ALTERNATIVES TO HE-3 FOR NEUTRON DETECTORS

O. Schumann, C. Bornhöft, H. Friedrich, T. Köble, M. Risse, W. Rosenstock Fraunhofer INT

2nd Technical Meeting on Radiation Detection Instruments for Nuclear Security: Trends, Challenges, and Opportunities

16. – 20. April 2018

Vienna

olaf.schumann@int.fraunhofer.de

Germanys organization for applied research ~ 2.3 billion € budget staff of 25.000 in 72 institutes

Fraunhofer Institute for Technological Trend Analysis INT

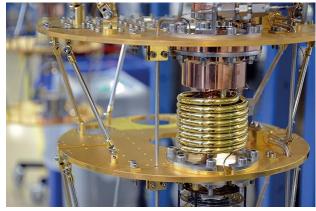
Nuclear Security Policy and Detection Techniques

- Non-destructive measurement techniques for the detection and identification of radioactive and nuclear material
- Design and operation of mobile measurement systems
- Support and advice of national and international security authorities
- Theoretical and experimental research on nuclear proliferation and verification

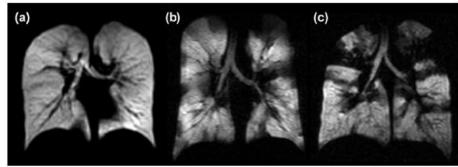
Helium-3: Applications

Neutron Detection

Helium-3 is the gold standard for neutron detection


- High cross section (5330 barn)
- Good gamma rejection (~ 1 Gy/h)
- Simple and robust design of detectors
- Non-toxic
- But the increase in He-3 price can make its use prohibitive
- No single alternative for every detection requirement

Helium-3: Applications


Other Applications

- Low temperature physics (~ 10 mK)
 - Condensed Matter
 - Quantum computers
 - BEC, ...

Oxford Cryophysics

NMR-Imaging using hyperpolarized He-3

Kai Ruppert 2014 Rep. Prog. Phys. 77 116701

Neutron Spin Polarizers (Neutron Polarization Analysis)

Helium-3: Source

Main supply is decay of tritium from (US) nuclear weapons

- Ca. 8000 | per year, demand ~ 60.000 |
- Increased demand for homeland security (RPM)
- Price increase from ca. 100 US\$ per liter to 2000 US\$ (2010)
- Other Sources:
 - Nuclear Reactors
 - Special absorber rods (TPBARs) in LWR
 - H-3 accumulates in moderator tank in HWR
 - Natural Gas (main supply of Helium-4)

