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Abstract The objective of the present study is the analysis of the effect of core and face sheet anisotropy on the natural 
frequencies of plane and doubly curved sandwich structures with laminated composite face sheets and an anisotropic core. 
For the analysis, a higher-order sandwich shell theory is adopted. For the special case of a sandwich shell with rectangular 
projection, an analytical solution is obtained by means of an extended Galerkin procedure. Assuming a harmonic 
time-dependent response, the problem is transformed into an eigenvalue problem, which can be solved in a numerically 
rather efficient manner. The numerical scheme is applied to an analysis of the effect of the face sheet anisotropy induced by 
fibre angle variations in laminated face sheets consisting of unidirectionally infinite fibre reinforced carbon epoxy plies. 
Further anisotropy effects derive from the use of honeycomb cores with anisotropy transverse shear moduli. It is observed 
that anisotropy of core and face sheets may have distinct effects on the lower natural frequencies. 
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1. Introduction 
Structural sandwich panels are important elements in 

modern lightweight structures. The typical sandwich panel 
is a layered structure according to Figure 1. It consists of 
three principal layers where two high-density face sheets 
are adhesively bonded to a low density core. The face 
sheets carry all in-plane and bending loads whereas the core 
keeps the face sheets at their desired distance and transmits 
the transverse normal and shear loads. The advantage of the 
sandwich principle is that plates and shells with high bend-
ing stiffness may be constructed at an extremely low spe-
cific weight (Vinson [13], Zenkert [16]). 

Typical face sheet materials are thin metal sheets or 
– especially in high performance applications – composite 
laminates consisting of unidirectionally infinite carbon or 
glass fibre reinforced plastic plies. Depending on the stack-
ing sequence of the laminates, the face sheets may feature a 
distinct anisotropy which may be exploited towards the 
design of tailored structures with optimized properties com-
plying with any kind of prescribed structural requirement. 
The core is usually made from a weak, low density material 
such as balsa wood, solid foam or a two-dimensional hon-
eycomb type cellular structure. Especially honeycomb cores 
may feature a distinct anisotropy since their transverse shear 
moduli with respect to the two in-plane directions are usu-
ally not identical (Gibson and Ashby [3]). 

The dynamic response and vibration of sandwich struc-
tures is a challenging problem since not only the external 
geometry of the plate or shell but also the anisotropy of core 
and face sheets may affect the response of the structure. 
Following the pioneering experimental study by Raville and 

Ueng [11] in 1967, increasing interest has been directed to 
the vibration of sandwich plates and shells especially during 
the past two decades. Bardell et al. [1] have analysed the 
free vibration of plane isotropic sandwich plates with dif-
ferent external shapes using the finite element method. The 
free vibration of sandwich plates with laminated anisotropic 
face sheets has been investigated by Zhou and Li [17] as 
well as by Kant and Swaminathan [8] using different qua-
si-analytical models. Yuan and Dawe [14] employed the 
spline finite strip method to the analysis of the eigenmodes 
of plane sandwich plates with laminated composite faces. In 
a later study, this approach has been extended to the prob-
lem of plane sandwich plates with stiffeners on one side 
(Yuan and Dawe [15]). Since the deformation behaviour of 

 

Figure 1.  Doubly Curved Sandwich Shell. 



sandwich structures with soft cores in general is much more 
complex than the response of sandwich structures with stiff, 
transversely incompressible cores, a number of studies use 
higher-order sandwich models for the analysis of the free 
vibration problem. Sokolinsky et al. [12] have analysed the 
lower natural frequencies of straight sandwich beams with 
isotropic core and faces using Frostig’s soft core sandwich 
beam model. More recently, a study on the effects of the 
transverse core flexibility on the vibrational response of 
two-dimensional sandwich plates with quasi-isotropic core 
and faces using an extended flexible core model has been 
provided by Frostig and Thomsen [2]. Meunier and Shenoi 
[9] have been concerned with a higher-order model ac-
counting for damping effects whereas Nayak et al. [10] em-
ployed Reddy’s higher-order model. Both studies are con-
cerned with plane sandwich plates. However, in contrast to 
the previous studies, anisotropy effects are included for 
both, the core and the face sheets. In a similar manner, 
Hause and Librescu [4] analysed the vibration of aniso-
tropic sandwich plates based on an earlier version of the 
present sandwich shell theory (Hohe and Librescu [5], [6]). 
Again, the study is restricted to plane sandwich plates. In a 
preceding study by the present author (Hohe et al. [7]) on 
the transient response of sandwich structures during and 
after rapid loading, the effect of curvature has been included. 
Nevertheless, the study is again restricted to sandwich pan-
els made from isotropic materials. 

