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Abstract
This work extends the affordance-inspired robot control architecture introduced in
the MACS project [35] and especially its approach to integrate symbolic planning
systems given in [24] by providing methods to automated abstraction of affordances to
high-level operators. It discusses how symbolic planning instances can be generated
automatically based on these operators and introduces an instantiation method to
execute the resulting plans.
Preconditions and effects of agent behaviour are learned and represented in Gär-

denfors’ conceptual spaces framework. Its notion of similarity is used to group
behaviours to abstract operators based on the affordance-inspired, function-centred
view on the environment. Ways on how the capabilities of conceptual spaces to
map subsymbolic to symbolic representations to generate PDDL planning domains
including affordance-based operators are discussed.
During plan execution, affordance-based operators are instantiated by agent be-

haviour based on the situation directly before its execution. The current situation is
compared to past ones and the behaviour that has been most successful in the past
is applied. Execution failures can be repaired by action substitution. The concept of
using contexts to dynamically change dimension salience as introduced by Gärdenfors
is realized by using techniques from the field of feature selection.

The approach is evaluated using a 3D simulation environment and implementations
of several object manipulation behaviours.





Contents
List of Tables VIII

List of Figures VIII

List of Algorithms IX

1. Introduction 1

2. Related Work 5
2.1. Automated Planning . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2. Affordance-based Robot Control . . . . . . . . . . . . . . . . . . . . . 9
2.3. Conceptual Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4. Feature Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3. Affordance-Based Action Abstraction 19
3.1. Of Affordances, Concepts and Planning Instances . . . . . . . . . . . 19
3.2. Representing Affordances in Conceptual Spaces . . . . . . . . . . . . 22

3.2.1. Conceptual Vector Space . . . . . . . . . . . . . . . . . . . . . 22
3.2.2. Behaviour and Event Space . . . . . . . . . . . . . . . . . . . 23
3.2.3. Affordance Space . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.3. Deliberation Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
3.3.1. From Agent Behaviour to Abstract Affordances . . . . . . . . 26
3.3.2. Generate PDDL Domains . . . . . . . . . . . . . . . . . . . . 27
3.3.3. Instantiate Actions by Agent Behaviour . . . . . . . . . . . . . 31

4. An OpenRAVE Prototype 33
4.1. System Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2. Robot and Environment . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.3. Quality Dimensions and Domains . . . . . . . . . . . . . . . . . . . . 34

4.3.1. Agent Domains . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3.2. Patient Domains . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4. Robot Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.1. OpenRAVE Behaviour . . . . . . . . . . . . . . . . . . . . . . 36
4.4.2. Custom Behaviour . . . . . . . . . . . . . . . . . . . . . . . . 37

5. Evaluation 41
5.1. Action Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2. Dimension Weighting . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3. A Side Note on Cue Detection via k-NN Classification . . . . . . . . . 47
5.4. Action Instantiation and Substitution . . . . . . . . . . . . . . . . . . 50

6. Conclusion 53

A. Experiment Data Sets 55



A.1. Training Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
A.2. Evaluation Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

B. Cue Detection 59

C. Dimension Weights 63

D. Instantiation and Substitution Results 64

E. Declaration 67

Index 69

References 71

List of Tables
1. Colour domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2. Size domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
3. Orientation domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4. Position domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5. Object sizes used in experiments . . . . . . . . . . . . . . . . . . . . . 42
6. Overview experiments for training set . . . . . . . . . . . . . . . . . . 42
7. Overview experiment runs for evaluation set . . . . . . . . . . . . . . 42
8. Number of experiments solved by 0-4 behaviours . . . . . . . . . . . . 43
9. Number of experiments solved only by one behaviour . . . . . . . . . 43
10. Behaviour combinations in the experiments with two solutions . . . . 43
11. Dimension overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
13. Distances between behaviour prototypes . . . . . . . . . . . . . . . . 45
12. Force pattern of behaviours . . . . . . . . . . . . . . . . . . . . . . . 45
14. Confusion matrix of cue detection . . . . . . . . . . . . . . . . . . . . 48
15. Characteristic numbers of cue detection via k-NN classification . . . . 48

List of Figures
1. Affordance-based action abstraction in robot planning . . . . . . . . . 3
2. Conceptual model of planning . . . . . . . . . . . . . . . . . . . . . . 5
3. Robot and environment used in the MACS project . . . . . . . . . . . 34
4. The Care-O-bot Jenny . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5. Colour space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
6. Push object with fingertips . . . . . . . . . . . . . . . . . . . . . . . . 37
7. Sketch of the Turn behaviour . . . . . . . . . . . . . . . . . . . . . . 38
8. Care-O-bot 3 turning an object . . . . . . . . . . . . . . . . . . . . . 40
9. Experiment setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41



10. Force pattern of behaviours . . . . . . . . . . . . . . . . . . . . . . . 45
11. Dendrogram of behaviour prototypes in abstraction space . . . . . . . 46
12. Dimension weights . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
13. ROC curves on cue detection . . . . . . . . . . . . . . . . . . . . . . 49
14. Success of behaviour instantiation . . . . . . . . . . . . . . . . . . . . 51
15. Success of behaviour substitution . . . . . . . . . . . . . . . . . . . . 52

List of Algorithms
1. Top-level algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2. Plan execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3. k-NN instantiation algorithm . . . . . . . . . . . . . . . . . . . . . . 31
4. Fingertip-Push behaviour . . . . . . . . . . . . . . . . . . . . . . . . 38
5. Turning behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39



Acknowledgements
I would like to thank Prof. Dr. Gerhard K. Kraetzschmar, Prof. Dr. Paul G. Plöger
and Dr. Erich Rome for supervising this thesis and giving me the opportunity to
write it in such an inspiring area of research.

Beside my advisors, I would particularly like to thank Iman Awaad for giving me
the chance to do my thesis in the context of her Ph.D. project and for contributing
central ideas to the topic of this work.



1. Introduction
An affordance is an interaction possibility of an agent with its environment. It
is directly perceivable by the agent and thus does not require object recognition.
The term affordance is originally from the field of ecological psychology and was
introduced by James J. Gibson.

“The affordances of the environment are what it offers the animal, what
it provides or furnishes, either for good or ill. The verb to afford is found
in the dictionary, but the noun affordance is not. I have made it up. I
mean by it something that refers to both the environment and the animal
in a way that no existing term does. It implies the complementarity of
the animal and the environment.” [16, p. 127]

The MACS project introduced a new way to transfer this concept to the field of
robotics, enabling a more flexible interaction of robots with their environment [34, 35].
A main difference to other work has been the decision to reason about the offered
affordances, based on a representation called affordance triple. Lörken and Hertzberg
contributed a way to combine affordance-based robot control with PDDL planning
to implement goal-directed behaviour [24]. It benefits from the affordance-based
approach by avoiding symbol grounding: the affordance-based approach inherently
uses no environment model, thus grounding for model building is avoided. During
plan execution, they ground actions in an affordance triple to avoid the second
direction of symbol grounding. Any suitable entity that provides the affordance that
is looked for is used.

Beforehand, affordance triples are grouped (by the system designer) into so-called
abstract affordances. When e. g. the agent can lift two kinds of entities, let’s say red
and green ones (maybe also using different behaviours), there is more than one triple,
but only one abstract affordance liftable. Based on this abstract affordance, planning
operators are modelled (by hand) and used for planning. If there is an action lift in
the plan, all triples belonging to this abstract affordance are retrieved and the agent
searches the environment for a cue belonging to one of them. The first one that is
found is exploited by applying the corresponding behaviour.
The idea of grouping triples to form abstract affordances and to use these for

(symbolic) planning gives the agent the chance to take advantage of the increasing
performance of state-of-the-art planning systems. It further introduces a way to
abstract from concrete agent behaviour during planning and thus to have fewer
operators and reduce the planning effort.

The late commitment to a specific entity providing an affordance helps to increase
the flexibility and robustness of agent behaviour; both benefits are introduced by
the affordance-based approach.

“The idea behind this is that there are situations where one wants to
achieve something but one does not actually care about how or with the
help of what object to reach the desired goal.” [35, p. 185]

1



1. Introduction

In this thesis, these advantages are transferred from environment entities to agent
behaviour. One question is which affordance, and thus which behaviour, is used if
the agent has the choice. The second question is whether it is possible to generate
the abstract affordances without (additional) human modelling, i. e. based on the
behaviour representation. This would automate the abstraction step before planning.
If the goal is to move (planning operator) a movable (abstract affordance) entity,

this can be done by using push, pull, pick&place... (agent behaviour). In this
action instantiation step, a ’good choice’ is made by choosing a behaviour that has
been successful for similar situations in the past, also providing a second or third
choice that can be tried if the first one fails (action substitution in case of behaviour
execution failure).
In line with the function-centred view on the environment the idea for the ab-

straction step is to cluster affordances based on their effect, i. e. behaviours causing
similar change to the environment belong to the same abstract affordance (the
question is what to achieve and not how to do it). If the agent can do this clustering
autonomously, this is one step towards a closed cycle of learning new behaviours,
e. g. by demonstration or even playing, and applying them to achieve goal-directed
behaviour. However, for closing this cycle, an autogeneration of the planning domain
is also necessary, but is not within the scope of this thesis.

The work is done in context of the Ph.D. project of Iman Awaad at Bonn-Rhein-
Sieg University that is introduced in [2]. Its goal is to use the affordance concept to
increase the flexibility of robot behaviour, demonstrated in the following scenarios.

• Object substitution is the classical example for the use of the affordance
concept. Some (maybe not present) kind of object is substituted by another
one that offers a similar affordance, e .g. a mug by a cup to drink coffee.

• Object substitution as tool usage. Objects might be used for tasks they
have not been intended for in the first place. On a windy day, one might put a
cup on the paper to prevent it from flying away.

• Object substitution or use as performance enhancement. An agent
that can reason not only about the category of an object but about its functional
properties might be able to come up with clever substitutions that enhance
solution quality.

• Action substitution. The grouping of behaviours that result in similar
change to the environment and their flexible instantiation might enable an
agent to recover from action-execution failures by choosing another instantiation
to substitute the failed action. The thesis in hand contributes to this scenario.

In this thesis, two methods are developed. One to generate abstract affordances
and one for action instantiation that decides based on a planned action (e. g. move)
and the current sensory input which agent behaviour is used (e. g. push, pull,...).
It will not only provide a first choice, but also others that can be tried if the first
try fails. For the abstraction and the instantiation, similarity has to be estimated,

2
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Figure 1: Affordance-based action abstraction in robot planning. The system is
composed of three parts. The (subsymbolic) environment shown on the
left side, a (symbolic) deliberation layer on the right; and a conceptual
layer mediating. The arrows show data flow between different layers.

similarity of environment entities for the former, similarity of agent behaviour for
the later. An approach that can be used for similarity calculation is Gärdenfors’
conceptual spaces framework [12]. It measures similarity by distance in a special
vector space and thus also provides a computationally handable approach. Though it
has primarily been used to represent static entities, it has been extended to represent
actions and their effects in the last years [13, 3, 5]. A so-called event combines
representations of agent (the actor), patient (the entity an action is applied to) and
the caused change (the so-called displacement vector). Both methods developed in
this work will be based on a conceptual spaces representation of agent behaviour.

This work contributes a flexible, situation-adequate behaviour usage to the field of
affordance-based robot control. It realizes a further step towards a closed cycle of
autonomous learning and application of new agent behaviour. The abstraction step
before action planning reduces the number of operators for planning.
The thesis is divided into the following parts. Section 2 introduces automated

planning (Sec. 2.1), affordance-based robot control (Sec. 2.2), conceptual spaces
(Sec. 2.3) and feature selection (Sec. 2.4). Afterwards Section 3 introduces the
intended system that is given in Figure 1. Based on an affordance representation in
conceptual spaces (defined in Sec. 3.2), abstract affordances are generated (Sec. 3.3.1).
A planning instance is created (not part of this work, but discussed in Sec. 3.3.2)
and solved by some planning system. The resulting plan contains affordance-based
actions that are instantiated by the method given in Sec. 3.3.3. The behaviour is
executed, in this work using an OpenRAVE [7] prototype that is described in Section
4. Quality dimensions are extracted from simulation and stored in conceptual spaces.
The described approach is evaluated in Section 5 and concluded in Section 6.

3
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Figure 2: Conceptual model of planning (source: [15, p. 8])

2. Related Work

As described in the introduction, this thesis combines topics from several areas of
research that are introduced in this section. It starts with a short introduction
of automated planning in Sec. 2.1; introduces the affordance-inspired robot control
architecture developed in the MACS projects in Sec. 2.2 and especially its use of
automated planning. Afterwards Gärdenfors’ conceptual spaces are introduced
(Sec. 2.3) with focus on action and event representation. As techniques from the field
of feature selection are used to find most relevant dimensions for a specific decision
(context), feature selection is sketched in Sec. 2.4.

2.1. Automated Planning

If the behaviour of an agent shall go beyond a pure reaction to stimuli of the
environment, it has to reason about change of its environment and about how it is
able to change the environment by itself. If it is able to predict the applicability and
effects of its doings, it can try to realize a desired goal by changing the environment
with adequate actions. This “...explicit deliberation process that chooses and organizes
actions by anticipating their expected outcomes.” [15, p. 1] is called planning. A
commonly used model of planning (e. g. described in [15, p. 8] or [28, p. 47]) is given
in Figure 2. It consists of three main parts: a planner (or planning system) that
gets a formal description of the environment Σ, the initial state of the environment
(commonly called s0) and the agents objectives (or goals) G. It chooses a set of actions
with some ordering constraints that, when applied to the environment, presumably
realizes the agent’s objectives (called the plan or solution). The application is done by
the controller that also gets a feedback from the environment in form of observations.
The third part of the model is the actual system that is described by Σ. Following

5



2. Related Work

[15, Sec. 1.4], Σ is defined to be a tuple

Σ = (S,A,E, γ)

that consists of a set of possible states of the environment S, a set of actions A that
can be applied by the agent, a set of events E that also change the state of the
system but are not controlled by the agent and a function γ that maps a state of the
system, an action and an event to a set of possible outcome states.