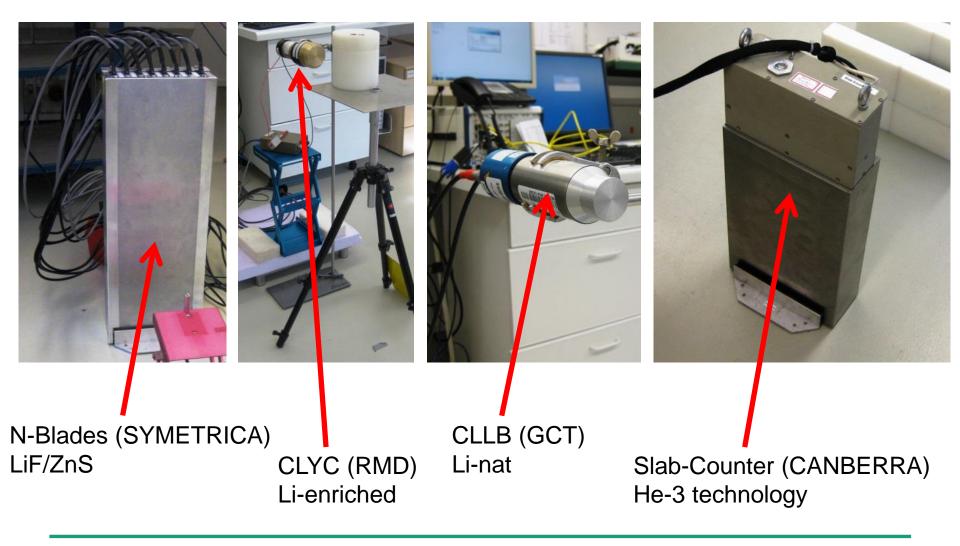
Helium-3: Alternatives

Isotop	He-3	Li-6	B-10	Nat-Cd	nat-Gd
Cross section	5330 barn	940 barn	3836 barn	2500 barn	49000 barn
Reaction	³ He(n,p)t	⁶ Li(n,a)t	¹⁰ B(n,a) ⁷ Li	Cd(n,g)	Gd(n,g)
Q	764 keV	4.78 MeV	2.79 MeV	8,42 MeV	8.05 MeV
		Li Glass	BF_3	Cd-loaded Plastic	Gd-loaded Plastic
		Li Fiber	Boron lined	Cd-loaded Scintillator	Gd-loaded Scintillator
		LiF/ZnS:Ag		Cd-Coating	Gd-Coating
		Elpasolites			
7					Fraunhofer

Alternatives: Boron-10

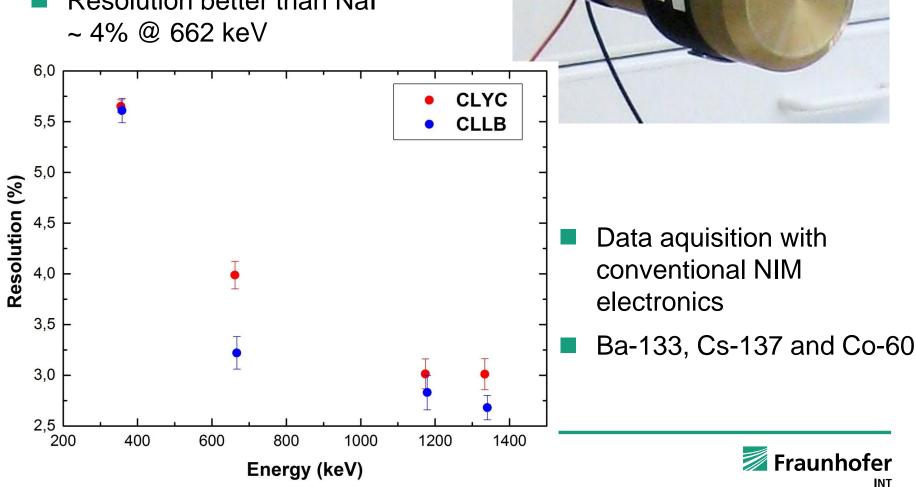
- Boron trifluoride (BF₃)
 - Corrosive & toxic
 - Established & robust technology, same as He-3
 - High bias voltage limits pressure
- Boron lined (straw) detectors
 - Short range of products -> thin coating
 - Multiple staws per tube -> increase gamma sensitivity
 - Commercially available