Objective of the present contribution is an analysis of the 
effects of the anisotropy of core and face sheets on the low-
er natural frequencies of plane sandwich plates as well as 
cylindrical and doubly curved sandwich shells. Special in-
terest is directed to interaction effects between the external 
shape and the local core and face sheet anisotropy. The 
analysis is based on a general model for curved sandwich 
shells presented earlier by the present author (Hohe and 
Librescu [5], [6]). The original nonlinear model is simpli-
fied and adapted to the requirements of the present linear 
problem. Based on an extended Galerkin procedure, an an-
alytical displacement solution is derived. Assuming har-
monic oscillations as the only relevant type of displacement, 
an eigenvalue problem for the natural frequencies in differ-
ent eigenmodes is obtained. The problem is solved numeri-
cally by means of the Newton-Raphson method. In para-
metric studies the effect of core and face sheet anisotropy 
on the lower natural frequencies for a sandwich shell with 
carbon epoxy face sheets and honeycomb core is studied. It 
is observed that the core and face sheet anisotropy may 
have different effects on the different eigenfrequencies. 

2. Sandwich Shell Model 

2.1 Basic Assumptions 

For the analyses of the present study, the general shell 
model for shallow sandwich shells presented earlier (Hohe 
and Librescu [5], [6]) is adopted. The model is 
re-formulated into a simplified version complying with the 
requirements of the present problem. 

Consider a plane or curved sandwich shell according to 
Figure 1. The face sheets are assumed to consist of compo-

site laminates with constant thickness tf. The core thickness 
tc is also uniform but much larger than the face sheet thick-
ness tf. The sandwich panel is assumed to be doubly curved 
with radii of curvature ri which are much larger than the 
panel thickness so that the conditions of shallow shell theo-
ry are satisfied (Figure 1). For the analysis of the sandwich 
structure, a local Cartesian system xi is introduced, where x1 
and x2 are the in-plane direction whereas x3 is the transverse 
normal direction. 

Both, the core and the face sheets are assumed to be line-
ar elastic but anisotropic. For the core, the effective material 
parameters are assumed to be known directly whereas the 
face sheet material response is assumed to be given in terms 
of the laminate stiffness matrix of the classical laminate 
theory. Since the deflections in the free vibration problem in 
general are small, a geometrically linear analysis is suffi-
cient. No geometric imperfections are considered, although 
both features are included in the original model (Hohe and 
Librescu [5], [6]). 

2.2 Kinematic relations 

For a projection of the shell deformation behaviour onto 
the reference surface, the three dimensional displacements 
are expanded into a power series in terms of x3. Since the 
material response and the thickness of core and face sheets 
are rather different, an effective multilayer model is adopted, 
treating the three principal layers (core, top and bottom face 
sheet) separately. 

Since the face sheets are thin, the Kirchhoff-Love model 
is adopted for the faces. Thus, the face sheet displacements 
are given by 
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for the top face and 
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for the bottom face, where 
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are the average and the deviation from the average of the 
face sheet mid-surface face sheet displacements ui

t and ui
b. 

For the core, a higher order power series expansion of the 
displacements is employed in order to account for the 
transverse compressibility of the central layer in the weak 
core limit. Considering the compatibility requirements of 
the core and face sheet displacements at the interfaces at 
x3 = ±tc/2, the core displacements read 
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where Ωi
c are additional displacement functions. These ad-

ditional degrees of freedom describe a quadratic displace-
ment through the layer thickness in addition to the 
mid-surface displacements as well as the rotations and thus 
account for the warping of the core. 

From Equations (1) to (4), the strains for the three prin-
cipal layers are obtained by substituting the expressions into 
the geometrically linear kinematic relation. Under the as-
sumption of the shallow shell limit, the strains 
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are obtained for the three principal layers.  