γ : S × A× E → 2S

The overall model is commonly split up into a domain definition and a problem
definition.
The (planning) domain definition describes the environment and contains defini-

tions of the possible states and operators to change it. In general, it is stable for
different problems. It might be mentioned that the term domain is also used in
context of Gärdenfors’ conceptual spaces framework. If the context is unclear, a
prefix (planning or pl. as well as conceptual spaces or cs.) will be used.
A (planning) problem defines a concrete problem to solve. It gives the definition

of s0 and a (partial) definition of a goal state to reach. Due to the partial definition
of the final state, it is likely that there is more than one goal state. To compare the
quality of different goal states, the planning problem may also contain some metric
definition.
A (planning) instance is the combination of a domain and a (suitable) problem

and gives a planning system all information it needs to generate a solution.
A (planning) solution (or plan) is a set of actions together with an ordering relation

defined on it that belongs to a planning instance. An action is a fully instantiated
operator. In the simplest case, the action can be ordered as a sequence. When the
actions are applied to the initial state defined in the problem, with respect to the
ordering relation and using the transition model given in the domain, a state that
fulfils the criteria of a goal state is reached.
Although the concrete implementations of planning systems is not relevant for

this work, a schema is given that classifies the systems based (1) on the problems
they can be applied to as well as (2) the knowledge that is provided in the model
and used to finding a solution. The schema is following [28, p. 47-53]. According to
it, there are the following three main groups of planning systems:

1. Domain-specific Planning Systems are implemented to solve a special class
of problems. This limitation in applicability enables the introduction of a
large amount of domain knowledge by the human designer and (may) result in
efficient plan generation and high quality plans.

2. The other extreme are Domain-independent Planning Systems that get not only
a problem, but also a domain definition and are (in general) able to solve every
problem in every domain that is provided in an appropriate definition language.

6



2.1. Automated Planning

A widely used definition language that will be introduced later in this section
is the Planning Domain Definition Language (PDDL). Domain-independent
planners normally do not have any information on how to solve the planning
problems of a specific domain. For example, the PDDL specification states that
the language has to “...express the physics of a domain...” and “...to provide
no advice at all...” [25, both p. 1]. The planning systems have to implement
universal heuristics to find a goal state instead. In state-of-the-art planning
systems, these work quite well. However, there are surprisingly simple domains
that stress the currently used heuristics1.

3. The third group of planning systems is somewhere in between. It includes
systems that work on a richer model that contains not only the physics of the
domain, but also advice on how to solve planning problems. Those can be
provided in several forms, there are systems working on rules that describe states
that can be pruned from search space (see e. g. badSituation-rules in situation
calculus described e. g. in [32]). A widely used technique is Hierarchical Task
Network (HTN) Planning (e. g. described in [15, Chap. 11]) that provides rules
on how to decompose abstract tasks into concreter ones, until all can be applied
directly. For examples of HTN systems, see e. g. the SHOP [27] or the PANDA
system [38]. Common to domain-configurable systems is the advice on how to
solve problems that is provided in the domain model.

One attempt of this thesis is to do a further step towards a learned planning domain.
Therefore there will be no domain knowledge beyond environment change observed
by the agent. I. e. the agent has just physical knowledge, inferred by induction on
training examples; and no knowledge on how to solve planning problems. The most
adequate planning approach in such a scenario is the one that needs least domain
knowledge – domain-independent planning. There will be a short introduction on
PDDL in the remainder of this section.

But even domain-independent planning systems need some model and thus some-
how do not fit into affordance-based approach. At this point, this work follows the
approach introduced in the MACS project and described by Rome et. al. to

“...reason about affordances instead of acting directly upon an affordance
percept. [The agent] ...is not controlled by the environment. It can rather
use the information provided by the affordance of a situation and reason
about them in a goal-directed manner selecting those afforded actions
that will lead to its goal.” [35, p. 184]

The MACS project and its approach to affordance-based robot control and espe-
cially its approach to integrate planning systems is introduced later in this section.

If the parts of the presented system are classified into the conceptual model given
in Fig. 2, the abstraction step prepares the formulation of the operators for the

1see e. g. the Visit-All domain that comes with many competing goals:
www.plg.inf.uc3m.es/ipc2011-deterministic/DomainsSequential.html#Visit-all
www.plg.inf.uc3m.es/ipc2011-deterministic/attachments/DomainsSequential/visit-all-doc.pdf

7
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description of Σ based on the observations of the controller. The encoding is not
part of this thesis but shortly discussed. An interesting variation from standard work
flow in planning is the creating of the domain for a specific problem (like introduced
in [18]). The conceptual layer helps also to create the input for the planning system.
The planning step is intended to be executed by an external planning system. The
instantiation is already part of the execution and belongs to the controller.

The Planning Domain Definition Language. Due to the regular planning contests
at the International Planning Competition (IPC), performance of domain-independent
planning systems increased during the past years. The used description language
PDDL has been extended steadily. The initially STRIPS-like language (described
in [25]) enabled the definition of a planning domain, including a type hierarchy,
predicates used to describe a world’s state and operators that can be used to cause
change. Operators are composed of parameters, precondition and effects. The
parameters specify all objects that are used in the precondition and effects. A
separate definition gives the planning problem that consists of the domain it belongs
to, a set of objects and the definitions of the initial state as well as a (partial)
definition that goal states have to fulfill. A plan is a simple sequence of actions that
transfer the initial state to some goal state when they are applied.

Fox and Long extended the language in [9] by numeric functions that can be used
in addition to the predicates to describe the states of the world. This is a quite
meaningful extension, since it makes the former finite search-space infinite. Using a
numeric metric, it is further possible to rank goal states not just by plan length but
by the quality of the final state. A second major extension given in [9] is the option
to define temporal planning operators in the following ways. A first option is to split
the action in a discrete start- and end-point. For each of them as well as the interval
between, conditions can be defined that have to hold. Effects can be defined for the
start and end of the operator. There is another way of introducing time into the
planning process given in [9, Sec. 5.3]. It enables the definition of continuous effects
that could be used e. g. to define the loading of the battery of a robot. It may be
emphasized that the introduction of durative actions changes the appearance of a
plan significantly. Planned actions are no longer executed in sequence, but may be
in parallel to other actions. However, numeric and temporal planning form one step
towards planning real world problems.
Another interesting feature for real world domains is the ability to define timed

initial literals, introduced in [8]. These are properties that are set at some point in
time. A popular example to demonstrate its usefulness is the definition of opening
hours of a shop.

[14] extends the language by hard and soft constraints that can be defined on the
plan. In the blocks world, one could define that towers always look like traffic lights
(as a hard constraint). Or that it is preferable to use both hands of a robot to solve
the task.

An overview of the language as well as further literature is given on the web page
of the IPC [21].

8



2.2. Affordance-based Robot Control

Although there is an increasing number of well-working state-of-the-art planning
systems, most of them support only a subset of the PDDL features, so the system
that fits the needs of the problem at hand has to be selected carefully.
The integration of an out-of-the-box planning system enables a quite simple

realization of goal directed agent behaviour. But when using a symbolic planner,
there are also several drawbacks. The maybe worst disadvantage when comparing
to purely reactive approaches is the need to define a symbolic model for planning
based on the subsymbolic sensory input. Gärdenfors proposes the conceptual layer
beneath the symbolic layer that can be used for similarity estimation and symbol
grounding. It will be introduced in Section 2.3.

2.2. Affordance-based Robot Control
Gibson’s term of an affordance as directly perceivable interaction possibility of the
environment to a (specific) agent offers valuable concepts to the field of robotics.
In many situations the way an ‘object’ can be used might be more important than
its identity or the class it belongs to. In the original interpretation, the affordances’
obviousness makes any model needless. However, this view may result in a mere
direct perception-action coupling.

“The use of affordances within Autonomous Robotics is mostly confined
to behaviour-based control of the robots, and that its use in deliberation
remains a rather unexplored area.” [35, p. 178]2

The work in this thesis is based on an approach developed in the Multi-sensory
Autonomous Cognitive Systems (MACS) project [11] that introduces a (spare) model
of the perceived affordances to include them in the deliberation process. The approach
is introduced in the remainder of this section.
The MACS project investigated how a robot control-architecture can benefit

from the affordances’ function-centred view, not only by a direct perception-action
mapping, but by plan-based robot control founded on perceived action possibilities
[35, p. 180]. The project’s main goal has been a more flexible and robust acting of
robot [35, p. 174]. To implement goal-directed behaviour, state-of-the-art planning
systems, like introduced in the last section, have been integrated into the system.
This combination is further discussed in the next section. Before the reasoning

about affordances is introduced, the term itself has to be specified. Following Rome
et. al., an affordance is defined as
Definition 1 “An (agent) affordance is a relation between an agent and its environ-
ment which affords a capability. The agent/environment relation affords a capability
if the agent

2cf. [12, p. 122]: “The fundamental cognitive role of concepts is to serve as a bridge between
perceptions and actions. In the simplest case, where there is a direct coupling between perception
and action, a concept can be seen as a decision procedure where the perception is categorized
and the chosen category then determines a choice of action. ... In humans and many of the
higher animals, cognition is dominated by other more indirect models that are not triggered by
perceptions alone.”

9
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1. has the capacity to recognize that it is in such a relation between itself and its
environment, and it

2. has the ability to act to bring about that capability.” [35, Def. 1]

The affordances are represented by a triple with the following elements: a cue
defines features of the environment that indicate the existence of the affordance.
The behaviour describes the agent’s doings. Its outcome is defined in the outcome
descriptor.

Definition 2 “(Affordance Representation). An affordance representation or affor-
dance triple is a data structure:

(cue descriptor, behavior descriptor, outcome descriptor)

Here, a cue descriptor or an outcome descriptor is specified as a list of attribute value
pairs. A behavior descriptor consists of one or more behavior identifiers. Optionally,
parameters for these behaviours can be specified.” [35, Def. 2]

The cue and outcome descriptor thereby is not necessarily given by a single value,
but can also be a range of values [35, p. 184f]. Cue and outcome are not limited to
be offered from a single object (in general linguistic usage). To pronounce this issue,
the more general term of an ‘entity’ will be used to describe the source of the cue
and the target (the ‘patient’ in Gärdenfors’ terminology) of an affordance.

Planning in Affordance-based Robot Control. In [24], Lörken and Hertzberg
introduce a way to combine automated planning and affordance-based robot control
with the goal of avoiding symbol grounding. The affordance-based approach inherently
uses no environment model in sense of a representation of recognized and classified
objects, thus the first direction of grounding for building a model is avoided. When
a solution to a planning instance is generated, they propose to ground the planned
actions in an affordance triple. Therefore any suitable object is used that provides
the affordance that is looked for.

In a first step, the affordance triples are grouped to so-called abstract affordances.
When e. g. the robot can lift two kinds of objects, let’s say red and green ones
(maybe also using different behaviours), there is more than one triple, but only one
abstract affordance liftable. Based on these abstract affordances, PDDL planning
operators are modelled and used for planning with standard PDDL planning systems.
Beside these affordance depended operators there might be others that have no
affordance dependence. When an affordance is perceived, the position where it has
been perceived is tagged in the robot’s map. After generating a plan using a PDDL
planning system, affordance depended operators are grounded in affordance-triples.
Let e. g. be lift(something) in the plan, then all triples belonging to this abstract
affordance are retrieved from the repository and the robot searches the environment
for a cue that is contained in a triple. The first one that is found is exploited by
applying the corresponding behaviour. Thereby it can also be triggered by an entity
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that has not been perceived before and is therefore flexible in choice of the used
entity as long as it has the desired properties.
The approach presented in the next sections builds up on [24] by using the idea

of grouping triples to abstract affordances and to use these for (symbolic) planning.
It extends the approach in three main points (2 and 3 will be further discussed in
section 2.3).

1. Lörken and Hertzberg focus on being flexible in the choice of the object used
for execution. In this work the focus is on being flexible in the choice of the
used behaviour. It is tried to make a ‘good choice’ by using conceptual spaces
for similarity estimation and to choose a behaviour that has been successful
for analogue situations in the past.

2. The representation enables also the clustering of affordance triples and thus
the grouping to abstract affordances by the robot without human help.

3. The conceptual spaces representation offers ways to translate subsymbolic
to symbolic representations. Here it is discussed how these can be used to
auto-generate planning operators. This would enable the agent to learn new
operators autonomously.

In [39], Ugur et. al. introduce a system that uses the concept of affordances to learn
the mapping between low level sensory input and the outcome of a set of behaviours.
A trained support vector machine (SVM) is then used for planning. Training and
evaluation is done in simulation, the learned actions are transferred to and tested on
a real robot.
Therefore, feature vectors are extracted from sensory data and recorded during

behaviour execution. A triple is stored containing the initial feature vector, the effect
(i. e. the difference of initial and final vector) and the executed behaviour.

For each behaviour b, the effect vectors are clustered, the result is (presumably)
more that one cluster. The clusters represent the different outcomes of the same
behaviour. They can be interpreted as successes and failures and thus be used to
detect affordances provided by an object.
Using the initial feature vector, a SVM is trained to predict in which cluster an

unseen object will be after applying the behaviour. Planning is done using the SVM
to predict the outcome cluster and applying by the mean effect of that cluster to the
feature vector. It is planned using forward chaining. Therefore, there is no symbolic
domain representation.

The system is tested on predicting affordances provided by an object (on simulation
and real-world sensory input) and on finding plans with two steps as well on scenes
with more than one object.