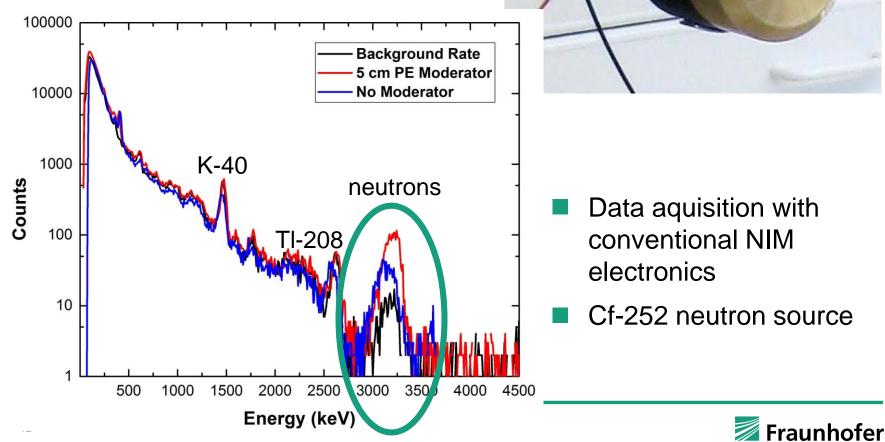
Alternatives: Lithium-6


LiF/ZnS:Ag

- ZnS Scintillator with ⁶LiF-converter
- Neutron/Gamma discrimination via pulse shape analysis
- Commercial modules including electronics available
- Elpasolites scintillators
 - Anorganic scintillators, simultanous neutron & gamma detection
 - CLYC: Cs₂LiYCl₆
 - CLLB: Cs₂LiLaBr₆
 - CLLC: Cs₂LiLaCl₆

Large quantities of enrichted Li-6 itself raise a proliferation concern

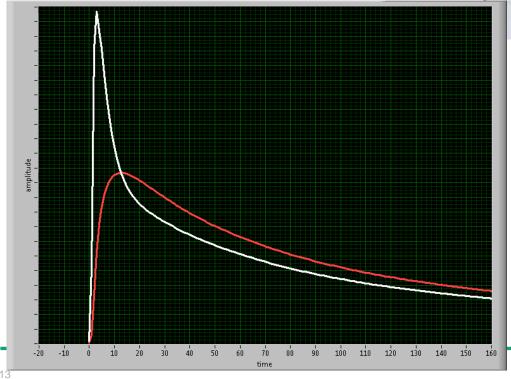

Overview of Detection Systems


CLYC

- 2" x 2" Crystal of Cs₂LiYCl₆
- Enriched to 90% Li-6
- Resolution better than Nal ~ 4% @ 662 keV

CLYC

- 2" x 2" Crystal of Cs₂LiYCl₆
- Neutron Signal at γ-equivalent energy of 3.3 MeV

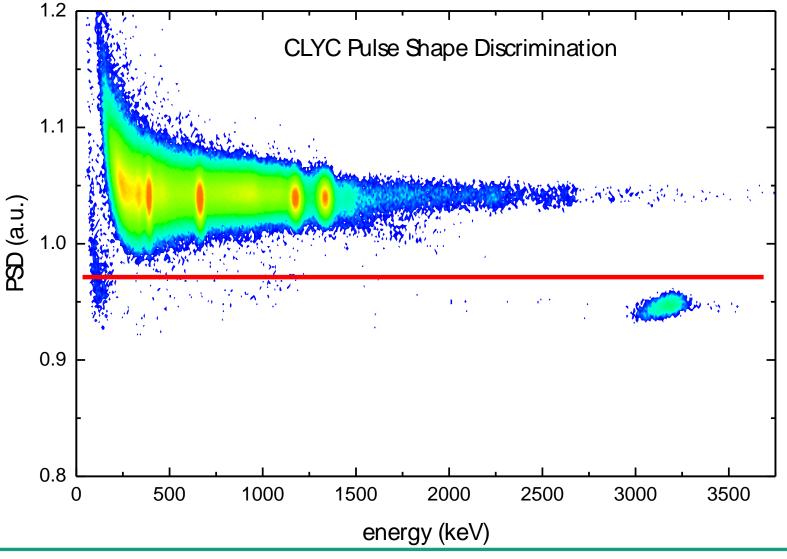


INT

CLYC

© Fraunhofer

- 2" x 2" Crystal of Cs₂LiYCl₆
- Neutron Signal at γ-equivalent energy of 3.3 MeV
- Different shapes for gamma and neutron signals



- Data Aquisition with
 National Instrument PXI
 System
- PXIe-5122 digitizer and PXIe-7966 FPGA

CLYC: Pulse shape discrimination

Conclusions

Helium-3 based detectors too expensive for comprehensive use

Alternatives exists and more are on the horizon

- Not every technology is suitable for every use case
- Gamma rejection / Sensitivity / Hazards / Robustness ...

CLYC

- Energy resolution: 4 % at 662 keV
- Neutron signal above most gamma lines
- Pulse shape analysis possible
- Simultaneous detection of gamma and neutrons