2.3 Equations of Motion 

In the next step, equations of motion have to be determined, 
which are consistent with the assumptions made in the 
kinematic considerations. A natural manner to determine an 
inherently consistent shell theory is the use of Hamilton’s 
variational principle 
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where δU, δW and δT are the variations of the strain energy, 
the work by the external loads and the kinetic energy re-
spectively whereas [t0, t1] is an arbitrary time increment. 

In the context of the present multilayer model and the 
corresponding simplifying assumptions, the variation of the 
strain energy is defined by 
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where A is the reference surface area of the structure under 
consideration. As usual, α, β = 1, 2 whereas i, j = 1, 2, 3. 
The work of the in-plane stresses within the core layer is 
neglected. 

Assuming that only transverse normal distributed loads 
q3

t* and q3
b* act on the surfaces of the top and bottom face 

sheets, the variation of the work by the external loads read 
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where xn and xt are the normal and tangential direction of a 
local Cartesian coordinate system along the external 
boundary of the sandwich shell where the prescribed stress-
es σij

* are acting. 
For the kinetic energy, an additional simplification is in-

troduced by neglecting all in-plane and rotational inertia 
effects since in the free vibration problem, the transverse 

motion within the x3-direction is the dominant mode of de-
flection. With this assumption and the mass densities ρc and 
ρf for the core and the face sheets respectively, the variation 
of the kinetic energy becomes 
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Determining the virtual strains δεij for the three principal 
layers of the sandwich structure using Equation (5) and 
substituting the result together with the shell kinematics (1) 
to (4) into Hamilton’s principle (6) with the variations of 
the strain energy, work by the external loads and kinetic 
energy according to Equations (7) to (9) results in a lengthy 
variational expression. Within this expression, the stresses 
and the explicit powers of x3 are the only terms which de-
pend on the transverse direction. Hence the stress resultants 
for the three principal layers 
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with the alternative definition 
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for the face sheets similar to Equation (3) are introduced, by 
which the dependence of the equation on x3 is eliminated. 
The equation is integrated by parts wherever possible and 
the terms with equal dependence on the virtual displace-
ments δui

a and δui
d are collected. As a result, a single linear 

homogeneous equation for the virtual displacements is ob-
tained. Since the virtual displacements are arbitrary and 
independent, the corresponding coefficients must vanish 
independently. 

From the coefficients in the area integral, the equations of 
motions 
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are obtained. In a similar manner, the boundary conditions 
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follow from the boundary integral. The same equations 
would be obtained by discarding all geometrically nonlinear 
terms in the corresponding equations of motion and bound-
ary conditions of the original v. Kármán model (Hohe and 
Librescu [5], [6]). Notice that so far all equations of the 
model are independent from the material behaviour of core 
and face sheets. 

2.4 Material Model 

In the present study, sandwich panels with laminated, in-
finite fibre reinforced face sheets and orthotropic cores are 
considered. The two face sheets are assumed to be identical 
and symmetric with respect to their individual central sur-
face. Hence, their material response is defined by 
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in terms of the average and half difference mid-plane strains 
and curvatures εαβ

a, εαβ
d, καβ

a and καβ
d respectively. The 

components of the Aij
f and Dij

f matrices are determined in 
the usual manner from the integration of the components of 
the reduced stiffness matrices of the individual plies of the 
face sheets. 

For the linear elastic, orthotropic core, the material equa-
tions are derived in a similar manner. The material response 
is defined by 
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where εi3
c and κi3

c are the mid-plane strains and curvatures 
of the core. The matrix coefficients are determined similar 
as for the face sheets.  

3. Solution Procedure 
With the kinematic relations (1) to (5), the material equa-

tions (14) and (15), the equations of motion (12) and the 
boundary conditions (13), a complete set of equations for 

the dynamic problem of doubly curved sandwich panels is 
available. Since the problem in general cannot be solved in 
closed form, a numerical solution procedure is required. In 
order to be able to perform parametric studies in a numeri-
cally efficient manner, the present study employs an ex-
tended Galerkin procedure for the solution. 