They give an interesting approach on learning affordances and outcome of actions.
The leak of a symbolic representation of the planning operators prevents the use of
domain independent planning system as proposed in this work.
An interesting extension to this work would be the clustering approach to dis-

tinguish success and failure of robot behaviour. However due to the parameterized
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behaviours that will be used here, this is not straight forward, but has to be done
based on the difference between intended and archived displacement vector.

2.3. Conceptual Spaces
In his book [12], Gärdenfors introduces a new level for cognitive modelling that is
placed between associationism, like e. g. representations using neural networks, and
symbolic representation. A main issue is to estimate similarity of entities using a
simple distance measurement. The new layer can also be used to translate between
the subsymbolic and symbolic representations.

“Here, I advocate a third form of representing information that is based
on using geometrical structures rather than symbols or connections among
neurons. On the basis of these structures, similarity relations can be
modelled in a natural way.” [12, p. 2]

This section first introduces his basic framework called conceptual spaces as proposed
in [12]. Afterwards a formal definition based on vector spaces is introduced. It
concludes with ways to represent actions and events in conceptual spaces.
The basic element of the conceptual spaces framework is a quality dimension. A

quality dimension gives a property that can be used to differentiate entities. It can
have different structures, e. g. a linear structure starting at some fix point (when e. g.
somebody’s age is given in years), a number system with floating-point numbers like
in R (here e. g. is also no starting point), or a simple categorization in classes. Even
cyclic structures are possible when e. g. an angle is given in degree or radian measure.
There are dimensions that can be judged without considering any other, think about
the weight of an entity standing on a table. If an agent wants to judge if it is possible
to lift it, this dimension is meaningful by itself. Considering its relative position to
the agent, the information of two dimensions is poor until the third dimension is
added. The position dimensions are called to be integral, the weight dimension is
separable [12, chap. 1.8].
The dimensions are partitioned into domains. A domain is defined as

“... a set of integral dimensions that are separable from all other dimen-
sions.” [12, p. 26]

A point in a domain is meaningful by without other information. One can define
regions in a domain that describe a certain property of the described entity.

“CRITERION P A natural property is a convex region of a domain in
a conceptual space.” [12, p. 71]

A property could e. g. define a range in relative distance from the agent that
can be reached by its arm or leg. Thus properties can be used to assign sym-
bols in subsymbolic space and translate a relative position of an object o into a
reachable(o) = {true/false} in the planning problem.
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A concept consists of a set of domains that represent some entity. Gärdenfors
introduces the following example [12, p. 102 f]: an apple can be described by its
colour, its shape and its taste. All these domains can be examined separately form
the others, but they are not independent from each other. A green apple will most
probable be sourer than a red one. Such constructs can be represented as concept in
a conceptual space.

“CRITERION C A natural concept is represented as a set of regions in
a number of domains together with an assignment of salience weights to
the domains and information about how the regions in different domains
are correlated.” [12, p. 105]

A (concept) instance is a point in that space. As stated earlier, similarity is esti-
mated in conceptual spaces via distance. Gärdenfors introduces weighted Euclidean
or city-block metric for distance calculation [12, p. 20]:

dE(x, y) =
√∑

i

wi × (xi − yi)2(2.1)

dC(x, y) =
∑
i

wi × |xi − yi|

Both use dimension weights wi, belonging to a specific context. This enables
the system to be more flexible and to come up with situation-adequate similarity
estimations. Gärdenfors also calls it “attention-weight” [12, p. 20] or “salience” [12,
p. 103].

“The main effect of applying a concept in a particular context is that
certain domains ... are put into focus. ... the context determines the salience
of the domains. This results in a dynamic conceptual space, which in
turn makes concepts and similarity judgments dynamic ...” [12, p.132]

In this work, conceptual spaces are used to represent agent behaviour. Several
benefits of the approach will be exploited. Similarity between entities (i. e. robot
behaviours) has to be estimated in two ways: the abstraction space is used to cluster
behaviours with similar effects on the environment and the instantiation context to
choose the behaviour used to fulfill some intermediate goal.

A formal definition. Raubal introduces a way to formalize conceptual spaces as
vector spaces [31]. This formalization is introduced in the following paragraph and
will be used in this thesis.

A conceptual vector space is defined as a tuple, where each element is either a
quality dimension or a (integral) domain, i. e. consists itself of a set of dimensions. To
get comparable units on each quality dimension, Raubal proposes a standardization
on quality dimension level using z-transformation. Similarity between two instances
is calculated in a two-step procedure: after dimension standardization, the similarity
is measured, as proposed by Gärdenfors, as weighted Euclidean distance.
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A newly introduced instance with all mean values of the dimensions is used as
concept prototype. Mappings between conceptual spaces are introduced, e. g. to
map from a computer’s conceptual space to the user’s. This approach to transfer
some space in another will be used in the abstraction step.
Raubal applies the approach in a case study that investigates how to determine

which facade suits best for being a way point in human path finding. Here, e. g. with
the two contexts day and night and a mapping between computer (RGB) and human
(HSV) colour spaces.

Action and Event representation. In [13], Gärdenfors and Warglien discuss a way
to represent dynamics in the conceptual spaces framework. They start with the
representation of actions and extend it with the effects on the entity it is applied to.
The resulting construct of actions and effects is called an event. For actions they
suggest the following representation.

“... we submit that the fundamental cognitive representation of an action
consists of the pattern of forces that generates it.” [13, p. 12]

Thereby the forces are not intended to be physical measurements, but “psychological
constructs” [13, p. 12] that are inferred by an agent e. g. based on perceived movement.

“... we hypothesize that the brain extracts the forces that lie behind
different kinds of movements and other actions.” [13, p. 12]

They also explicitly include completely non-physical forces like emotional or social
ones. The forces of an action are stored as quality dimensions in conceptual spaces.
The resulting action space can be used to calculate similarity between different
actions and to define action categories as convex region.
Events combine several other spaces with the goal to represent the effects of an

action on a patient. The first element is a space describing the agent performing the
action, including the force domains representing the action itself. The second space
describes the parts of the patient that are relevant for the event and can also contain
a domain of counter-forces. To represent the change of the system, a state is defined
as a point in a conceptual space, the change of state is a vector that describes it and
a path is a series of changes [13, p. 18f]. Now the third element of an event can be
defined, the result (or displacement) vector, describing the change of the patients
state. So an event is a mapping between the agent’s action and the effects it causes
on the patient.

Time is thereby represented as quality dimension. The authors restrict their work
on events with clear start- and endpoints (‘bounded events’ [13, p. 23]) in contrast to
ongoing ‘processes’. Events can be reflexive when agent equals patient; and there
must not be any agent at all (e. g. in case of a falling robot).

The framework of Gärdenfors and Warglien is used in this thesis to represent the
robot’s behaviour execution and the perceived effects on the entity it is applied to.
This representation of past behaviour is the basis of the two main contributions of
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this work, (1) the clustering of affordance triples to abstract affordances and (2) the
action instantiation.
The idea is to do the abstraction via clustering of the displacement vectors, i. e.

behaviours that cause similar change to the patient belong to the same abstract
affordance. The instantiation is done by a clustering of the cues of affordances that
belong to one abstract affordance. It is based on the patient’s properties before
behaviour execution, i. e. a behaviour is chosen that has been successful in the past
and thus seems to be appropriate for the current situation.
There are other interesting questions in this context that are not tackled here.

One interesting topic is the classification of cs actions (so here: robot behaviour),
i. e. the force domain of the robot like tried in [3] (see discussion below). Another
question is whether it is possible to ’plan’ behaviour entirely as morph between
actions performed in similar situations (this would enable learning of actions that
are demonstrated by other robots or humans).

In [5], Cubek and Ertel try to “learn the goal behind a human-demonstrated task”
[5, Sec. 1.3] using an event representation in conceptual spaces. Therefore they use
an OpenRAVE simulation environment with several tables placed in a room. Each
table holds a few blocks like in blocksworld. Vision is simulated by extracting the
desired properties from simulation and putting a certain noise on it. Then actions
are performed (using ‘scripted’ robot behaviour) and cs instances are extracted. By
finding the “similarities among demonstrations” [5, Sec. 4.6], a second robot shall
learn the goal behind the performed action.
A cs event is a connection between two blocks on a table (source and target). If

there are more than two blocks, more than one event will result from one robot
behaviour. The used conceptual space contains certain properties of the involved (two)
objects as well as their spatial relation. By investigating the possible combinations
of source and target dimensions, the systems tries to find clusters like red boxes
are always put on a yellow box. These clusters are interpreted as goal behind the
demonstration.
Beside for similarity estimation, Cubek and Ertel use conceptual spaces also to

transfer the subsymbolic sensor data into a (symbolic) PDDL problem definition,
using a hand coded domain. The found clusters are thereby used as goals; i. e. the
robot that is planned for imitates the learned action.
Though Cubek and Ertel’s work has a different goal, they try to learn relations

between concept instances to re-achieve the goal in a different situation, it is interest-
ing for this work due to the use of cs to translate between subsymbolic and symbolic
representation for PDDL planning.

The work of Beyer et. al. presented in [3] also uses the approach of Gärdenfors and
Warglien for their action representation. They use data extracted from a video data
set that shows parents demonstrating actions to their children. The region of high
motion is extracted and its position relative to two landmarks is stored. Landmarks
are the initial and the final position of the object. The force pattern is a Boolean
vector containing four values: isAbove and isLeftOf values for each landmark.
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Their concept contains solely the force domain and no agent nor patient domains.
As a consequence, action categories are not defined as concept but as property.
Action categories are defined by the Voronoi cell belonging to a prototype that is
the mean instance of a cluster.
The question they investigate is whether this representation is rich enough to

discriminate action categories. Therefore two evaluations are done: one on cluster
purity and one on the classification of new actions. The results show that their
setup does not enable a satisfying discrimination of action categories. If the effects
of behaviours are indistinguishable, this may provide an argument to use behaviour
clusters (as abstract operators) instead.

2.4. Feature Selection
Concepts are defined on a domain subset of the conceptual space. In this work it is
tried to automate the learning of behaviour concepts, so the subset should not be
human-defined. A related task is the weighting of domains in the context of a certain
task/situation. In fact the subset selection will be realized by a weight of 0, so the
subset selection and the weighting will be the same task in the presented system.
In this work the weighting will be realized by using techniques from feature

selection and implemented by using out-of-the-box feature selection packages in
the environment for statistical computing R [30]. The weighting will be based on
dimension-level and with the objective to weight the dimensions based on their
influence on the behaviour outcome. This section gives a short introduction to the
field of feature selection.

Feature or variable selection selects a subset of the original set of variables according
to some criteria. The objective can be an improved resource usage or result quality
of some regression or classification system (in context of this work: a classifier), or
simply the better understanding of a system by focusing on relevant dimensions [17].

In [23], Liu and Yu develop a categorization system for feature selection techniques
in the context of classification and clustering. They divide the main approaches into
filter and wrapper techniques. Wrappers are designed to optimize the combination of
a certain (preselected) predictor with the used data. The criteria used for filters work
solely on the data. In the context of this work, especially filter methods that rank
the input variables according to some score that reflect their relevance are interesting.
They are not bound to a classifier and reflect relations in the data. Their scores will
be used to weight the quality dimensions. Liu and Yu identified the following groups
of evaluation criteria.

1. Distance measures work based on distances between clusters, i. e. they accent
features that help separating the data.

2. Information measures use criteria from information theory like information
gain.

3. Dependency measures are based on correlation between the features and the
dependent variable.
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4. Consistency measures try to “find a minimum number of features that separate
classes as consistently as the full set of features can” [23, p. 7].

Surveys on subfields of feature selection relevant for this work can be found in
[17], giving a general introduction, [23] especially with focus on classification and
clustering and [37] with focus on filter methods.
In the evaluation several methods will be used. The goal is not an exhaustive

evaluation and to find the method that fits best to be combined with conceptual
spaces, but to investigate if there are techniques that are able to autonomously
generate weights that improve the results of the introduced system.
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3.1. Of Affordances, Concepts and Planning Instances
This section discusses how the components introduced in the last section are combined.

In a first step a new affordance representation is given. It is based on the event
representation is Gärdenfors’ conceptual spaces framework. The design goal is to
enable the agent to deliberate about the affordances offered and on how to exploit
them to reach the agent’s goals. Rome et. al. describe it as:

“It [the agent] is not controlled by the environment. It can rather use
the information provided by the affordances of a situation and reason
about them in a goal-directed manner selecting those afforded actions
that will lead to its goal.” [35, p. 184]

The represented facts are very similar to the affordance representation in the
MACS project. The environment offers some features that indicate a possibility
for action (cue representation). The agent executes some behaviour (behaviour
information) and observes its effect on the environment (effect). Here a concept
space is defined based on the domains that the agent is able to perceive. This space
is the same for all behaviours.

Regions in that space define the applicability of a behaviour. Beside this applica-
bility that can be represented in any conceptual space, the agent has to memorize the
effects of its doings. Thus the used conceptual space is an event space; the defined
(cue-)concept gives information of the patient and the displacement vector the effects.
An additional domain holds information about the applied behaviour. Here, this is
the behaviour identifier as well as success-information.
So far all domains give information about the patient. Additional domains can

be added to hold agent information. This can be static information, e. g. about the
appearance of the agent or the force domains. Domains that describe the agent could
be interesting if the learned behaviours shall be transferred to other agents. The
restriction that affordances are agent specific could be relaxed in that way. Instead,
the need of a certain similarity between two agents could replace it.
The represented behaviours are grouped to abstract affordances based on the

function-centred view of affordance-based robot control. This can be done based
on the displacement vectors of behaviours that the agent assumes to be ‘successful’.
A challenge when doing such abstraction is especially the use of parameterized
behaviours because several instances of one behaviour may result in unsimilar
displacement vectors. Gärdenfors described quality dimensions as “... ways stimuli
are judged to be similar or different.” [12, p. 6]. The term of effect similarity used in
this work will be defined based on quality domains instead of quality dimensions.
This decision is due to the fact that a dimension subset of a (integral) domain has
no meaningful interpretation [12, ch. 1.8]. To overcome the problem of parameterized
behaviours, the relative change to each domain is regarded. This means that the
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total change of a behaviour execution will be normalized to some value (e. g. to be
1.0).

