the
wireless channel interface of the simulation environment. The
RSU can again interact with further communication hardware,
e.g. test vehicles that are in communication range. The RSU
can also be connected with sensors, that are integrated into the
testing environment and which can provide status data to
generate event messages, e.g. Decentralized Environmental
Notification Messages (DENMs).

C. Sensor Integration
The effectiveness of a connected applications’ simulation

depends on how realistic the input data for a certain driving
scenario is. The input data from distributed sources, e.g. the
status data within Cooperative Awareness Messages (CAMs)
from other vehicles or roadside sensors, have to be
synchronized during recording and replay phase.
Synchronization is required to establish the intended driving
conditions for the application under test.

Within our simulation environment, vehicle sensors and
infrastructure sensors are integrated as components in
ezCar2x® via generic sensor interfaces. When recording test
data, the real sensors can be easily integrated into the
synchronized recording process. The same setup can be used in
field tests, where infrastructure sensors are usually integrated
into RSUs to provide their environment data. Thus, virtual,
hybrid and integration tests can be carried out with little effort.

IV. SOFTWARE ANALYSIS
In each step of the development process it is advantageous

to perform additional analyses to obtain detailed knowledge of
the overall system and the application behaviour for
debugging, security and validation purposes. This chapter gives
an overview of our methods and tools for software analysis.

Forum Safety & Security 2018

An exemplary flow of the development process for an
application is shown in Fig. 2. The application under
development can be prototyped as implemented source code or
as a software model to be further developed and optimized
within the testbed.

A. Monitoring and Functional Validation
For software validation and verification, model-based

techniques are advantageous during the design and integration
phase. Our DANA platform [9], an open and modular
environment based on Eclipse, is a tool built for specifying and
analyzing networked applications. For this purpose, the
specified valid behaviour of the application is described as a
layered reference model. This model provides a basis for
further model-based development steps. On the one hand, it
can be used for various transformations of behaviour models,
e.g., for generating test cases or code for running simulations.
On the other hand, it can be used for static analyses to check
conformance to modeling guidelines, metrics for interfaces,
and the compatibility of behaviour models. The model-based
approach also allows a quick integration of new message
sources, e.g. additional communication protocols or wireless
channels. Furthermore, the DANA tool can be used to verify
and validate software interface behaviour, as messages in these
interfaces can contain complex data and complex interactions.

In our proposed testbed we use DANA as a central
monitoring tool, as visualized in Fig. 3, to have all the status,
debug and behaviour information, the error messages and
timing data centrally available from each component. This
aggregation helps to simplify and to speed up the debugging
process during development and runtime. Further validation
checks can be applied on this collected data, as described in the
previous paragraph. Once the diagnosis of the underlying cause
of the failure has been made, the error can be corrected and the
new software version is securely deployed to the faulty
component.

V. CONCLUSION
We provided an approach for an integrated testing

environment that covers the whole development process for
prototyping and testing cooperative functions. Incorporating
safety and security aspects starting from the design phase, the
complex task of simulation and cooperative applications and
several testing steps have been described. Finally, a software
solution for the validation and deployment of the prototypes
was presented, which makes tools available for the whole
development cycle. Thereby, a toolkit is provided that is
intended to rapidly bring an idea for a connected application
into a prototype with a decreased investment risk.

In future, all testbed services described in the previous
chapters could also be made available as an online web-service.
For this purpose, a next step of the described solution is to
enable access to configurable or pre-configured simulations via
an online service. On this website, users could remotely control
simulation parameters, define new scenarios and get qualified
evaluation results. This ongoing development addresses the
rapid development of connected applications by abstracting
technology know–how and increasing time-to-market speed.
Thus, innovators and developers can concentrate on the actual

function and idea of the intended application and are able to
experience, improve, and validate their solution in early stages
prior to competitors.

ACKNOWLEDGMENT
This project was partially funded by the Bavarian Ministry

of Economic Affairs and Media, Energy and Technology
within the Fraunhofer High Performance Center “Secure
Networked Systems”.

REFERENCES
[1] Ntousakis, I. A., Nikolos, I. K., & Papageorgiou, M. (2017). Cooperative

Vehicle Merging on Highways-Model Predictive Control (No. 17-
00930).

[2] Roscher, K., Bittl, S., Gonzalez, A. A., Myrtus, M., and Jiru, J. (2014).
ezCar2X: Rapid-Prototyping of Communication Technologies and
Cooperative ITS Applications on Real Targets and Inside Simulation
Environments, In: 11th Conference Wireless Communication and
Information. vwh, pp. 51 – 62.

[3] SafeTRANS (2018) Autonome und lernende Cyber-Physical Systems
(ACPS): Herausforderungen in Entwicklung, Test und Zertifizierung.
http://news.safetrans-de.org/ausgabe-2018-01/Autonome_CPS.html,
Access: 17.8.2018.

[4] Schleiss P., Drabek C., Weiss G., Bauer B. (2017) Generic Management
of Availability in Fail-Operational Automotive Systems. In: Tonetta S.,
Schoitsch E., Bitsch F. (eds) Computer Safety, Reliability, and Security.
SAFECOMP 2017.

[5] Moradi-Pari, E., Mahjoub, H. N., Kazemi, H., Fallah, Y. P., and
Tahmasbi-Sarvestani, A. (2017). Utilizing Model-Based Communication
and Control for Cooperative Automated Vehicle Applications. IEEE
Transactions on Intelligent Vehicles.

[6] Zhang, R., Cao, L., Bao, S., & Tan, J. (2017). A method for connected
vehicle trajectory prediction and collision warning algorithm based on
V2V communication. International Journal of Crashworthiness, 22(1),
15-25.

[7] An, X., et al. (2017) On end to end network slicing for 5G
communication systems. In: Transactions on Emerging
Telecommunications Technologies, 28. Jg., Nr. 4.

[8] Damm W., Heidl P. (Hrsg) (2017) Positionspapier und Roadmap zu
,,Hochautomatisierte Systeme: Testen, Safety und
Entwicklungsprozesse“, SafeTRANS e. V. http://www.safetrans-
de.org/de/Aktuelles/?we_objectID=2, Access: 17.8.2018.

[9] Drabek, C., Weiss, G. (2017) DANA - Description and Analysis of
Networked Applications. In: International Workshop on Competitions,
Usability, Benchmarks, Evaluation, and Standardisation for Runtime
Verification Tools (RV-CuBES), pp. 71-80.

Fig. 3 The DANA Platform speeds up the debugging process of

connected applications

http://www.safetrans-de.org/de/Aktuelles/?we_objectID=2
http://www.safetrans-de.org/de/Aktuelles/?we_objectID=2

	I. Introduction
	II. Rapid Application Development
	A. Application Development Cycle
	B. Application Design

	III. Simulation & Testing
	A. Simulation Environment
	B. Integrated and Hybrid Simulation
	C. Sensor Integration

	IV. Software Analysis
	A. Monitoring and Functional Validation

	V. Conclusion
	Acknowledgment
	References

