16th Vacuum Nanoelectronics Symposium

Tokyo, 2019, February 28th – March 1st

Resistless Ga+ beam lithography

for flexible prototyping of nanostructures

Mathias Rommel

Fraunhofer Institute for Integrated Systems and Device Technology IISB, Erlangen, Germany

Outline

- Introduction
 - Resistless Ga⁺ beam lithography
 - Principles
 - Review and overview
- Experimental @ IISB
 - Sample processing
 - Results for Si, SiO₂ and 4H-SiC

Summary

Motivation

The need for nanostructures is steadily increasing for e.g.:

- biomedical applications, analytics ...
- photonics, nanoelectronics...

Often, optimum dimensions and overall geometry is not known a priori

- flexible and fast prototyping beneficial
- focused ion beam (FIB) systems could be used directly and are often available even in research environment but only provide slow processing speed

→ increased throughput would allow flexible and acceptably fast prototyping

- Resistless Ga+ beam lithography (GaRL) makes use of an etch rate reduction (masking effect) for Ga irradiated areas
- Ga focused ion beam systems (FIB) are used as "lithography" tool

 nano pattern definition capability
- Standard etching processes are used for structure transfer into the underlying substrate
 - → (relatively) large volume removal capability

Focused ion beam (FIB) systems (since 70's, 80's)

- liquid metal ion source (LMIS)
- often with electron beam column (SEM)
- gas injection system (GIS)
- different detectors

FIB – fundamental modes of structure fabrication

Ga (30 keV) concentration profiles in silicon

Page 8 Mathias Rommel © Fraunhofer IISB

Lehrer et al., IIT 2000 Conf. Proc. IEEE, 695 (2000)

Ga (30 keV) concentration profiles in silicon

Page 9 Mathias Rommel © Fraunhofer IISB

Roediger et al., Nanotechnology 22, 235302 (2011)

- Effect that Ga implanted regions show reduced etching rate in silicon first published in 1983:
 - 1. Komuro et al., J. Vac. Sci. Technol. B 1, 985 (1983)
 - 2. La Marche et al., J. Vac. Sci. Technol. B 1, 1056 (1983)
 - 3. Berry et al., J. Vac. Sci. Technol. B 1, 1059 (1983)
- All used wet chemical etching (H₃PO₄, KOH or NaOH, later also TMAH (*))
- Effect was known before using B implantation and B concentrations > 10¹⁹ cm⁻³
- Explanation for B: "surface passivation due to strain effects caused by the impurity atoms" (**)
- At that time, no mechanism identified for Ga implantation
- Today, Ga₂O₃ formation is assumed to provide the masking capability (***)

Page 10 Mathias Rommel © Fraunhofer IISB (*) Sievilä et al., Nanotechnology **21**, 145301 (2010) (**) Palik et al., J. Electrochem. Soc. **129**, 2051 (1982) (***) Salhi et al., Nanotechnology **28**, 205301 (2017)

- Effect that Ga implanted regions show reduced etching rate in silicon first published in 1983:
 - 1. Komuro et al., J. Vac. Sci. Technol. B 1, 985 (1983)
 - 2. La Marche et al., J. Vac. Sci. Technol. B, 1, 1056 (1983)
 - 3. Berry et al., J. Vac. Sci. Technol. B, 1, 1059 (1983)

- Effect that Ga implanted regions show reduced etching rate in silicon first published in 1983:
 - 1. Komuro et al., J. Vac. Sci. Technol. B 1, 985 (1983)
 - 2. La Marche et al., J. Vac. Sci. Technol. B, 1, 1056 (1983)
 - 3. Berry et al., J. Vac. Sci. Technol. B, 1, 1059 (1983)

Fully under-etched features → "free-standing"

Ga-doped Si lines (140 nm wide, 20 nm thick) [3]

Early publications which show the use of GaRL with subsequent dry etching (typically reactive ion etching RIE):

- 1. Harriot et al., J. Vac. Sci. Technol. B 7, 1467 (1989) → InP + CI+Ar etch
- 2. Akaike et al., Jpn. J. Appl. Phys. 31, L410 (1992) → Nb + CF4
- 3. Edenfeld et al., J. Vac. Sci. Technol. B 12, 3571 (1994) → Si + SF6/O2
- 4. Zachariasse et al., Microelectron. Eng. 35, 63 (1997) \rightarrow Ti + SF6

Early publications which show the use of GaRL with subsequent dry etching:

- 1. Harriot et al., J. Vac. Sci. Technol. B 7, 1467 (1989)
- 2. Akaike et al., Jpn. J. Appl. Phys. 31, L410 (1992)
- 3. Edenfeld et al., J. Vac. Sci. Technol. B 12, 3571 (1994)
- 4. Zachariasse et al., Microelectron. Eng. 35, 63 (1997)

- \rightarrow InP + CI+Ar etch
- \rightarrow Nb + CF4
- → Si + SF6/O2
- → Ti + SF6