The following definition for similarity of behaviour effects will be used in this work.

Definition 3 The effects of behaviours are similar if their relative change to the
patient’s quality domains is similar.

This relative change will be called force pattern. It is also useful to define planning
operators’ effects, like ‘change to the domain colour can be caused by the paint
behaviour’. In this context the capabilities of cs to translate subsymbolic into symbolic
representations have to be exploited, e. g. by introducing cs property definitions that
are included into the planning process. Though the domain generation is not in the
scope of this thesis it will be discussed in Sec. 3.3.2.
There are several concepts defined in the same conceptual space. Each of them

represents one agent behaviour. The mapping of behaviours to concepts is in line
with Gärdenfors framework.

“The fundamental cognitive role of concepts is to serve as a bridge between
perception and actions.” [12, p. 122]

One has to consider that the regions of applicability of behaviours could overlap.
If the agent shall benefit from the approach given here, they should overlap. If the
regions of applicability of two behaviours overlap and their effects are similar, the
agent has the chance to achieve a desired change of the environment in two different
ways. If the first attempt of the agent fails, there might be a chance to reach the
goal by trying the second one.

This leads to the second contribution of this work. If a planning system as generated
a plan using affordance-based operators, the agent has to decide which behaviour to
use when the plan is executed. This action instantiation has to choose the behaviour
with the highest success probability. The hypothesis for this decision is that the
execution of a behaviour in similar situations will have the same outcome. Section
5.3 shows that this holds then choosing proper context weights. This similarity is
defined on the initial patient domains as well as the intended change. It is likely
that the decision does not depend on all patient domains in the same way. When
painting a patient, its initial colour may influence the result. When moving the
patient it most probably will not. This is exactly the scenario Gärdenfors proposes
to include the context of the decision into the similarity estimation. This is done by
using dimension weighting. Thus for each generated abstract affordance, a context
is defined that is used in the instantiation decision. To automate this step it is
proposed to use techniques from feature selection to find dimensions that influence
the behaviour outcome.
The dimension weighting is used for the following tasks:

1. As stated above, to increase instantiation quality.

2. It represents the dimensions that are important for a behaviour to succeed –
so the weighting indicates preconditions to use in the planning domain.
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3. Thinking of a robot: when searching an entity that offers some affordance, the
extraction of unused dimensions could be stopped to reduce the systems load.
So it can be used for attention control.

So far it has been discussed how the used concepts will be used to realize the
proposed aims of this work. How there are two questions left: where do the concepts
come from? And where do the underlying quality domains/dimensions come from.
In this work it is proposed to learn the concepts based on a set of behaviour instances
(this means by lazy learning). Similar behaviour instances form a new concept. This
is in line with Gärdenfors’ framework:

“Because criterion C defines concepts as regions of conceptual spaces,
similarity, in turn, can be used to define concepts.” [12, p. 111]

As the introduced system learns the general concept from a sample-set, the system
uses inductive inference. An interesting question in such learning systems is what the
learning is based on (the inductive bias). Here, the requirement of region convexity
can be seen as inductive bias of the approach: if two entities are found that fulfill
some property (if e. g. knowing that both are red), every entity in-between is also
regarded as red, otherwise it would be necessary to learn the colour of every single
point of entity space by itself.

“... a learner that makes no a priori assumptions regarding the identity
of the target concept has no rational basis for classifying any unseen
instances.” [26, p. 42]

However, it remains to be investigated how well the behaviours of a robot fulfils the
convexity property.
The second question was where the quality domains come from. In this specific

context, let’s assume the agent to be some robot. In this case the quality dimensions
will be based on some sensor system. To mesh with the affordance-based approach,
the processing of the sensory data has to be lightweight. On top of that, they have to
represent properties of the patient, not e. g. a category or class. In this work domains
like e. g. the size, colour and a simple orientation are used. Extensions to that could
e. g. be shape or silhouette information. Here, all quality dimensions/domains will be
defined by the system designer. However, it is an interesting question if meaningful
dimensions/domains can be extracted from sensory input by the robot itself.
A practical question is how biased the implemented dimensions are with respect

to the intended robot use. This leads to the following questions: The first is if (all)
introduced dimensions are useful for the system. This can be evaluated based on
the dimension weights and the (as discussed before) the extraction of uninformative
dimensions can be stopped. The second question regards the extensibility of the
system. Will the representation be able to work on new agent behaviour? For this
question, Gärdenfors gives the following answer:

“The addition of new domains is often connected with new forms of actions
that require attention to previously unnoticed aspects of concepts.” [12,
p. 103]
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So, if new behaviours deal with yet unnoticed aspects of the environment new domains
will be added to the system.

3.2. Representing Affordances in Conceptual Spaces
This section gives a formal definition of the proposed representation; it follows the
conceptual spaces representation as vector space given in [31]. However, to improve
legibility, dimension-nesting of (non-event) concepts will be restricted to two layers,
as defined by Gärdenfors.

3.2.1. Conceptual Vector Space

Let D be the set of domains and CS the set of conceptual spaces. A conceptual
space C is the set of vectors of the following form.

C = {(d1, d2, ..., dn) | di ∈ D}, C ∈ CS(3.2)

A domain d ∈ D is defined as a vector over an algebraic field (F, ×F , +F ).3

d = {(f1, f2, ..., f|d|) | fk ∈ F}(3.3)

The number of dimensions of a domain is denoted with |d|. cj,k is the k-th dimension
of the j-th domain of the concept instance c. Let |c| be the number of domains of c
and |cj| the number of dimensions of its j-th domain.

To define the needed concepts in a conceptual space C, a set of applicability regions
has to be defined in a domain-subset of the vector space. As proposed by Raubal
for the vector representation, a weight of 0 will be assigned to unused dimensions
instead of giving a domain subset.4
The regions correspond to the applicability of a concept and can be used for cue

detection. However, cue detection is not part of this work. Formally, it might be
realized using a decision function that maps dimension input to B to decide which
point is inside the convex region. Section 5.3 gives some further discussion on cue
detection.
An interesting question to investigate is whether the region convexity could be

used as criterion to decide which domains belong to the domain subset.

3In the realized system this will usually be the set of real numbers along with its common definitions
of addition and multiplication (R, ×, +). If not stated differently, this structure will be assumed.

4Strictly speaking, it is the additive identity of the algebraic field. Let 0 be the additive identify
and + and × the addition and multiplication operator. By definition x + 0 = x for all x out of
the used set. As 0 is in the set, this means also that 0 + 0 = 0. In an algebraic field, the set is a
closure under the operators, distributive law holds and there are inverse elements (let x−1 be
the additive inverse of x). With this properties, x× 0 = x× (0 + 0) = x× 0 + x× 0. Adding
the inverse element, x× 0 + (x× 0)−1 = x× 0 + x× 0 + (x× 0)−1 ⇔ 0 = x × 0, for every x.
This means that dimensions with 0 weight are not considered in distance calculation.
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3.2.2. Behaviour and Event Space

Based on the definition of conceptual spaces, action and event space can be defined.
The first difference is that these hold the values for each dimension for more than one
point in time. This can be realized by introducing a new dimension in each domain
representing time during action execution and storing a series of instances for each
behaviour execution. However, to improve readability, it is defined as vector space
Cn+1 n ∈ N over some conceptual space C ∈ CS. n is the number of time slices and
there is an additional c ∈ C holding the displacement vector δ (its definition will be
given below).
Beside the ‘observations’ the agent sensed while doing some behaviour, it is

represented which behaviour was executed and if (the agent thinks that) the execution
has been successful. Let B = {b1, b2, ..., bp} be a set of (agent) behaviour-identifiers
and si ∈ B holding the success value. These dimensions are constant for one event,
i. e. there is no need to store them for every point in time. They are added as new
behaviour-concept to the event that only holds one domain that is composed of the
behaviour identifier and the success value. An event over some conceptual space C
is defined as:

EC : (B × B)× Cn+1

with n ∈ N and C ∈ CS. Due to readability one might skip parenthesis around the
behaviour concept. An instance ei of an event has the form

ei = (((bi, si)), ci,1, ci,2, ..., ci,ni , δi) with bi ∈ B, si ∈ B, in ≥ 2,
and ci,j ∈ C, δi ∈ C,C ∈ CS

as well as δi = fδ(ci,1, ci,2, ..., ci,in)
(3.4)

The displacement-vector is calculated by a function

fδ : Cn → C

with fδ(c1, c2, ..., cn) = cn − c1

Subtraction is thereby defined dimension-wise; i. e. the result is a concept instance
that has the same number of domains and dimensions and each dimension holds the
difference of the corresponding dimensions of the subtracted concepts.
Let us summarize the event definition. An event is a vector of n + 1 concept

instances of the same conceptual space. They hold the values for n time slices as
well as the displacement-vector δ that is the difference of the initial and final concept
vector. It is extended by an instance of the behaviour concept, holding the behaviour
name and a Boolean success-value.
The definitions in the next sections will contain several instances of events with

several time slices. The following indexing will be used. As defined above, dimension
l of domain k of the concept c will be denoted as ck,l. To denote time slice j of event
i, it is written ci,jk,l.
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3. Affordance-Based Action Abstraction

3.2.3. Affordance Space

Affordance space can now be defined as special event space as follows (cf. Eq. 3.4
and Def. 2 on p. 10).

EC : (B × B)× C3

An instance ei of an affordance has the form

ei = (((bi, si)), ci,1, ci,2, δi) with bi ∈ B, si ∈ B,
and ci,1, ci,2, δi ∈ C,C ∈ CS

as well as δi = fδ(ci,1, ci,2)
(3.5)

In the original definition the cue and effect were represented by “a list of attribute
value pairs” [35, p. 181], here they are points in the used vector space given by ci,1
and ci,2. Beside ci,2 that gives absolute values, the effect is given by the (relative)
displacement δi. The behaviour descriptor is replaced by the behaviour bi and its
success value si. As the new affordance representation is a special case of an event,
definitions in the following sections may also use the (more general) event space.

3.3. Deliberation Methods
After event representation has been defined, this section describes the algorithmic
part of the system. Algorithm 1 gives the top-level view on the approach described

Algorithm 1 Top-level algorithm
function plan(M , G)

A ← genAbstractAffordances(E) . abstraction, Sec. 3.3.1
(D, P ) ← genPlanningInstance(G, A) . domain generation, Sec. 3.3.2
(π, ≺) ← callPlanningSystem(D, P )
return execute(E, π, ≺) . includes instantiation as

main step, given in Sec. 3.3.3
end function

in this thesis. Based on a training set of events M (the agents Memory), abstract
affordances are generated, using a mapping to the abstraction space that enables the
comparison of different behaviours. The mapping and the algorithm is described in
Section 3.3.1.
Based the abstract affordances, a planning instance (i. e. planning domain and

problem) is encoded in some domain-independent language, e. g. PDDL or the
Situation Calculus. This step has been explicitly excluded from this thesis due to
time reasons, but is shortly discussed in Section 3.3.2. Using the planning instance,
a solution is generated that is a (partial) ordered plan consisting of a tuple of actions
π and a predecessor relation ≺ that defines the (partial) order on π.
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Algorithm 2 Plan execution
1: function execute(E, π, ≺)
2: F ← ∅
3: while F ( π do
4: select a ∈ {c ∈ [π − F ] | [∃ b : (b, c) ∈ ≺] ⇒ [b ∈ F ]}
5: (b1, b2, ..., bn) ← instantiate(a) . instantiation, Sec. 3.3.3
6: i ← 1
7: while i ≤ n do
8: (qdims, success) ← execute(bi)
9: E ← E ∪ {(bi, success, qdims)}
10: if success then
11: F ← F ∪ {a}
12: break
13: else
14: i ← i + 1
15: end if
16: end while
17: if a /∈ F then
18: return failure
19: end if
20: end while
21: return success
22: end function
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3. Affordance-Based Action Abstraction

The solution is executed by the function given in Algorithm 2. First, applicable
actions are identified and one of them is selected (line 4). Then it is instantiated
by a robot behaviour using the instantiation context and the algorithm given in
Section 3.3.3 (line 5). When an execution failure occurs, the next choice is tried.
After behaviour execution, the set of events is updated. In the algorithm, this is
done by just adding the new event. However, a more sophisticated method could be
considered to (1) keep the number of examples low and (2) get good learning results.
A further description of the proposed execution system, also introducing how to

execute solutions with parallel and temporal actions, can be found in [19, Sec. 2.3].
How to generate a partial ordered plan based on a PDDL definition to improve
execution flexibility is described in [19, Sec. 2.2].

3.3.1. From Agent Behaviour to Abstract Affordances

In [24], the concept of abstract affordances has been introduced that enables an
abstraction from concrete affordance triples during planning process. In the MACS
project, the grouping was introduced by the (human) domain designer. This section
introduces an approach to automate the abstraction step.
The introduced method clusters affordance triples that change the environment

in a similar way, i. e. by the effect that they have on it. It thereby ignores the
situations it is applicable to (so to say, the cues and precondition). Speaking in
terms of conceptual spaces, clustering is done based on the displacement vector of
the affordance instances.

It has to be considered that abstraction is done on instances of different behaviour
types: is bpull more equal to bturn than to bpush? – this is done using a mapping to a
special space that is introduced now, before coming to algorithmic aspects of the
abstraction afterwards.