For this purpose, the following considerations are re-
stricted to plane or doubly curved sandwich shells with rec-
tangular projection with edge lengths l1 and l2 with respect 
to the x1 and x2-directions. Furthermore, the study is re-
stricted to sandwich shells which are simply supported 
along all external boundaries. In this case, the form  
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is an appropriate assumption for the transverse displace-
ments. In Equations (16) and (17), wmn

a and wpq
d are the 

modal amplitudes, whereas m, n, p and q are the numbers of 
sine half waves with respect to the x1 and x2-directions for 
the respective eigenmode of the free vibration. 

In the next step, a solution for the in-plane displacements 
u1

a, u1
d, u2

a and u2
d is derived, which is consistent with the 

assumed form (16) and (17) of the transverse displacements. 
Following the procedure utilized in the previous studies 
(Hohe and Librescu [5], [6]), the assumptions (16) and (17) 
are substituted into the first four equations of the set (12) of 
the equations of motion. By this means, a consistent solu-
tion for the unknown displacements is obtained which satis-
fies the first four equilibrium conditions exactly. The simp-
ly supported boundary conditions with respect to the trans-
verse deflections u3

a and u3
d are satisfied identically. All 

other boundary conditions are satisfied in an integral aver-
age sense. The only remaining unknowns are the modal 
amplitudes wmn

a and wpq
d of the transverse displacements. 

Following the concept of the extended Galerkin proce-
dure, the assumption (16) and (17) for the transverse dis-
placements together with a similar assumption for the virtu-
al transverse displacements δwmn

a and δwpq
d and together 

with the consistent solution for the in-plane displacements 
is substituted into Hamilton’s principle (6) together with the 
expressions (7) to (8) for the individual virtual energy terms 
and the stress resultants (10) and (11). The stress resultants 
are expressed through the material equations (14) and (15) 
in terms of the strains and curvatures of the three principal 
layers which are substituted with the displacement expres-
sions in terms of the modal amplitudes using the kinematic 
relations (5) together with Equations (1) to (4). As a result a 
single homogeneous linear equation for the two virtual 
modal amplitudes δwmn

a and δwpq
d is obtained. Since the 

virtual modal amplitudes are arbitrary and independent 
from each other, the corresponding coefficients must vanish 
independently, yielding a set of two coupled second order 
differential equations for the unknown modal amplitudes 
wmn

a and wpq
d as a function of time. In contrast to previous 

studies based on a v. Kármán type nonlinear approach 



(Hohe and Librescu [5], [6]), a much more simple linear 
system is obtained since all geometrical nonlinearities were 
discarded in the present study. 

The system may be solved as an initial value problem, 
similar as in preceding studies (e.g. Hohe et al. [7]). In the 
present study concerning the free vibrations of sandwich 
structures, a different approach is employed. Assuming 
harmonic oscillations, the modal amplitudes may be postu-
lated in the form 
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where ŵmn
a and ŵpq

d are the amplitudes and ω is a constant. 
Substituting Equation (18) into the governing system for the 
amplitudes wmn

a and wpq
d constitutes a system of the type 
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where K11, K12, K21 and K22 are coefficients depending on 
the geometry and material constants of the sandwich panel 
as well as on the numbers m, n, p and q of the sine half 
waves in the eigenmode according to Equation (16). Since 
the system (19) is linear and homogeneous, non-trivial solu-
tions for the amplitudes ŵmn

a and ŵpq
d can only exist, if the 

determinant of the system matrix vanishes. Hence, the nat-
ural frequency 

π
ω
2

=f                        (20) 

for the mode with the numbers m, n, p and q of sine half 
waves is determined through the smallest positive solution 

( ) ( )( )2
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of the characteristic equation. 

4. Examples 

4.1 Validation 

In a first application, the model is validated against ex-
perimental results from literature. In their now classical 
study, Raville and Ueng [11] have reported measurements 
of the first natural frequencies for simply supported plane 

rectangular sandwich plates. The panel consists of isotropic 
aluminium face sheets bonded to a honeycomb core. The 
geometry and the material properties are summarized in 
Table 1. 

