ADVANCES IN RESOURCE-EFFICIENT AND ACCELERATED AM BY EXPRESS WIRE COIL CLADDING (EW2C)

Marius Gipperich, M.Sc.

Fraunhofer Institute for Production Technology IPT

Aachen Manufacturing Technology – an Overview

Aachen Manufacturing Technology – an Overview

EXPRESS WIRE COIL CLADDING

- 1 Process overview
- 2 Process investigations
- 3 Deep-dive: investigation of IN718 deposition
- 4 Summary and outlook

EXPRESS WIRE COIL CLADDING

1 Process overview

- 2 Process investigations
- 3 Deep-dive: investigation of IN718 deposition
- 4 Summary and outlook

Process overview – LMD-w vs. WAAM

- High geometric accuracy
- Low and precisely controllable energy input
- High costs
- Low deposition rates (1-2 kg/h)

LMD-w: wire-based Laser Metal Deposition WAAM: Wire-Arc Additive Manufacturing

- High deposition rates (up to 10 kg/h)
- Low process costs
- Geometric inaccuracy
- High heat input

Process overview – Laser Metal Deposition with wire (LMD-w)

Limited deposition rate due to

- Complex interaction of solid wire with liquid melt pool
- Comparatively small process window
- Limited scalability of wire feeding rate

Idea:

Increase deposition rate by decoupling wire feeding and cladding process

Process chain

Video: https://www.youtube.com/watch?v=eL9i2D1rBy0

Process overview – Potential

Environment

Saving resources due to a reduction of machined volume

Substitution of environmentally harmful anti-wear coatings (e.g. Chromium VI)

Costs

Increasing speed and stability by using pre-placed wire spirals

Increasing cost efficiency by using expensive highperformance materials locally and load-specific

Handling

Lowering safety requirements due to wire instead powder material usage

Reduction of logistic steps thanks to high automation potential

Manufacturing

Cladding and machining in one machine tool

Cladding in turning cycle times

Process overview – System technology

Monforts RNC400 "LaserTurn"

- Laser-integrated turning machine tool with different laser optics (round Ø 5 mm, rectangular 16 x 4 mm², ...)
- Suitable for laser-assisted turning, laser hardening and EW2C

Process overview – Wire winding

Wire coiling system D.I. Wire Pro (Pensalabs)

Coiling process

Stelloy 60-G | Robotool 58-G | Stelloy 6 BC-G | QuFe13

- IN718
- Solid wires show more homogeneous deformation behavior
- Filler wires interesting because of higher flexibility regarding alloying/composition

Process overview – Applications

- Plating and corrosion/wear protection of rotationally symmetrical components (layer thickness > 0.5 mm)
- Material-efficient manufacturing of shaft shoulders (e.g. bearing seats) from high-performance materials on a low-cost base material
- Reduction of the machined volume in the production of complex shaft geometries
- Good scalability of the process
- High process stability
- Spiral supply uncritical (today's coiling machines can reach up to 200 m/min)

EXPRESS WIRE COIL CLADDING

- 1 Process overview
- 2 Process investigations
- 3 Deep-dive: investigation of IN718 deposition
- 4 Summary and outlook

Process investigations – Single wires

Round spot, Ø 2.5 mm

QuFe13. $P_L = 2000 \text{ W}, v_M = 1000 \text{ mm/min}$

IN718. $P_1 = 2500 \text{ W}, v_M = 1900 \text{ mm/min}$

Stelloy 6 BC-G. $P_{L} = 2600 \text{ W}, v_{M} = 800 \text{ mm/min}$

Robotool 58-G. $P_L = 2000 \text{ W}, v_M = 1000 \text{ mm/min}$

Stelloy 60-G. $P_1 = 2400 \text{ W}, v_M = 1000 \text{ mm/min}$

- In all cases, a metallurgical joint was established
- For filler wires, stronger mixing due to the lower material density

Process investigations – Pre-placed wire coils

Round spot, Ø 5 mm

Stelloy 6 BC-G, $P_1 = 3500 \text{ W}$, $v_M = 1000 \text{ mm/min}$

Cross section perpendicular

Robotool 58-G, $P_1 = 3500 \text{ W}$, $v_M = 800 \text{ mm/min}$

Crosssection perpendicular

- Higher porosity, cracks, higher surface roughness
- Large heat affected zone (HAZ)

Process investigations – Pre-placed wire coils

Round spot, Ø 5 mm

QuFe13, $P_L = 4000 W$, $v_M = 550 mm/min$, Remolten at 1000 W

Cross section perpendicular

HAZ Cross section parallel

2 mm

In718, $P_I = 4000 W$, $v_M = 800 mm/min$

- Low porosity, no bonding defects
- Large heat affected zone (HAZ)

Process investigations – Pre-placed wire coils

Rectangular spot, 16 x 4 mm²

QuFe13

 $P_L = 3800 \text{ W}, v_M = 160 \text{ mm/min}$

IN718 $P_L = 3500 \text{ W, } v_M = 150 \text{ mm/min, two layers}$

- Low surface roughness
- Good layer connection, very small heat affected zone (HAZ)

EXPRESS WIRE COIL CLADDING

- 1 Process overview
- 2 Process investigations
- 3 Deep-dive: investigation of IN718 deposition
- 4 Summary and outlook

Geometries

Single layer, short section

Deposition movement: 370° rotation

Single layer, half section

Deposition movement: <180° rotation

Multi-layer, short section

Deposition movement: 370° rotation

Single layer, long section

Deposition movement: rotation and axial displacement

Step 1: Surface oxidation improvement

Multi-layer, short section

Single layer, long section

- Shielding gas flow improved (several inlets in chamber, higher flux)
- Surface oxidation was significantly reduced

Step 2: Microstructure (as-deposited state)

Single layer deposition

Multi-layer deposition

- Single layer deposition leads to rather equiaxial grains, but microstructure is inhomogeneous
- In multi-layer depositions, grains close to the substrate have a columnar form; microstructure is homogeneous

Step 2: Microstructure (after heat treatment)

Multi-layer deposition

- Formation of strongly columnar grains close in the mixing zone
- Characteristic IN718 precipitates are formed; undesired Laves phases disappear during heat treatment

Step 3: Deposition of non-circular geometries

Half section depositions (cam shaft)

- By repeated deposition of half sections, non-circular geometries can be deposited
- AM cam shafts are a potential application

EXPRESS WIRE COIL CLADDING

- 1 Process overview
- 2 Process investigations
- 3 Deep-dive: investigation of IN718 deposition
- 4 Summary and outlook

Summary

- New, stable Additive Manufacturing process for shaft cladding and (rotationally) symmetrical build-up
- Current deposition rate ~ 2.5 kg/h
- Very good scalability of the process:
 up to 14 kg/h possible with 35 kW laser
- Various material combinations possible;
 according to current results, solid wires are better suited

Outlook

- Increasing the degree of automation: tool development for automatic wire coil pre-placement
- Pushing process limits: Are there diameter-related process limits?
- Developing process variations: Tube coating
- Broadening material combinations (e.g. titanium-based spirals)

Get in contact with us

Fraunhofer Institute for Production Technology IPT Steinbachstraße 17 52074 Aachen, Germany www.ipt.fraunhofer.de/en

Marius Gipperich, M.Sc. Phone: +49 241 8904-415 marius.gipperich@ipt.fraunhofer.de