Mapping to the abstraction space. Different behaviour types are compared by
their change on the patient. The force pattern of a behaviour is therefore defined
based on the similarity definition given in Def. 3. It is based on the displacement
vector of a behaviour and gives for each domain the portion of the entire change
caused to the patient. If a behaviour changes e. g. the colour and the weight of a
patient, it has to be considered how much these domains are changed and an overall
change of 1.0 is divided according to the amount of change to the domains, e. g.
colour-change = 0.9 and weight-change = 0.1 for painting the patient (using a quite
heavy paint). So the force pattern would be (0.9, 0.1) for this behaviour.
Force patterns allow to make general statements about a certain behaviour type:

there are infinite ways to boil-paint some oil-paintable object that may result in very
small and very large displacement vectors (i. e. different colours), but it is assumed
that they share a large relative change to the colour domain (together with some
minor other changes).

To generate the force pattern two steps of normalization are done. When comparing
change over different domains, different ranges of values have to be considered. In
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a first step these are normalized via z-transformation as proposed by [31] for the
vector space representation. The z-transformation z for a value x is defined as:

z = x− x
sx

(3.6)

where x is the arithmetic mean value of the dimension and sx the experimental
standard deviation.
After z-transformation, the new ‘unit’ of a dimension is its standard derivation.

This enables the comparison of change in different domains. In event space, z-
transformation is done for each dimension over all time slices of all events.

Now different dimensions of a vector can be compared. In a second step the relative
part of change for every domain is calculated. This is no normalization over one
dimension of all instances like before, but over the different domains of one instance.
This can not be realized using a context, because every instance would need different
context weights. Instead, a mapping fabs to another conceptual space is defined. It
will be called abstraction space, because it will be used primarily for the abstraction
step. However, as states above, it also provides general information about the change
of a behaviour and thus can help in planning domain generation.

The new space has two domains: the behaviour identifier B in its own domain and
a force domain that has |C| dimensions with values between 0 and 1, each holding
the part of change of one domain of the original space.

fabs : EC → B ×
(
[0..1]|C|

)

fabs(ei) =

bi,
d1, d2, ..., d|C| | dj =

√∑|δi
j |

m=1

(
δij,m

)2

∑|δi|
k=1

√∑|δi
k
|

l=1

(
δik,l
)2


(3.7)

every dj gives the (unweighted) Euclidean distance in one domain, divided by the
sum of the Euclidean distance of all domains.

In the resulting space, a prototype for each behaviour is generated as an instance
holding the average value over all successful instances in every dimension. These
prototypes enable statements like on average, a turn behaviour results in a large
change of entity orientation as well as a small change in entity position. Based on
this function-centred view on the behaviours, similar behaviours are clustered to
abstract affordance operators. It is also the basis for the effect statement of the
operator in the planning domain. Section 5.1 gives results of a clustering based on
displacement patterns.

3.3.2. Generate PDDL Domains

Due to time reasons, the task of generating a working planning instance is not part
of this thesis. However, this section gives some discussions on how this could be
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3. Affordance-Based Action Abstraction

done.
The main problem when combining affordance-based robot control with symbolic

planning is to find a proper degree of modelling. To exploit the capabilities of
state-of-the-art planning systems, domain has to provide enough information to
reason about. Models in affordance-based robot control are inherently sparse. In the
MACS approach, sensed affordances have been assigned to regions of an environment
map [24] and entities or objects are not modelled at all. However, to realize a (robot)
agent that shall e. g. be used as domestic service robot, it is necessary deal with
object identities, but increase or decrease constraints based on application context
(cf. the work of Iman Awaad, given in [2, p. 5f]). Instead of giving ‘the solution’ to
this dilemma, this section discusses a range of possible alternatives for automated
generation of planning operators based on the abstract affordances as realized in
Sec. 3.3.1.
Gärdenfors’ quality dimensions describe properties based on that two entities

can be distinguished. Therefore quality dimensions and domains seem suitable to
describe a state of the world. In PDDL this can be realized by using them either as
property or function. The use of PDDL properties may imply the definition of cs
properties that are mapped to each other.
The operator’s effects on the patient have already been used to cluster the af-

fordances. This information can now be reused in the operator definition to find
the operators name as well as effects. For each abstract affordance, an operator
change<Doms> is created, where Doms is replaced by the domains with the main
effect. As parameters, one could use the entity that is the patient. When using
properties and not functions to describe the domain, the property before and after
the execution are also parameters. E. g.

(:action changePosition
:parameters (?e - entity ?init ?final - aPosition)

for property-based encoding or

(:action changePosition
:parameters (?e - entity)

for function-based encoding. A function-based encoding might provide more in-
formation to the planning system. But it has also to be considered that domains
(normally) consist of more than one dimension and thus the encoding effort might
be increased rapidly. Which dimensions are important can be decided based on
the context weights, i. e. only dimensions with a certain weight are considered for
planning.
When realizing the encoding with properties, a map-based encoding inspired

by the MACS encoding could be realized. I. e. sensed affordances are written
into an environment map. So, a precondition could encode that an affordance
positionChangeable (in this case, a PDDL property) has been sensed at some
agent position for some entity ?e.
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; encoding affordance-perception
:precondition (and (positionChangeable ?e ?agent-pos)

(position ?init ?e)

By encoding preconditions by affordance perception (in some map region), the
planning domain becomes sparse and the actual decision on whether the operator
is applicable or not is done in the conceptual layer. However, this prevents the
planning system from realizing a precondition whose affordance has not been sensed
before. Here, some ‘finding’ operator (e. g. find-liftable) could be implemented
that seeks to find the needed affordance.
Based on the main effect of an operator, the effects can be encoded e. g. as

: effect (and (not (position ?init ?e))
(position ?final ?e)

)

A full property-based encoding could look like

(define (domain rob)
(:requires :typing)
(:types entity property ; basic types

agent-pos ; regions in map
anOrientation aSize aPosition aColour... - property values

)

(:predicates
; map of sensed affordances
(positionChangeable ?e - entity ?p agent-pos)

; entity properties
(orientation ?o anOrientation ?e - entity)
(size ?s - aSize ?e - entity)
(position ?p - aPosition ?e - entity)
(colour ?c - aColour ?e - entity)
...

)

(:action changePosition
:parameters (?e - entity ; patient of the event

?init ?final - aPosition ; old and new position
?p - agent-pos)

:precondition (and (rotpos ?p)
(positionChangeable ?e ?p)
(position ?init ?e)

)
: effect (and (not (position ?init ?e))
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(position ?final ?e)
)

)

The dominant change of an abstract affordance is not limited to one cs domain.
There might also be operators changing two or more.

(:action changeOrientationAndPosition
:parameters (?e - entity ; patient of the event

?iOri ?fOri - anOrientation ; old and new orien-
?iPos ?fPos - aPosition ; tation and position
?p - agent-pos)

:precondition (and (rotpos ?p)
(oriAndPosChangeable ?e ?p)
(position ?init ?e)

)
: effect (and (not (position ?iPos ?e))

(position ?fPos ?e)
(not (orientation ?iOri ?e))
(orientation ?fOri ?e)

)
)

To sum up, the information gained for abstraction and instantiation already provide
many of the facts that are needed to encode a planning domain:

• The dimension weights that will be introduced in the next section are used to
decide which dimensions are relevant for precondition encoding.

• The force patterns defined for abstraction step give information on the effects
of affordance-based operators.

• The quality dimensions and domains that are either in an effect of an operators
or have some weight in the instantiation provide information about which of the
(human introduced) features of the environment are relevant for the planning
problem. Thus there are two uses for them:
1. They describe a state of the planning system, so they should be used as

(1) property or (2) function.
2. As mentioned in Sec. 3.1, it can be used to control robot attention when

searching for a certain affordance. The controller can stop the extraction
of unused dimensions and thus speed-up agent vision.

However, it has to be further investigated how the capabilities of Gärdenfors’ con-
ceptual spaces to translate subsymbolic to symbolic representations are used most
gainful.
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3.3.3. Instantiate Actions by Agent Behaviour

When the agent has planned using affordance-based planning operators, it has to
decide which behaviour to use to instantiate the action. This is done by choosing a
behaviour that has been successful for ‘similar situations’ in the past. Here again,
similarity has to be measured. As in the abstraction step, it is estimated using
distance in conceptual space.
Different dimension ranges are normalized as before using z-transformation. For

each abstract affordance, a context is introduced that sets dimension weights according
to their relevance on the results. Weight calculation is done using methods from the
field of feature selection. Based on normalized instances, instantiation is done via
k-Nearest Neighbours (k-NN) classification and using weighted Euclidean distance.
The instantiation results not only in one behaviour that should be applied but in an
ordered tuple containing the behaviours in the order they should be executed, i. e.
first choice, second choice and so on.
Let an event instance e be relevant for the instantiation of a if it

• describes the execution of a behaviour type that has been grouped to the
abstract affordance type of a and

• has been finished successfully.

Let Ba be the set of behaviour types that have been grouped to the abstract
affordance type of a and |Ba| the number of behaviours in it. Alg. 3 defines the

Algorithm 3 k-NN instantiation algorithm
Require: k ∈ N arbitrary constant number of neighbours
1: function instantiate(M , a)
2: S ← {e ∈M | relevant(e, a)}
3: w ← weightDim(S)
4: for j = 1 to |Ba| do
5: F ⊆ S with |F | = k;
6: ∀f ∈ F (∀s ∈ S((dE(s, c, w) < dE(f, c, w))⇒ s ∈ F ))
7: ij ← arg maxb∈Ba(|Fb|) . random tie-break
8: S ← S − Sb
9: end for
10: return (i1, i2, ..., i|Ba|)
11: end function

action instantiation. dE(ei, ej, w) is assumed to be a distance-function as introduced
in Eq. 2.1 that uses the dimension-weight-vector w.
The function gets a set of training examples M (the agent’s memory) and the

action a that has to be instantiated as input. It requires the definition on how many
neighbours to consider, k. In a first step the set of relevant instances is determined
(line 2). S contains the set of positive training examples whose behaviours belong to
the abstract affordance type of a. In line 3 the dimension weights are calculated. In
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line 4-9 the choices are determined one after the other. The k nearest neighbours are
extracted from S (line 5 and 6). The behaviour that appears most often in the set is
chosen using random tie-break (line 7). For the next choice, instances of behaviours
that have already been chosen are not considered anymore.
When using k-NN algorithm, it might be useful to select M as a subset of the

training set that contains equal numbers of positive and negative examples of every
behaviour. This is also done in the evaluation in Sec. 5. In this case, it has to be
evaluated if the used feature selection method benefits from the reduced or from
the full training set. A short evaluation of this issue is given in Appendix D. It
shows that there are methods that seem to benefit from the full training set as well
as methods that benefit from the reduced one. So this has to be considered after
choosing some method.
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This section introduces the system used to evaluate new approach given in the last
section. Therefore it sketches the used robot and simulation frameworks and the
used robot before introducing the quality dimensions, domains and the implemented
robot behaviour.

4.1. System Overview

The system is based on the Robot Operating System (ROS) [29, 36] and the OpenRAVE
simulation environment [7, 6].

ROS enables a simple communication between different parts of a software system
that are called nodes. It has one central component, the roscore that provides e. g.
a name service. The nodes register at the roscore and can publish and subscribe
messages to asynchronous communication channels called topics. Synchronized
communication is enabled by using services. Interoperable nodes can be implemented
in several programming languages: C++, Python, Octave and Lisp. There is also
some limited Java support. A node is supposed to implement only a narrow bunch
of functionality to increase reusability. From this point of view the ros message
definitions provide the interface between nodes. Nodes that belong together are
combined in packages. ROS provides a large repertoire of tools to support developers,
ranging from software building, deployment, logging of ROS messages, program
structure- and communication-analysis, launching and mechanisms to visualize
sensory data.
Although ROS also provides a 3D simulation environment named Gazebo, in

this project it is combined with another simulation environment called OpenRAVE.
OpenRAVE provides a wide range of predefined algorithms for robot motion planning.
Thus it enables a simple implementation of a large number of different behaviours as
necessary for the evaluation. It can be extended by so called plugins and provides a
Python as well as a C++ interface for programming. A ROS plugin enables it to
publish sensor data into a ROS network.

The prototype is implemented in ROS with one simulation node that is connected
to ROS and also starts an instance of the OpenRAVE simulation environment.
It implements several robot behaviours and executes them whenever it receives a
command via a ROS message. It extracts and publishes current quality dimensions
into the system. This architecture makes it possible to combine the advantages of
the well-known ROS system and the algorithmic power of OpenRAVE.

The implementation in ROS enables a simple transfer to a real robot by exchanging
the simulation node by real-world components and thus executing the commands by
a real robot and publishing dimensions extracted from real sensors.
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Figure 3: Robot and environment used in the MACS project (source: [34, Fig. 6, 9])

Figure 4: The Care-O-bot Jenny at Bonn-Rhein-Sieg University and in simulation

4.2. Robot and Environment
The MACS project used a robot with quite limited manipulation capabilities. It is
based on the KURT3D [41] that has been extended with a crane manipulator with
a magnetic gripper [35, p. 196 f]. Figure 3 shows the MACS robot and the simulation
environment.
This robot has been sufficient for MACS approach. However, due to the focus

on robot behaviour, it is not for this work. To group behaviour causing similar
change, a number of different robot behaviours have to be implemented. Therefore
another robot is used for this prototype: the Care-O-bot 3 [10] from Fraunhofer IPA.
It provides the necessary manipulation capabilities and is also (physically) present at
the robot team b-it-bots [4] at Bonn-Rhein-Sieg University. So the results gained in
this project can be transferred from OpenRAVE simulation to the real world. Figure
4 shows the real robot called Jenny and its counterpart in OpenRAVE.

4.3. Quality Dimensions and Domains
This section introduces the used quality dimensions. It is divided into two parts: the
agent dimensions, describing properties of the acting robot, the patient dimensions
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Value

Hue

Brightness

Figure 5: Colour space as described by Gärdenfors

that are most relevant for the introduced approach.