The experimental results of Raville and Ueng together 
with the corresponding numerical results obtained by the 
procedure described in the previous section are presented in 
Figure 2. For all considered eigenmodes, an almost perfect 
agreement is obtained. The largest deviation of experi-
mental and numerical data is obtained for the mode with 
m = 1 and n = 5 with 5.4%. Hence, the present procedure 
proves to be accurate. 

4.2 Plane Sandwich Plates 

To study the effect of core and face sheet anisotropy on 
the natural frequencies and the corresponding eigenmodes, 
the structural sandwich model is applied in parametric 
studies concerning different types of sandwich structures. 
As a first example, a plane square sandwich plate is consid-
ered. The plate is assumed to consist of laminated carbon 
epoxy face sheets with eight plies in a symmetric 
[0°/±ϑ/90°]s stacking sequence. The material data is chosen 
such that the material is characteristic for a carbon epoxy 
material with approximately 50% fibre volume fraction as it 
might be processed by a resin transfer moulding process 
which becomes increasingly popular for industrial scale 
applications e.g. in the automotive industry. The core mate-
rial is chosen in the characteristic range for aluminium 
honeycomb core with anisotropic transverse shear proper-
ties. The geometry and material data chosen as a starting 
point for the parametric studies is summarized in Table 2. 

 

Figure 2.  Validation. 

Table 1.  Validation Example (Raville and Ueng [11]). 

external geometry 

l1 [mm] l2 [mm] 1/r1 [mm-1] 1/r2 [mm-1] 

1828.8 1219.2 0.0 0.0 

face sheets (aluminium) 

E [GPa] ν [-] tf [mm] ρf [kg/m3] 

68.948 0.33 0.46 3721 

core (honeycomb) 

G23 [MPa] G13 [MPa] tc[mm] ρc [kg/m3] 

51.7 134.5 6.35 ≈ 0 



In a first parametric study, the effect of the transverse 
shear moduli of the core is investigated. For this purpose, 
the natural frequencies for the eigenmodes with 
(m, n) = (1, 1), (m, n) = (1, 2), (m, n) = (2, 1) as well as 
(m, n) = (2, 2) which are assumed to be the leading 
eigenmodes are computed for a variety of values for the 
transverse shear moduli G23 and G13. The fibre angle ϑ is 
kept constant at ϑ = 45° so that the face sheets are qua-
si-isotropic. All other material and geometry parameters are 
kept constant at their designated values according to Ta-
ble 2. The results are presented in Figure 3. 

In all modes, a distinct drop in the first natural frequen-
cies is observed in the weak core limit for G23, G13  0. In 
this case, the core loses its stiffness so that the limit case of 
two uncoupled laminated plates is approached. Due to the 
decreased stiffness, the eigenfrequencies decrease as well. 
For large transverse shear moduli G23 and G13, the increas-

ingly stiff core requires an increasing amount of in-plane 
stretching and compression of the face sheets, since the 
increasing transverse core stiffness increasingly constrains 
the relative lateral displacements of the face sheets whereas 
in the weak core limit with vanishing transverse core stiff-
ness, the two face sheets may bend with respect to their 
individual mid-surfaces rather than with respect to the 
mid-surface of the entire sandwich structure as in the strong 
core limit.  

Depending on the anisotropy of the core, a different order 
of the four eigenmodes with respect to the corresponding 
eigenfrequencies develops. In this context, e.g. for 
G23 = 100 MPa and small G13, f21 is the second natural fre-
quency whereas f12 is the third one. For G13 > 100 MPa and 
thus G13 > G23, the two eigenfrequencies exchange their 
roles and f12 becomes the second eigenfrequency whereas 
f21 becomes the third one. Hence, for standard honeycomb 
cores with non-isotropic transverse shear moduli, care has 
to be taken with respect to its assembly direction since a 
rotated assembly of the core might affect the order of the 
natural frequencies and thus might result in another 
eigenmode to become the critical one. 