Nb strip (100 nm width, 2.7.10¹⁶ 1/cm²) [2]

Early publications which show the use of GaRL with subsequent dry etching:

- 1. Harriot et al., J. Vac. Sci. Technol. B 7, 1467 (1989)
- 2. Akaike et al., Jpn. J. Appl. Phys. 31, L410 (1992)
- 3. Edenfeld et al., J. Vac. Sci. Technol. B 12, 3571 (1994)
- 4. Zachariasse et al., Microelectron. Eng. 35, 63 (1997)

Influence of ion dose on Ti feature height [4]

- \rightarrow InP + CI+Ar etch
- \rightarrow Nb + CF4
- → Si + SF6/O2
- → Ti + SF6

GaRL works for many different materials, among them:

- Si, InP, Nb, Ti (as shown before)
- SiO₂: Choquette et al., Appl. Phys. Lett. 62, 3294 (1993)
- ZnO: Fang et al., Nanotechnology 21, 505703 (2010)
- Diamond: McKenzie et al., Diamond Relat. Mater. 20, 707 (2011) (*)
- GaN: Stevens-Kalceff et al., Proc. of SPIE 8766, 87660I (2013) (UV photoelectrochemical etching)
- Al₂O₃: Liu et al., Nanotechnology 24, 175304 (2013)
- 4H-SiC: Beuer et al., MNE 2013, London UK
- Si₃N₄: Erdmanis and Tittonen: Appl. Phys. Lett. 104, 073118 (2014)

Rev 2 : 15 nm diameter, > 125 nm length

www.adamainnovations.com

Adama

Why does GaRL work (especially for dry etching)?

- Some hypotheses were introduced, of which the most relevant for Si are:
 - formation of gallium oxides (Ga₂O₃) at sample surface which do not react with etching gases and can only be removed by physical sputtering [1,2]
 - formation of involatile compounds of Ga and substrate material, also in fluorine based chemistry without O₂ such as SF₆/C₄F₈ [3,4]

- 1 Choquette and Harriot, Appl. Phys. Lett. 62, 3294 (1993)
- 2 Schmidt et al., J. Electrochem. Soc. 152, G875 (2005)
- 3 Zachariasse et al., Microelectron. Eng. 35, 63 (1997)
- 4 Henry et al., Nanotechnology 21, 245303 (2010)

Si: Cryogenic or mixed mode etching (DRIE) enables structures with very high aspect ratios (AR) and vertical sidewalls

a, b) 280 nm diameter pillars (3 min RIE), c) 65 nm diameter pillar (30 s RIE) *

Page 19 Mathias Rommel

* Cherukov et al., Nanotechnology 20, 065307 (2009)

Si: CMOS compatible suspended structures for nano-mechanical devices

TMAH wet etching, annealing at T > 600 °C in N₂ to remove Ga (plus B doping)

Llobet et al., Nanotechnology 25, 135302 (2014)

Ilkka Tittonen, FOR3NANO, 28.-30.06.2017, Helsinki, Finland

 Science as Art":
 Prize in MRS Spring Meeting 2008 competition in San Fransisco

 The smallest Aalto vase
 (N. Chekurov, Department of Micro and Nanosciences)

Science Meets Art in Micronova

Outline

Introduction

Resistless Ga⁺ beam lithography

Experimental @ IISB

- Sample processing
- Results for Si, SiO₂ and 4H-SiC

Summary

Sample processing

Samples

- always small pieces were used
 - 4 cm² p(Boron)-doped Si
 - (12.5 mm)² quartz pieces
 → covered with thin conductive C layer
 - 1 cm² 4H-SiC highly n(Nitrogen) doped substrates

Helios Nanolab 600 Image: FEI

Resistless Ga⁺ beam lithography

- FEI Helios Nanolab 600: 30 keV, 28 pA / 17 nm (and 280 pA / 31 nm for SiO₂)
- squares, circles, lines, pyramids...
- doses ranging from 1.10^{15} to 1.10^{19} cm⁻²

Sample processing – RIE

RIE tools: lab tool usage \rightarrow used for various processes

- STS Multiplex ICP for Si and SiO₂
- Oxford Instrument PlasmaPro 100 for 4H-SiC
- Si: mixture of SF_6 and C_4F_8
- SiO₂: mixture of C_4F_8 and O_2
- 4H-SiC: mixture of SF₆ and O₂

 variation of gas composition, temperature (10-20 °C), pressure, coil and platen power

Etch mask capability of FIB irradiated areas

- squares of 1.5*1.5 µm²
- threshold dose required for masking (typically around 1-3.10¹⁵ cm⁻²)
- quite rough surfaces for low dose masking
- nearly optimum masking and surfaces for certain dose range (here: $3-7.10^{16}$ cm⁻², structure height: 550 nm)
- FIB sputtering for doses above appr. 10¹⁷ cm⁻²