4.3.1. Agent Domains

As described in Section 2.3, affordances are agent-specific. This can be illustrated e. g.
by considering any manipulation behaviour. It is clear that the individual properties
of an agent like the existence of a manipulator, its type, range of reachability and
strength affect the ability to transfer learned behaviour to another agent. The agent
domains characterize the acting agent and enable a comparison to other agents. In
this way, the estimation of transferability is one possible application of the given
domains.

4.3.2. Patient Domains

These dimensions are most relevant for the approach introduced so far. They describe
properties of the entity that is manipulated. Due to the affordance-base approach,
all dimensions are in principle directly perceivable and not based on classification.

Colour. Gives the colour of the patient entity in hue-saturation-value (HSV) model.
The domain consists of the three quality dimensions hue, saturation and value that
are summarized in Table 1. Its shape is described in [13, p. 3] and given in Figure 5.

name value range
hue [0 .. 360)
saturation [0 .. 1]
value [0 .. 1]

Table 1: Colour domain

Size. The size domain gives the extents of the axis-aligned bounding box of the
manipulated entity from the agents point of view. To have it independent from the
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orientation of the entity it is not defined based on axis orientation but ordered by
extents (a longer sider of the object and a smaller side if the object). Instances of
the two dimensions can have every positive value, both dimensions are a linear shape.
The domain is summarized in Table 2.

name value range
small side (0 .. ∞]
large side (0 .. ∞]

Table 2: Size domain

Orientation. This domain gives a very simple and thus directly perceivable indicator
for the orientation of an entity described by the relation of the vertical and horizontal
extents of the axis-aligned bounding box. This is the only dimension of the domain.
It has a linear shape and instances can have every positive value. The domain is
given in Table 3.

name value range description
orientation (0 .. ∞] horizontal extent

vertical extent

Table 3: Orientation domain

Relative position. Gives the relative position of the patient to the agent. The
domain is composed of three linear dimensions. The dimensions are summarized in
Table 4.

name value range
x [−∞ .. ∞]
y [−∞ .. ∞]
z [−∞ .. ∞]

Table 4: Position domain

4.4. Robot Behaviour
OpenRAVE provides a wide range of predefined algorithms that can be used to
implement custom behaviour. Therefore the following paragraphs give a short
introduction of the used predefined behaviour; these will be used as primitive
commands in the custom algorithms presented afterwards. Some of them use
randomized algorithms and can therefore have a nondeterministic outcome.

4.4.1. OpenRAVE Behaviour

GraspPlanning. There are several utilities related to grasp planning, from simple
commands to open and close the manipulator to algorithms to calculation grasps
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Figure 6: Push object with fingertips. The yellow object marks target position.

given a special object and robot hand.

MoveHandToPosition. Moves the robot’s hand collision-free to the given pose.

MoveHandStraight. Moves the robot’s hand in a straight line into a given direction.
A stepsize and a range of steps are given to define how long the movement is done.

4.4.2. Custom Behaviour

This section introduces the behaviours used for evaluation.

Pick&Place. This behaviour is entirely based on a predefined OpenRAVE be-
haviour. It uses grasp planning to grasp the object, MoveHandStraight to lift it a
bit, MoveHandToPosition to change its position and MoveHandStraight to put
it down.

Pull and Pull. Is a behaviour that uses grasp planning to grasp the object and
MoveHandStraight to change its position, i. e. it is left on the table surface and
pulled (pushed) into its final position. However, due to technical problems with
‘collisions’ between object and table that stopped the MoveHandStraight, the
behaviour used in the evaluation has to lift the object slightly be fore doing the
straight movement, and put it down afterwards.

Fingertip-Push. Is another push behaviour that enables the robot to push the
object into a position that can not be reached using a grasped push or a pick&place
behaviour.
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a

b

rob-dir

C A

B 

Figure 7: Sketch of the Turn behaviour

Algorithm 4 Fingertip-Push behaviour
1: procedure tfpush(robot, target, initDist)
2: s← target.position
3: d← destination
4: dir ← s− d
5: α← atan

(
dirx

diry

)
6: handRot← getXRotMatrix(π2 )× getZRotMatrix(−α)
7: dir ← normalize(dir)
8: handPos← scale(dir, initDist) + s
9: handTransform← handRot× getTransMatrix(handPos)

10: MoveHandToPosition(handTransform) . Start move
11: MoveHandStraight(direction = −dir, steps = [1..∞])
12: grabbed(target) . Prevent collision with target to stop movement
13: MoveHandStraight(direction = −dir, steps = [1..dist(s,d)

stepsize
])

14: ¬grabbed(target)
15: end procedure

Algorithm 4 gives the fingertip–pushing behaviour. In a first step the direction
and rotation of the hand are calculated (line 2-5). The hand-rotation has to be
transformed because fingertips point in position z-axis direction (line 6). The pose
of the hand is calculated in line 7. Then the movement is done. The hand is placed
in line with the object’s initial and target position. This is illustrated in Figure 6.
Then the gripper is moved in a straight line towards target until it collides with the
object. The object is pushed to the target position.

Turn. The turn behaviour is a special pick and place operation that is used to turn
an object. A sketch visualizing the used parameters is given in Fig. 7. The names of
lines and points given here and in the Alg. 5 can be found in there. The points B and
C as well as the direction the robot is facing are given. Point A can be calculated
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as the nearest point between the line defined by B and the direction vector rob-dir
and the target-point C. The robot hand is opened and moved to a point on line b,
with a hand and object depended distance. The fingers are placed the in front and
behind the object. Afterwards it is grasped, lifted, turned and put down.

Algorithm 5 Turning behaviour
procedure turn(robot, target, gripperLength, liftheight)

C ← target.position . Given things
B ← robot.position
dir ← robot.rearDirection
A← −

(
dir×(B−C)
dir×dir

)
. Calculate other elements

handDir ← normalize(C − A)
β ← atan

(
handDirx

handDiry

)
handRot← getXRotMatrix(π2 )× getZRotMatrix(β)
handPos← C − scale(handDir, gripperLength)
handTrans← getTransMatrix(handPos)
handTransform← handRot× handTrans
ReleaseF ingers() . Start moving
try

MoveHandToPosition(handTransform)

catch (planning failed)
on error: grasp from other side . skipped here

CloseF ingers()
try

MoveHandStraight(direction = (0, 0, 1)T ,
steps = [ liftheight

stepsize
].. liftheight

stepsize
])

turned← getXRotMatrix(π2 )× getHandTransform
MoveHandToPosition(turned)
MoveHandStraight(direction = (0, 0,−1)T ,

steps = [1.. liftheight
stepsize

])

catch (planning failed)
MoveHandToPosition(endPosition)

ReleaseF ingers()
end procedure

The algorithm is given in 5, Figure 8 illustrates the steps. The robot places the
gripper beside the object (a), grasps and lifts it (b and c). Then it is turned (d) and
lowered until it collides with the ground (e). As last step the gripper is opened.
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4. An OpenRAVE Prototype

(a) (b) (c)

(d) (e) (f)

Figure 8: Care-O-bot 3 turning an object
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Figure 9: Experiment setup

5. Evaluation
In this section the following three points are evaluated in the OpenRAVE system.

• Can the abstraction space be used to replace the human abstraction? How do
the resulting behaviour clusters look like?

• Does the proposed instantiation method increase the success-rate of chosen
behaviours, using a ‘guessing’ instantiation as base-line?

• Are the dimension-weights generated with methods of feature selection able to
improve the instantiation results?

Beside the evaluation given above, a short digression on predicting the success of a
behaviour execution by k-NN classification is given in Sec. 5.3. Success prediction
can be seen as cue detection. However, there are some conceptual problems that will
be discussed. Though cue detection is not in the focus of this thesis, statements on
how reliable the outcome of a behaviour can be predicted by comparison to similar
situations in the past is an interesting question to get a feeling on whether the used
similarity measure is plausible or not.

Experiment setup. The evaluation is based on randomly generated experiments.
The robot is standing in front of a table with its arm directed towards it. The setup
is illustrated in Figure 9. The depth of the table is larger than the robot’s arm
length, i. e. the robot is not able to reach objects standing to far from it.

For each experiment, an object is generated on the table that the robot has somehow
to manipulate. All experiment parameters are generated uniformly distributed and
statistically independent from each other. The behaviour is chosen from the set
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5. Evaluation

width depth height
0.02 0.02 0.07
0.04 0.04 0.08
0.06 0.06 0.09
0.10 0.10 0.10

Table 5: Object sizes used in experiments

behaviour experiments successful unsuccessful success rate
bftpush 3850 102 3748 0.026
bpnp 750 165 585 0.22
bpull 1150 113 1037 0.098
bpush 1100 110 990 0.100
bturn 700 87 613 0.124

Table 6: Overview experiments for training set

{bpnp, bpush, bpull, bftpush and bturn} that have been described Sec. 4.4. Object x
and y-position is generated, i. e. the position on horizontal plane on the table. All
behaviours except bturn need not only an initial position, but also a final position, i. e.
a position the object is intended to be after the behaviour execution. The object’s
size and colour are also generated randomly. The used object sizes are given in Tab. 5.

Behaviour success is measured entirely based on the result on the object, (i. e. its
position or orientation, respectively) using a delta of 0.05 meters for distance and
0.01 rad for orientation.

The experiment sets. Using this setup, two sets of experiments are used: a training
set and an evaluation set. Different success rates of the behaviours result in different
numbers of experiments to enable a training set that includes the same number of
succeeded examples for k-NN classification. Table 6 summarizes the experiment runs
of the training set.

The evaluation set is used to evaluate the instantiation method. It includes 1000
distinct problems. Each is tried to be solved by each behaviour of the operator
changePosition. Table 7 shows the results of the evaluation set.

behaviour experiments successful unsuccessful success rate
bftpush 1000 28 972 0.028
bpnp 1000 236 764 0.236
bpull 1000 108 892 0.108
bpush 1000 97 903 0.097

Table 7: Overview experiment runs for evaluation set
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Solutions Experiments
0 738
1 64
2 189
3 9
4 0

Table 8: Number of experiments solved by 0-4 behaviours

Behaviour Experiments
bftpush 19
bpnp 44
bpull 1
bpush 0

Table 9: Number of experiments solved only by one behaviour

The set of solved experiments in the evaluation set includes 262 problem instances.
469 solutions have been found. The success-rates of the two sets are comparable.
Table 8 gives the number of experiments with 0− 4 solutions.

Table 9 gives the number of experiments that have been solved only by one
behaviour. The number of experiments solved only by bftpush might be due to a wider
range of reachability. It is the only behaviour that does not grasp the object. The
number just solved by bpnp can also be explained easily, because bpush and bpull have
to find a solution in the arm’s joint space that results in a linear gripper movement.
This seems to be more likely to fail. The large number of bpnp in this set should be
considered when interpreting the instantiation results.
Table 10 shows the experiments with two solutions. It gives the combinations of

successful behaviours that appeared. The results show that most combinations are
bpnp and one of the bpull/bpush behaviours, what seems to be plausible. These two
experiment subsets, solved by one or two behaviours, will be used to evaluate the
action instantiation.
As defined in Sec. 3.2.3, the representation includes for every dimension (except

behaviour information that is represented only once)

1. the initial value

bftpush bpnp bpull bpush

bftpush - 1 0 0
bpnp 1 - 100 83
bpull 0 100 - 5
bpush 0 83 5 -

Table 10: Behaviour combinations in the experiments with two solutions
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5. Evaluation

quality domain quality dimensions
info behaviour

experiment name
success

colour hue
saturation
value

position x
y
z

size short side
long side

orientation orientation

Table 11: Dimension overview

2. an absolute final value and

3. a relative final value (displacement value) denoted as δ.

Table 11 summarizes the quality domains with their dimensions. Some characteris-
tic numbers for every dimension are given in Appendix A.

For a better understanding of the dimension weighting used in cue detection and
instantiation, the evaluation of the abstraction step is given first. The dimensions
used for weighting depend on that step.

5.1. Action Abstraction

All successful instances of the behaviours are transferred to the abstraction space as
described in Sec. 3.3.1. For each behaviour a prototype is generated that holds the
average values in every domain. These are clustered to generate abstract affordances.
The prototypes are visualized in Fig. 10. It shows the supposed similarity between
bftpush, bpnp, bpull and bpush that cause a dominant change to the position domain.
bturn, on the other hand, cause two-thirds of its change to the orientation domain
and the rest to the position domain. This is due to the change in height of the boxes
centre position.
Table 12 gives the exact values of the prototypes. The change in size domain

is caused by the axis-aligned bounding-box measurement in combination with an
(unintended) turning of the boxes.
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Figure 10: Force pattern of behaviours. Gives the average value of relative change
in the domains for each behaviour type. The darker the blue, the more
change. The values are scaling column-wise. This is the visualization of
Tab. 12.

bftpush bpnp bpull bpush

bpnp 0.007295633
bpull 0.109537785 0.102583253
bpush 0.131000853 0.124395188 0.027697612
bturn 0.930382691 0.926318336 0.854673490 0.840075933

Table 13: Euclidean distances between behaviour prototypes in abstraction space.

bftpush bpnp bpull bpush bturn

Colour 0.000000 0.000000 0.000000 0.000000 0.000000
Position 0.994709 0.989341 0.897103 0.870585 0.338677
Size 0.003688 0.008607 0.051172 0.044108 0.000008
Orientation 0.001603 0.002052 0.016327 0.012580 0.661315

Table 12: Force pattern of behaviours (visualized in Fig. 10)

The distance matrix of the behaviour prototypes in abstraction space is given
in Tab. 13. Fig. 11 visualizes them as Dendrogram. It illustrates the distances
(dissimilarity) between different clusters and gives the points where a hierarchical
clustering method would merge two clusters. If shows that bftpush and bpnp cause
the most similar change. bpull and bpush are slightly less similar. The clusters that
would result from merging bftpush and bpnp and from merging bpull and bpush would
be merged next. The distance from the resulting cluster to the bturn prototype is
quite large. These distances can be used to estimate the number of clusters. In the
rest of this evaluation a number of two clusters will be assumed, one containing the
bturn and one that contains the other behaviours.
Clustering behaviours in the abstraction space seems to result in abstract affor-

dances that are intuitive for humans. It has to be further investigated if the number
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Figure 11: Dendrogram of behaviour prototypes in abstraction space

of clusters can always be identified as clearly as in the given prototype. In the next
step the domains that contain the dominant change of each behaviour are calculated,
discarding change beyond some threshold. This can be used as effect of the operator.