In the next parametric study, the effect of the core and 
face sheet anisotropy is studied in more detail. For this 
purpose, the fibre angle ϑ is varied over the entire interval 
[0°, 90°]. In this context, ϑ = 0° constitutes a face sheet 
layup with six layers orientated towards the x1-direction and 
only two layers within the x2-direction. Hence, for ϑ = 0°, 
the x1-direction is the strong direction whereas x2 is the 
weaker direction. For ϑ = 90°, the directions exchange their 
roles. The case ϑ = 45° constitutes the case of qua-

Table 2.  Basic Geometry and Material data for the Parametric Studies. 

external geometry 

l1 [mm] l2 [mm] 1/r1 [mm-1] 1/r2 [mm-1] 

1000.0 1000.0 0.0 0.0 

face sheets (carbon epoxy, [0°/±ϑ/90°]s) 

El [GPa] Et [GPa] νlt [-] Glt [GPa] ρf [kg/m3] tply [mm] 

114.0 10.0 0.34 5.4 1550 0.25 

core (aluminium honeycomb) 

G23 [MPa] G13 [MPa] E3 [MPa] ρc [kg/m3] tc [mm] 

186.0 98.6 234.0 50.0 30.0 

 

 
Figure 3.  Plane Sandwich Panel – Effect of the Transverse Core Stiffness. 



si-isotropic face sheets. Five different ratios G23/G13 for the 
transverse shear moduli are considered, where the two shear 
moduli are chosen such that the average transverse shear 
modulus is (G23 + G13)/2 = 140 MPa. Again, a plane sand-
wich plate with all other properties according to Table 2 is 
considered. 

The results are presented in Figure 4. For the first 
eigenmode corresponding to the natural frequency f11, only 
minor effects of the anisotropy of the core and the face 
sheets are observed. The eigenfrequency f12 increases with 
increasing fibre angle ϑ and thus increasing stiffness within 
the x2-direction forming the direction with two sine half 
waves (and thus the direction with the shorter modal wave 
length). The opposite effect is observed for the eigenfre-
quency f21, since in this case, the number of modal waves 
within the x1- and x2-directions have been exchanged. Due 
to the core anisotropy the curves for these two eigenmodes 
are not obtained as mirror image of each other, except for 
the case G23/G13 = 1, when the core becomes isotropic. 
Again, it is observed that the natural frequencies f12 and f21 
exchange their order depending on the core and face sheet 
anisotropy. Hence, care has to be taken in an optimization 
of the laminate stacking sequences for an improvement of 
either the stiffness or static strength of the structure, since a 
variation in the anisotropy of the structure – although possi-
bly advantageous for the static response – might have dis-
advantageous effects on the dynamic response. Especially, 
eigenmodes, which were initially non critical might become 
the leading ones.  

The effect of the core anisotropy on the natural frequen-
cies depends on the eigenmode considered. As it can be 

observed in Figure 4, the core anisotropy ratio G23/G13 has a 
stronger influence on the eigenfrequencies for the two 
modes with m = 2, compared to the other two modes. Since 
in the current parametric study, G23 is larger than G13 (ex-
cept for G23/G13 = 1), the x2-direction is the direction sup-
plied with an increasing stiffness with increasing deviation 
of the anisotropy ratio from G23/G13 = 1. On the other hand, 
compared to the modes with m = 1, the eigenmodes with 
m = 2 feature a shorter modal wave length within the 
x2-direction. Thus, an increasing core shear stiffness to-
wards this direction results in an increasingly constrained 
deformation, causing the stronger effects of G23/G13 ob-
served in Figure 4 for f21 and f22. 

4.3 Curved Sandwich Shells 

In further parametric studies, the effect of the anisotropy 
of the honeycomb core and the composite face sheets on 
curved sandwich structures is investigated. Both, cylindrical 
sandwich shells with either ρ1 = 1/r1  0 or ρ2 = 1/r2  0 
(and the other radius equal to zero) and doubly curved 
sandwich shells with both ρ1  0 and ρ2  0 are analysed. 

In a first study, the effect of the curvature on the natural 
frequencies is investigated. As an example, a sandwich shell 
with square projection, quasi-isotropic laminated faces and 
honeycomb core according to Table 1 is considered. The 
curvatures ρi are varied over the interval [-1 m-1, 1 m-1]. The 
results for the first four eigenmodes are presented in Figure 
5. Figure 6 gives a sketch on the geometry ranges consid-
ered. 