IISB

- Rough surfaces for low dose masking → defined smooth 2.5D/3D structures hardly possible?
- Example: different pyramids

Example from literature *

Page 26 Mathias Rommel © Fraunhofer IISB Rommel et al., Microelectron. Eng. 110, 177 (2013)

patterning time: 10.8 s dose step: $\approx 1.9 \cdot 10^{15}$ cm⁻²

* Chekurov et al., Nanotechnology 20, 065307 (2009)

2.5D structures with appropriate hard mask

Use of Si₃N₄ together with optimized (but slow) etching process (pure CF4)

Scheme for hard mask GaRL greyscale patterning

	WW	W	111	111	11	111
(c)		111	m	111	111	

Example of blazed gratings (period and height: 200 nm): scale bar: 1 µm

Page 27 Mathias Rommel © Fraunhofer IISB

Erdmanis et al., Appl. Phys. Lett. 104, 073118 (2014)

Influence of RIE and FIB process parameters

Page 28 Mathias Rommel © Fraunhofer IISB

Rommel et al., Microelectron. Eng. 110, 177 (2013)

Results for lines and pillars

Page 29 Mathias Rommel © Fraunhofer IISB

Influence of dose on pattern width

2.5 min RIE (10°C chuck temperature), height of lines: 320 nm

1 µm

	dose in cm ⁻²	line width in nm
a)	5·10 ¹⁶	105
b)	9·10 ¹⁶	140
C)	1.10 ¹⁷	145

Page 30 Mathias Rommel © Fraunhofer IISB

Rommel et al., Microelectron. Eng. 110, 177 (2013)

Influence of dose on pattern width

■ left: 4.10¹⁶ cm⁻², right: 1.10¹⁷ cm⁻²

Resolution of lines (array of 10 lines , 4.1 µm length)

Page 32 Mathias Rommel © Fraunhofer IISB

Rommel et al., Microelectron. Eng. 110, 177 (2013)

Resolution of pillars (array of 16 * 16 pillars)

Page 33 Mathias Rommel © Fraunhofer IISB Rommel et al., Microelectron. Eng. 110, 177 (2013)

- Mask removal
- Approaches
 - RIE until mask is removed \rightarrow very small process window, rough surfaces
 - Ar sputter process (CS900S VON ARDENNE: 500W, 5µbar, 70sccm Ar)

Mask removal

- Approaches
 - RIE until mask is removed \rightarrow very small process window, rough surfaces
 - Ar sputter process
- Approaches from literature
 - − Sample heating to > 600 °C (\rightarrow cross contamination \rightarrow sample deterioration) [1]
 - KOH/H_2O_2 etching [2]
 - Alternatively, hard mask patterning and subsequent hard mask removal [3,4]
 - → Ga contamination of target material avoided
 - 1 Llobet et al., Nanotechnology 25, 135302 (2014)
 - 2 Han et al., Nanotechnology 26, 265304 (2015)
 - 3 Ermanis et al., Nanotechnology 25, 335302 (2014)
 - 4 Liu et al., Nanotechnology 28, 085303 (2017)

Results for SiO₂

In principle, very similar results for SiO₂ (compared to silicon)

Influence of feature size on ion dose \rightarrow cross sections through lines

Rumler et al., Nanotechnology 24, 365302 (2013)

Page 36 Mathias Rommel © Fraunhofer IISB

UV-NIL Step&Repeat imprint process

- NPS 300 SET, France
- UV-curable polymer resist mr-UVCur06, mrt, Germany
- Antisticking layer (FDTS) for defect free separation of imprint stamp and resist by Molecular Vapor Deposition (MVD)

Scheme of UV-NIL process

Imprint results

Rumler et al., Nanotechnology 24, 365302 (2013)

Page 38 Mathias Rommel © Fraunhofer IISB

Results for 4H-SiC

Etch mask capability of FIB irradiated areas

- again, in principle, similar results can be obtained for 4H-SiC
- threshold dose required for masking (typically around 1.10¹⁵ cm⁻²)
- quite rough surfaces for low dose masking
- nearly optimum masking and surfaces for a dose range of 2-7.10¹⁶ cm⁻²

Page 39 Mathias Rommel © Fraunhofer IISB

Beuer et al., MNE 2013

Results for 4H-SiC

Page 40 Mathias Rommel © Fraunhofer IISB

Beuer et al., MNE 2013

Summary

- Compared to FIB milling, direct resistless Ga⁺ beam lithography enables
 - + patterning of larger areas
 - + smaller feature sizes
 - + different feature geometries
 - less flexible choice of sample material
 - usually no direct 2.5D structures
- Obtained results show that
 - suspended features can be fabricated both, by wet and dry etching
 - high aspect ratio structures can be obtained
 - even more flexibility can be obtained with high dose FIB irradiation or two step approaches using hard mask patterning by GaRL
 - few approaches for Ga removal are available

Thank you for your attention!