5.2. Dimension Weighting
Based on the abstraction generated in the last section, affordance-based planning
operators are generated. As discussed in Sec. 3.3.2 the parameter-set of these
operators include the initial and final values of the quality domains they change.
Thus an operator is used to change some domain from the initial to the final value.

Looking at the clusters generated in the last section, the following parameter-sets
are assumed for the operators.

changePosition(initPos, finalPos)
changeOrientation(iOri, fOri, iPos, fPos)

The instantiation method estimates the most promising robot behaviour to use for
a given operator. Therefore, beside all initial dimensions, they work also on the final
and δ values of the domains to change. This can be seen as the intention behind the
operator (or here better: action).
How useful the dimensions are for the decision is estimated by methods from

feature selection. The weight estimation given here were estimated using packages
from the R system [30]. They are compared to an unweighted and a human weighted
version to evaluate their influence on the decision.

The weights given here are computed using the FSelector package [33] that
implements several feature selection methods, some by using the R interface to the
Weka (Waikato Environment for Knowledge Analysis) software [20, 40].

The weights represent the ‘influence’ of
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Figure 12: Dimension weights. The first five estimated by different techniques from
feature selection. One weighting using all dimensions and two human-set
weightings. The darker the blue, the more weight is on a dimension. The
weights are scaling column-wise.

• the initial dimensions as well as

• the intended displacement (i. e. the final position given in the experiment) as δ
and

• absolute value on the success-value.

The ‘no-weights’ weighting includes exactly the dimensions. It is computed using
the full training set. As mentioned before, the question if a reduced training set that
includes equal-sized subsets for every behaviour and behaviour-outcome leads to
better results is not targeted here. However, a short evaluation is given in Appendix
D. It seems that there are weightings that benefit from the full set and some that
benefit from the reduced set.
Two human-set weightings are compared to the generated values.
In summary, all weightings accent the x and y-positions, just like the human

weightings. The weights are visualized in Fig. 12 and given in Appendix C.

5.3. A Side Note on Cue Detection via k-NN Classification
Although in practice k-NN success prediction like given here could work quite well,
there is one flaw: the agent behaviours are defined as cs concepts, i. e. the regions of
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bftpush bpnp bpull bpush

execution worked true false true false true false true false
cue detected 27 154 210 166 98 204 87 202

no cue detected 1 818 26 598 10 688 10 701

Table 14: Confusion matrix of k-NN cue detection for (human weighting A, k=1).

behaviour AUC sensitivity specificity pred. error
bftpush 0.90 0.964 0.842 0.155
bpnp 0.84 0.890 0.783 0.192
bpull 0.84 0.907 0.771 0.214
bpush 0.84 0.897 0.776 0.212

Table 15: Characteristic numbers of cue detection via k-NN classification (human
weighting A, k=1).

applicability have to be convex. When applicability is defined by k-NN classification,
it will most likely result in a non-convex applicability region.
For the instantiation step, on the over hand, the k-NN method is no problem,

since it chooses between concepts whose applicability regions overlap.
Table 14 gives the confusion matrix of the classification using a human weighting

that includes x and y positions (with a weight of 1.0) and no other dimension. The
table has two columns for each behaviour, the left one gives cases when the execution
worked in the experiment, the right one cases where it did not. Each of them has two
rows giving the predictions. It can be summarized that number of false positives is
quite height for all behaviours, i. e. that executions that have been predicted to work
do not work in the experiment. Figure 13 gives the receiver operating characteristic
(ROC) curves of the classifiers.

A ROC curve is a widely used way to visualize the performance of binary classi-
fication methods. It gives the classifier’s sensitivity5 and specificity6. The optimal
ROC curve would be at the top left corner of the diagram. The performance is
thereby measured by the area under the curve (AUC) that should be larger than 0.5.
Otherwise the classifier is no better than random choice [22, p. 147].
Figure 13 gives the ROC curves of classifiers using no weighting at all (top left),

using a weighting based on information gain (top right) and a human defined
weighting (bottom left).

To refer to the different classifiers, the following notation will be used: the first
letters give the weighting, here e. g. NW for no weight, IG for information gain and
HW for human weighting. Afterwards a number gives the neighbours that have been
included into the decision.
The HW1 classifier performs quite well for every behaviour. It reaches AUC

5sensitivity: probability of a cue detection given that the behaviour execution works
6specificity: probability of to get no cue detection given that the behaviour execution fails
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values between 0.84 and 0.90 and has a prediction error rate of 0.2 (see Tab. 15 for
characteristic numbers). The IG3 classifier is worse in predicting bpush and bpull, but
with acceptable overall performance. A full table with results of all weightings as
well as all ROC curves can be found in Appendix 5.3.

In summary, there exist weights that enable a quite good prediction of behaviour
success. Thus when using this weights for measuring similarity, similar problem
instances will result in the same behaviour outcome. A second thing to notice is that
there are methods that are able to automatically generate dimension weights that
outperform an unweighted prediction.

5.4. Action Instantiation and Substitution
The instantiation is most useful for abstract affordances that can be realized by a
large number of robot behaviours. In the current prototype only the changePosition
operator comes with more than one realization. So this evaluation is entirely based
on instantiating changePosition actions.
The first part discusses the instantiation of experiments that come with exactly

one solution. There are four behaviours to chose. It is compared which choice (1st,
2nd, 3rd or 4th) is the right one. The results are visualized in Fig. 14. The height
of the bars represents the number of cases where each choice was the successful
behaviour. The darkest blue indicates the first choice and the blue becomes lighter
with each choice. This means that the perfect instantiation would result only in
one dark blue bar. To have a base-line, an instantiation has been implemented that
randomly chooses some behaviour (label guess in the figure). In this evaluation the
human weightings are outperformed by all other weightings.
It seems that the other weights ‘prefer’ bpnp behaviour. In the far most instances

of this evaluation set, the bpnp behaviour is the only successful behaviour. So the
preference of this behaviour results in a higher overall success.
Figure 15 gives the results for the evaluation set with two successful behaviours.

To evaluate the performance for this case it is tested how often both successful
behaviours are in the first two choices. The number of these cases is visualized by the
darkest bar. For the cases where the two successful behaviours have not been chosen
first, it is counted how often they are in the first three choices. This is visualized
by the middle-blue bar. The lightest blue gives the rest of the cases, i. e. the cases
where all choices have been needed to choose both successful behaviours.

This evaluation shows a greater spread between different weightings. The instanti-
ation that uses no weights is nearly as bad as random choice. Here especially the
chi-squared and information gain based weightings give good results. This is in line
with the classification results (cf. Appendix B).

In summary, the proposed instantiation method outperforms random behaviour
choice (guessing). There are methods to estimate dimension weights that improve
the results compared to unweighted instantiation.
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Figure 15: Success of behaviour substitution. The diagram gives problems that have
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shows P({s1, s2} ⊆ {b1, b2}), P({s1, s2} * {b1, b2}∧ {s1, s2} ⊆ {b1, b2, b3})
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6. Conclusion
This thesis extends the integration of affordance-based robot control and automated
planning given by Lörken and Hertzberg by introducing a method to automate the
abstraction step that groups affordances to abstract affordances. The focus of the
original work, to be flexible in which (kind of) object to use to reach some goal was
shifted to be flexible in which behaviour to use.

The presented approach is based on a newly introduced affordance representation,
introduced in Sec. 3.2 that is based on Gärdenfors’ conceptual spaces. The grouping,
discussed in Sec. 3.3.1, was realized in line with the affordance-inspired function-
centred view on the environment. Behaviours that result in similar change of the
environment are grouped together. The generation of PDDL operators was excluded
due to the limited time, but general directions were discussed in Sec. 3.3.2. The
formulation of a planning instance based on the affordance operators is somehow
delicate. One has to find a compromise between the sparse model that is typically
used by the affordance-inspired approach and a sufficient amount of information that
enables a planning system to find significant plans. This is the main task for future
work.

After a domain-independent planning system has generated a plan based on the
generated domain, all affordance-based operators have to be instantiated by some
affordance. This means it has to be decided which behaviour is used to reach the
desired goal. The original approach chooses the behaviours randomly. Section 3.3.3
contributes a k-NN-based method to prefer behaviours with higher probability to
establish the intended outcome. This is also realized based on the conceptual spaces
representation. It is used to find similar situations from the past. The assumption is
that behaviours that worked in such similar situations will also work in the current
situation. Gärdenfors proposes to use weighted dimensions to adapt the similarity
measurement to a specific context. In this work it was proposed to use techniques
from feature selection for weighting.
A prototype was implemented based on the 3D simulation system OpenRAVE

that was used for evaluation. Based on a Care-O-bot 3, a pick and place, pull, two
distinct push and a turn behaviour have been implemented. As quality domains the
colour, size, orientation and relative position of the manipulated entity are extracted
from simulation.
The evaluation showed that the proposed abstraction space results in human

intuitive abstract operators. The instantiation method outperformed a random
behaviour choice. Weights were calculated using the FSelector package [33] of the
R environment for statistical computing [30]. The evaluation showed that weights
generated with these methods further increase the success rate of the instantiation.
To further evaluate the introduced similarity measurement, a k-NN classification

system was introduced that predicts behaviour applicability. Though this can be
seen as cue detection, this contradicts Gärdenfors’ representation because it does
not ensure region convexity.
One line of future work is to realize the remaining steps to enable the agent to

53



6. Conclusion

learn new behaviours autonomously and apply them without human help. The first
thing to do is to automate the operator generation. Here the features of conceptual
spaces have to be further exploited to generate a symbolic representation. Another
interesting question is whether the quality dimensions/domains can be extracted
automatically from sensory data.
As seen in the presented work, the new conceptual layer between the symbolic

and subsymbolic layer enables similarity estimation. This is not possible in entirely
symbolic planning in this form. So another thing to investigate is how the overall
process can further benefit from this new form of deliberation.
A step towards real-world application can be done by integrating the approach

into Jenny, the robot at Bonn-Rhein-Sieg University, and the work of Iman Awaad
[2]. To do this, a representation in a semantic markup language as the conceptual
space markup language (introduced in [1]) might be helpful. Most gainful would be
the transfer of a trained system from simulated to real robot to reduce costs of the
experiment runs.
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A. Experiment Data Sets
The following subsections give some characteristic numbers for the quality dimensions
before any preprocessing. For most of them, the initial character indicates the quality
domain it belongs to (c for colour or p for position). The numbers have been
generated using [30].

A.1. Training Set
behaviour expName success cHue

ftpush:3850 exp0001: 1 False:6973 Min. : 0.0167
pnp : 750 exp0002: 1 True : 577 1st Qu.: 90.0852
pull :1150 exp0003: 1 Median :178.7650
push :1100 exp0004: 1 Mean :179.5544
turn : 700 exp0005: 1 3rd Qu.:270.2681

exp0006: 1 Max. :359.9979
(Other):7544

cSaturation cValue pX
Min. :0.006143 Min. :0.02417 Min. :-0.751462
1st Qu.:0.494576 1st Qu.:0.63473 1st Qu.:-0.373831
Median :0.702381 Median :0.79368 Median :-0.003175
Mean :0.663182 Mean :0.75083 Mean : 0.002494
3rd Qu.:0.865084 3rd Qu.:0.90978 3rd Qu.: 0.380388
Max. :0.999956 Max. :0.99993 Max. : 0.751318

pY pZ sShort
Min. :-1.3099 Min. :0.8390 Min. :0.020
1st Qu.:-1.0812 1st Qu.:0.8415 1st Qu.:0.025
Median :-0.8521 Median :0.8490 Median :0.040
Mean :-0.8536 Mean :0.8540 Mean :0.055
3rd Qu.:-0.6256 3rd Qu.:0.8690 3rd Qu.:0.100
Max. :-0.3952 Max. :0.8690 Max. :0.100

sLong pose final.cHue
Min. :0.0700 Min. :0.2857 Min. : 0.0167
1st Qu.:0.0725 1st Qu.:0.3393 1st Qu.: 90.0852
Median :0.0800 Median :0.5000 Median :178.7650
Mean :0.0850 Mean :0.6131 Mean :179.5544
3rd Qu.:0.1000 3rd Qu.:1.0000 3rd Qu.:270.2681
Max. :0.1000 Max. :1.0000 Max. :359.9979

final.cSaturation final.cValue final.pX
Min. :0.006143 Min. :0.02417 Min. :-0.7510581
1st Qu.:0.494576 1st Qu.:0.63473 1st Qu.:-0.3708308
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Median :0.702381 Median :0.79368 Median : 0.0004907
Mean :0.663182 Mean :0.75083 Mean :-0.0003116
3rd Qu.:0.865084 3rd Qu.:0.90978 3rd Qu.: 0.3735401
Max. :0.999956 Max. :0.99993 Max. : 0.7511941

final.pY final.pZ final.sShort
Min. :-1.3099 Min. :0.7927 Min. :0.02000
1st Qu.:-1.0839 1st Qu.:0.8490 1st Qu.:0.04000
Median :-0.8581 Median :0.8590 Median :0.05933
Mean :-0.8564 Mean :0.8549 Mean :0.05516
3rd Qu.:-0.6277 3rd Qu.:0.8690 3rd Qu.:0.10000
Max. :-0.3930 Max. :0.9590 Max. :0.15115