In general, a strong effect of the curvature radii on the 
natural frequencies is observed, since the curvature of the 

 
Figure 4.  Plane Sandwich Panel – Effect of the Core and Face Sheet Anisotropy. 



structures strongly influences their (structural) stiffness. 
The spherical sandwich cap with ρ1 = ρ2 features the 
strongest structural stiffness. Hence, large eigenfrequencies 
for all eigenmodes are obtained especially in these cases. 
Decreasing natural frequencies are obtained, when the ge-
ometry approaches the cylindrical case with either ρ1 = 0 or 
ρ2 = 0. Further decreases are obtained in the limit of the 
plane sandwich plate with ρ1 = ρ2  0. Nevertheless, for the 
first natural frequency f11, similar values as for the plane 
plate are obtained for sandwich saddle shells with ρ1 = -ρ2. 

Due to the core anisotropy with G23  G13 (see Table 2), 
the results for f12 and f21 are dissimilar despite the symmetry 
of the external geometry of the structures under considera-
tion. It is observed that the order of the eigenfrequencies 
especially for these two eigenmodes depends on the ratio 

ρ1/ ρ2 of the curvatures, since different curvatures constitute 
a different structural stiffness with respect to the two spatial 
directions x1 and x2 and thus different (structural) con-
straints on the respective deformation. 

In order to study the effect of the anisotropy of the hon-
eycomb core and the laminated composite face sheets in 
more detail, similar parameter studies as in Figure 4 for the 
case of a plane sandwich plate are performed for the cases 
of a cylindrical sandwich shell with ρ1 = 1 m-1 and ρ2 = 0, a 
spherical sandwich cap with ρ1 = ρ2 = 1 m-1 as well as for a 
sandwich saddle structure with ρ1 = -ρ2 = 1 m-1. As before, 
the fibre angle ϑ is varied over the interval [0°, 90°] con-
sidering five different core shear stiffness ratios G23/G13 
with an average of (G23 + G13)/2 = 140 MPa. All other pa-
rameters are kept constant at the values compiled in Table 2. 
The results are presented in Figures 7, 8 and 9 respectively. 

For the cylindrical sandwich shell (Figure 7), qualita-
tively similar effects of the core shear stiffness anisotropy 
ratio G23/G13 are obtained. Whereas, only rather weak ef-
fects are observed for the natural frequencies f11 and f12, 
moderate effects are obtained on f21 and f22, since these two 
modes involve a shorter modal wave length within the 
x2-direction as the stronger direction for G23/G13 > 1. 

Due to the non-zero curvature ρ1 within the x1-direction, 
especially the eigenmodes for f11 and f12, i.e. those modes 
involving only a single modal wave within the x1-direction 
are stronger constrained than in the case of the plane sand-
wich plate in Figure 2. As a consequence, higher natural 
frequencies f11 and f12 are obtained for the cylindrical sand-
wich shell, compared to the plane sandwich plate. The nat-

 
Figure 5.  Doubly Curved Sandwich Shell – Effect of the Curvature. 

 
Figure 6.  Doubly Curved Geometries. 



ural frequencies f21 and f22 are also slightly higher than for 
the plane plate, nevertheless, the effect is less distinct. 

Cross-relation effects between the structural stiffness in-

crease due to the shell curvature and stiffness variations due 
to the varying anisotropy of the core and face sheet material 
cause a qualitatively different characteristics of the individ-

 
Figure 7.  Cylindrical Sandwich Shell – Effect of Core and Face Sheet Anisotropy. 

 
Figure 8.  Spherical Sandwich Cap – Effect of the Curvature. 



ual curves for the cylindrical shell compared to the plane 
plate. Effects are observed especially for the natural fre-
quency f12. In this context, the asymmetric curves for f12(ϑ) 
is caused by the uniaxial curvature of the shell. Another 
effect of the additional structural stiffness of the cylindrical 
effect is the fact that in part of the considered range for the 
fibre angle ϑ and the core shear stiffness ratio G23/G13, the 
natural frequency f22 is found below the natural frequency 
f12 (i.e. ϑ ≈ 30°, G23/G13  2, see Figure 7). In this case, f11, 
f21, f22 and f12 are the first, second, third and fourth eigen-
frequency, respectively. In general, more distinct effects of 
the face sheet anisotropy through the fibre angle ϑ are ob-
served. 

Even stronger effects of the fibre angle ϑ on all four 
eigenmodes considered in the present study are observed for 
the doubly curved spherical sandwich cap investigated in 
Figure 8. For f11, f12 and f22 qualitatively similar results as in 
the case of the cylindrical sandwich shell are obtained. For 
the natural frequency f21, a similar dependence on the fibre 
angle J is obtained as for f12 due to the double curvature of 
the sandwich cap. For the case of an isotropic core with 
G23/G13 = 1, the dependencies of the natural frequencies f12 
and f21 are mirror images of each other with respect to the 
case ϑ = 45°, i.e. the case of complete isotropy of both, the 
core and the face sheet material. For other core anisotropy 
ratios G23/G13 the curves for f12(ϑ) and f21(ϑ) respectively 
are not obtained as mirror images of the respective other 
curve due to the anisotropy of the core for G23/G13  1. 

In a final parametric study, the case of a saddle type 
sandwich shell is considered as an example for a doubly 
curved sandwich shell with anticlastic curvature rather than 

synclastic curvature as in the case of the spherical sandwich 
cap. The results are compiled in Figure 9. For the natural 
frequencies f11 and f22 as the eigenfrequencies with similar 
numbers of m = n of modal waves with respect to the x1- 
and x2-directions, values rather close to the corresponding 
values for the plane sandwich plate are obtained (see Fig-
ures 4 and 9). For these two modes, the anticlastic curvature 
of the structure with ρ1 = - ρ 2 obviously does not constitute 
a distinct increase in structural stiffness. For the two 
eigenmodes with m  n, even the anticlastic curvature in-
creasingly constrains the deformation compared to the case 
of a plane sandwich plate. As a consequence, the corre-
sponding natural frequencies f12 and f21 are larger than in the 
case of the plane plate. Nevertheless, even f12 and f21 are 
found below the corresponding natural frequencies for the 
sandwich cap with synclastic curvature. In general, the ef-
fect of the anisotropy of the honeycomb core and the lami-
nated face sheets has less distinct effects than for the sand-
wich cap. 

5. Conclusions 
The present study is concerned with a numerical analysis 

of the effect of the anisotropy of core and composite face 
sheets on the free vibration of plane and curved sandwich 
plates and shells. For the analysis, a simplified, geometri-
cally linear reformulation of a previous, more general 
sandwich shell theory is utilized. The model is based on the 
Kirchhoff-Love model for the face sheets and a second/first 
order power-series expansion of the core displacements. 

 
Figure 9.  Sandwich Saddle Shell – Effect of Core and Face Sheet Anisotropy. 



Consistent equations of motion and boundary conditions are 
derived by means of Hamilton’s variational principle. 

For the case of simply supported sandwich plates or 
shells with rectangular projection, an analytical solution is 
derived by means of an extended Galerkin procedure. As-
suming harmonic oscillations, an eigenvalue problem is 
obtained, governing the natural frequencies. In a validation 
against experimental data from literature, the model proves 
to be accurate and numerically extremely efficient, making 
it a powerful tool for a fast execution of parametric studies 
concerning the natural frequencies and corresponding 
eigenmodes of the considered class of sandwich structures. 

The model is applied in parametric studies regarding the 
effect of fibre angles of the composite laminated face sheets 
and the anisotropy in the transverse shear moduli of the core 
on the lower natural frequencies of sandwich structures. It is 
observed that the natural frequencies are affected in a com-
plex combined manner by structural stiffness effects due to 
the shell curvatures together with the anisotropy in the ma-
terial stiffness of the principal layers. It is observe that the 
leading eigenmodes of the free vibration might distinctively 
be affected by variations in the composite design such as 
variation in the composite lay-up, fibre angles and assembly 
angle of an anisotropic honeycomb core. The significance 
of the effect depends in a complicated manner on the inter-
actions of structural stiffness induced e.g. by panel curva-
tures and the material stiffness distribution. Hence, care has 
to be taken when optimizing the composite stacking se-
quence and fibre angles for the objective of overall static 
stiffness and strength, since variations in the composite ma-
terial design may affect the first natural frequencies and 
may even result in changes in the leading critical 
eigenmodes. 
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