final.sLong final.pose delta.cHue delta.cSaturation
Min. :0.07000 Min. :0.2854 Min. :0 Min. :0
1st Qu.:0.07654 1st Qu.:0.5000 1st Qu.:0 1st Qu.:0
Median :0.09000 Median :0.6667 Median :0 Median :0
Mean :0.08513 Mean :0.6351 Mean :0 Mean :0
3rd Qu.:0.10000 3rd Qu.:1.0000 3rd Qu.:0 3rd Qu.:0
Max. :0.16494 Max. :3.5000 Max. :0 Max. :0

delta.cValue delta.pX delta.pY
Min. :0 Min. :-1.474344 Min. :-0.900508
1st Qu.:0 1st Qu.:-0.388587 1st Qu.:-0.232826
Median :0 Median : 0.000000 Median : 0.000000
Mean :0 Mean :-0.002805 Mean :-0.002849
3rd Qu.:0 3rd Qu.: 0.375594 3rd Qu.: 0.230614
Max. :0 Max. : 1.480604 Max. : 0.893610

delta.pZ delta.sShort delta.sLong
Min. :-0.0462554 Min. :0.0000000 Min. :0.0000000
1st Qu.: 0.0000000 1st Qu.:0.0000000 1st Qu.:0.0000000
Median : 0.0000000 Median :0.0000000 Median :0.0000000
Mean : 0.0008927 Mean :0.0001577 Mean :0.0001324
3rd Qu.: 0.0000000 3rd Qu.:0.0000000 3rd Qu.:0.0000000
Max. : 0.1000038 Max. :0.0511488 Max. :0.0649352

delta.pose
Min. :-0.09505
1st Qu.: 0.00000
Median : 0.00000
Mean : 0.02199
3rd Qu.: 0.00000
Max. : 3.21427
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A.2. Evaluation Set

behaviour expName success cHue
ftpush:1000 exp0001ftpush: 1 False:3531 Min. : 0.585
pnp :1000 exp0001pnp : 1 True : 469 1st Qu.: 84.526
pull :1000 exp0001pull : 1 Median :175.549
push :1000 exp0001push : 1 Mean :177.088

exp0002ftpush: 1 3rd Qu.:270.014
exp0002pnp : 1 Max. :359.239
(Other) :3994

cSaturation cValue pX
Min. :0.01701 Min. :0.08691 Min. :-0.751398
1st Qu.:0.48887 1st Qu.:0.63463 1st Qu.:-0.391874
Median :0.70780 Median :0.79321 Median : 0.013618
Mean :0.66261 Mean :0.74905 Mean : 0.004079
3rd Qu.:0.85918 3rd Qu.:0.90892 3rd Qu.: 0.380275
Max. :0.99916 Max. :0.99920 Max. : 0.750404

pY pZ sShort
Min. :-1.3096 Min. :0.8390 Min. :0.02000
1st Qu.:-1.0828 1st Qu.:0.8390 1st Qu.:0.02000
Median :-0.8523 Median :0.8490 Median :0.04000
Mean :-0.8490 Mean :0.8539 Mean :0.05484
3rd Qu.:-0.6127 3rd Qu.:0.8590 3rd Qu.:0.06000
Max. :-0.3955 Max. :0.8690 Max. :0.10000

sLong pose final.cHue
Min. :0.07000 Min. :0.2857 Min. : 0.585
1st Qu.:0.07000 1st Qu.:0.2857 1st Qu.: 84.526
Median :0.08000 Median :0.5000 Median :175.549
Mean :0.08493 Mean :0.6116 Mean :177.088
3rd Qu.:0.09000 3rd Qu.:0.6667 3rd Qu.:270.014
Max. :0.10000 Max. :1.0000 Max. :359.239

final.cSaturation final.cValue final.pX
Min. :0.01701 Min. :0.08691 Min. :-0.75110
1st Qu.:0.48887 1st Qu.:0.63463 1st Qu.:-0.40345
Median :0.70780 Median :0.79321 Median :-0.01719
Mean :0.66261 Mean :0.74905 Mean :-0.01012
3rd Qu.:0.85918 3rd Qu.:0.90892 3rd Qu.: 0.35947
Max. :0.99916 Max. :0.99920 Max. : 0.74839

final.pY final.pZ final.sShort
Min. :-1.3099 Min. :0.8383 Min. :0.02000
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A. Experiment Data Sets

1st Qu.:-1.1062 1st Qu.:0.8490 1st Qu.:0.02162
Median :-0.8553 Median :0.8590 Median :0.04403
Mean :-0.8572 Mean :0.8552 Mean :0.05503
3rd Qu.:-0.6229 3rd Qu.:0.8690 3rd Qu.:0.06991
Max. :-0.3947 Max. :0.9044 Max. :0.14781

final.sLong final.pose delta.cHue delta.cSaturation
Min. :0.07000 Min. :0.2836 Min. :0 Min. :0
1st Qu.:0.07082 1st Qu.:0.3070 1st Qu.:0 1st Qu.:0
Median :0.08280 Median :0.5353 Median :0 Median :0
Mean :0.08511 Mean :0.6127 Mean :0 Mean :0
3rd Qu.:0.09688 3rd Qu.:0.7320 3rd Qu.:0 3rd Qu.:0
Max. :0.16196 Max. :1.1601 Max. :0 Max. :0

delta.cValue delta.pX delta.pY
Min. :0 Min. :-1.469542 Min. :-0.866875
1st Qu.:0 1st Qu.:-0.448111 1st Qu.:-0.274161
Median :0 Median : 0.001955 Median :-0.016321
Mean :0 Mean :-0.014200 Mean :-0.008203
3rd Qu.:0 3rd Qu.: 0.419043 3rd Qu.: 0.272658
Max. :0 Max. : 1.422535 Max. : 0.892865

delta.pZ delta.sShort delta.sLong
Min. :-0.0007373 Min. :0.0000000 Min. :0.0000000
1st Qu.: 0.0000000 1st Qu.:0.0000000 1st Qu.:0.0000000
Median : 0.0000000 Median :0.0000000 Median :0.0000000
Mean : 0.0013062 Mean :0.0001866 Mean :0.0001779
3rd Qu.: 0.0000000 3rd Qu.:0.0000000 3rd Qu.:0.0000000
Max. : 0.0358697 Max. :0.0478051 Max. :0.0619598

delta.pose
Min. :-0.087397
1st Qu.: 0.000000
Median : 0.000000
Mean : 0.001113
3rd Qu.: 0.000000
Max. : 0.243908
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B. Cue Detection
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B. Cue Detection

no weighting k=1 no weighting B k=3
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gain ratio k=1 gain ratio k=3
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B. Cue Detection

human weighting A k=1 human weighting A k=3
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C. Dimension Weights
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cHue 0,0 0,0 1,0 0,0 0,0 0,0 -1,205 73,8828
cSaturation 0,0 0,0 1,0 0,0 0,0 0,0 0,6091 76,2682
cValue 0,0 0,0 1,0 0,0 0,0 0,0 0,7452 76,4834
pX 1,0 1,0 1,0 0,0937 0,0086 0,0137 41,6504 88,0336
pY 1,0 1,0 1,0 0,1645 0,0285 0,0329 48,0507 103,3583
pZ 0,0 0,0 1,0 0,0 0,0 0,0 10,3835 8,5982
sShort 0,0 0,0 1,0 0,0 0,0 0,0 14,0496 9,8442
sLong 0,0 0,0 1,0 0,0 0,0 0,0 11,1404 8,5001
pose 0,0 0,0 1,0 0,0 0,0 0,0 14,5245 14,2379
delta.cHue 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
delta.cSaturation 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
delta.cValue 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
delta.pX 0,5 1,0 1,0 0,115 0,0128 0,0097 44,8063 85,1052
delta.pY 0,5 1,0 1,0 0,1063 0,0113 0,0088 41,8076 86,5968
delta.pZ 0,0 0,0 1,0 0,0461 0,0029 0,0164 41,0905 70,0613
delta.sShort 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
delta.sLong 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
delta.pose 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
final.cHue 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
final.cSaturation 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
final.cValue 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
final.pX 0,5 1,0 1,0 0,0817 0,0064 0,0108 50,7462 81,2218
final.pY 0,5 1,0 1,0 0,1388 0,0198 0,0249 37,818 106,7699
final.pZ 0,0 0,0 1,0 0,0 0,0 0,0 10,0571 8,4087
final.sShort 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
final.sLong 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
final.pose 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0
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D. Instantiation and Substitution Results

D. Instantiation and Substitution Results

succ1 succ2 succ3 succ4 2 in 2 2 in 3 2 in 4
guess 13 17 15 19 guess 31 80 78
HWA3 47 16 1 0 NW3 42 89 58
HWB3 48 15 1 0 NW1 44 82 63
HWA1 49 13 1 1 RFA3 64 78 47
NW1 49 14 1 0 RFI1 64 84 41
HWB1 50 12 1 1 RFI3 68 84 37
RFI1 54 8 2 0 GR3 72 80 37
NW3 54 9 1 0 RFA1 74 62 53
RFI1 55 8 1 0 GR1 81 64 44
IG3 55 9 0 0 CSq3 99 68 22
IG1 56 8 0 0 CSq1 101 64 24
RFA3 58 4 2 0 IG1 113 60 16
CSq3 58 6 0 0 IG3 117 59 13
RFA1 58 6 0 0 HWB1 126 56 7
GR1 59 5 0 0 HWA1 128 52 9
GR3 59 5 0 0 HWA3 130 49 10
CSq1 60 4 0 0 HWB3 130 49 10

instantiation substitution
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succ1 succ2 succ3 succ4 succ1 succ2 succ3 succ4 succ1 succ2 succ3 succ4
CSq1 60 4 0 0 CSq1 60 4 0 0 0 0 0 0
CSq3 58 6 0 0 CSq3 58 6 0 0 0 0 0 0
GR1 57 7 0 0 GR1 59 5 0 0 2 -2 0 0
GR3 58 6 0 0 GR3 59 5 0 0 1 -1 0 0
IG1 57 7 0 0 IG1 56 8 0 0 -1 1 0 0
IG3 55 9 0 0 IG3 55 9 0 0 0 0 0 0
RFA1 57 6 1 0 RFA1 58 6 0 0 1 0 -1 0
RFA3 56 7 1 0 RFA3 58 4 2 0 2 -3 1 0
RFI1 52 11 1 0 RFI1 54 8 2 0 2 -3 1 0
RFI1 55 8 1 0 RFI1 55 8 1 0 0 0 0 0

2 in 2 2 in 3 2 in 4 2 in 2 2 in 3 2 in 4 2 in 2 2 in 3 2 in 4
CSq1 97 67 25 CSq1 101 64 24 4 -3 -1
CSq3 93 74 22 CSq3 99 68 22 6 -6 0
GR1 77 65 47 GR1 81 64 44 4 -1 -3
GR3 71 72 46 GR3 72 80 37 1 8 -9
IG1 106 64 19 IG1 113 60 16 7 -4 -3
IG3 105 62 22 IG3 117 59 13 12 -3 -9
RFA1 87 64 38 RFA1 74 62 53 -13 -2 15
RFA3 87 80 22 RFA3 64 78 47 -23 -2 25
RFI1 85 74 30 RFI1 64 84 41 -21 10 11
RFI3 91 71 27 RFI3 68 84 37 -23 13 10

instantiation

substitution

reduced training set full training set winn/loss

The full training set contains far more failed instances than succeded. It also contains
different numbers of instances for each behaviour. In section 5 the full training set is
used as input for the weight calculation.

However, a second version that uses only a reduced training set could be considered.
This table gives a comparison of the instantiation and substitution using a reduced
(left) and the full training set (in the middle). The reduced training set contains 100
successful and 100 failed instances for each behaviour, it is the same set that is used
for k-NN in the instantiation.
The right part shows the win/loss between the two versions.
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E. Erklärung
Ich versichere an Eides statt, die von mir vorgelegte Arbeit selbstständig verfasst
zu haben. Alle Stellen, die wörtlich oder sinngemäß aus veröffentlichten oder nicht
veröffentlichten Arbeiten anderer entnommen sind, habe ich als entnommen kenntlich
gemacht. Sämtliche Quellen und Hilfsmittel, die ich für die Arbeit verwendet habe,
sind angegeben. Die Arbeit hat mit gleichem Inhalt bzw. wesentlichen Teilen noch
keiner anderen Prüfungsbehörde vorgelegen.

Ort, Datum Unterschrift
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Index
action

abstraction, 26
instantiation, 31

affordance, 9
abstract a., 10
agent a., 9
representation, 10, 24
space, 24
triple, 10

behaviour
fingertip-push b., 37
pick and place b., 37
pull b., 37
push b., 37
turn b., 38

conceptual layer, 12
conceptual spaces

abstraction mapping, 26
action space, 14
affordance space, 24
colour domain, 35
concept, 12, 22
context, 13
dimension, 22
dimension standardization, 13, 27
dimension weights, 13
displacement vector, 14, 23
distance, 13
domain, 12, 22
event space, 14, 23
instance, 13
integral quality dimensions, 12
layer, 12
mapping, 14
orientation domain, 36
position domain, 36
property, 12
quality dimension, 12
result vector, 14
salience, 13

separable quality dimensions, 12
size domain, 35
state, 14
vector space definition, 13

Criterion C, 13
Criterion P, 12

domain, see planning domain or con-
ceptual spaces domain

OpenRAVE, 33

plan, 5, 6
planning, 5

action, 6
domain, 6
domain-configurable p., 6
domain-independent p., 6
domain-specific p., 6
instance, 6
problem, 6

Planning Domain Definition Language,
8

relevance, 31
Robot Operating System, 33

message, 33
node, 33
package, 33
roscore, 33
service, 33
topic, 33

solution, 5, 6

z-transformation, see conceptual spaces
dimension standardization
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