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A useful enrichment of videos captured by unmanned 
aerial vehicles (UAVs) is the annotation of image data 
or determining coordinates for objects in the video. This 
requires georeferencing of the video frames. For 
surveillance or reconnaissance applications, we propose 
georeferencing of UAV video frames with an ortho-
photo. In this process, the challenge is to register 
temporally different images from different sensors that 
capture objects with quite different visual appearances. 
After an initial registration of the first video frame to the 
orthophoto, the subsequent frames are registered by 
image mosaicking. Whenever necessary, the mosaic is 
anchored by registration to the orthophoto.  We explain 
the image-based registration approach and discuss its 
potential real-time processing capability. Internal 
performance evaluation and GPS/INS support is con-
sidered. The feasibility of the approach is demonstrated 
with real data sets captured by UAVs for 
georeferencing, video frame annotation, and motion 
detection. 
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1 Introduction 

1.1 Motivation 
Sensors carried by unmanned aerial vehicles (UAVs) 

are valuable for surveillance and reconnaissance tasks. 
They provide up-to-date information for motion or change 
detection and can deliver a fast overview of the situation 
by image mosaicking. For time-critical applications, 
online annotation of the captured video frames with, e.g., 
street names or outline information, is beneficial for 
enabling quick response. This implies the need for 
georeferencing to transfer, for instance, scene coordinates. 

Frame-to-frame registration for a monocular video 
stream suffers from the accumulation of transformation 
errors and the increasing uncertainty of the overall 
transformation. This inevitable drift is due mainly to 
observational errors and invalid model assumptions 
concerning the assumed image transformation. To cope 
with continuous video streams, one has to compensate for 

this effect. This can be done by registering small video 
subsequences to a large-scale, global reference image. If 
this image is an orthophoto, the desired georeference is 
established by these anchorages. In this process, the 
challenge is to register temporally different images 
captured by different sensors from different perspectives, 
which potentially leads to considerable variance in the 
appearance of the observed scene. 

Appearance-based matching can be found in the 
literature ([7], [8], [9], [18]). The consideration of digital 
elevation maps proposed in [3] paves the way toward a 3D 
approach. This is balanced by the need for telemetry data 
for proper initialization of the expensive optimization 
process. 

 

1.2 Contribution 
We assume a monocular video stream from a straight-

line-preserving camera. Our approach is similar to the one 
proposed in [9] but differs in the following several 
conceptual and technical aspects: 

• We strive for real-time capability of the system. 
That is, we want to react to sensor data in a 
required time. In our context, this means that the 
results must be available within a reasonable time 
in order to fulfill the specific task. To save 
computational resources, we perform anchorages 
of current subsequences only when required. 

• To decide about the need for a new anchorage 
during the processing, we perform an internal 
performance evaluation which provides self-
diagnostics of the system. The uncertainty of the 
transformation parameters can be considered by 
checking the acceptability of the precision for the 
accumulated overall transformation. The valida-
tion of the mapping model, i.e., homography, can 
be carried out by checking alternative multi-view 
constraints for corresponding image structures. 

• For exploitation of available GPS/INS data, we 
show how this navigation information can be 
incorporated seamlessly into the registration 
process to obtain an easy initialization and, 
subsequently, better results. 



 

 

This paper is organized as follows. In Section 2, we 
introduce preliminaries and explain the approaches for 
frame-to-frame mapping (intrasensorial registration) and 
image georeferencing (intersensorial registration). We 
show how to perform motion detection and how GPS/INS 
support can advantageously be introduced. Section 3 
covers topics in implementation, especially those related 
to the aspired real-time capability. In Section 4, we 
demonstrate the feasibility and performance of the system 
for real data sets by treating georeferencing, annotation, 
and motion analysis. Finally, in Section 5, we end with 
conclusions and an outlook. 

 

2 Approach 
Registering a video frame to an orthophoto is a 

challenging task, due to, e.g., illumination differences or 
changing vegetation. Methods capable of coping with this 
are computationally expensive. Fortunately, image 
mosaicking methods are less expensive and can be used to 
extrapolate an initial registration. Due to accumulating 
errors during mosaicking, an alternating process of image 
mosaicking and registration of video frames to the 
orthophoto is necessary and is described in this section. 

 In Subsection 2.1, preliminaries and the methods used 
to solve the registration problem are described. Subsection 
2.2 contains the description of the registration process. 
First, the image-based registration is described. Second, a 
method to support this registration by GPS/INS is 
introduced. After that, an approach to perform self-diag-
nostics on the registration is proposed. The procedure used 
to perform object motion analysis on the video frame is 
described in Subsection 2.3. Finally, the annotation of 
image data is explained in Subsection 2.4. 

 

2.1 Preliminaries 
We assume that the depth of the scene is negligibly 

small compared to the sensor’s altitude and that the 
camera used is straight-line-preserving. In this case, 
homography is a suitable model to describe the frame-to-
frame mapping [5]. We denote the homography between 
the frame tI  captured at time t  of the sequence and the 
orthophoto by tH  and the transformation between the 
frames tI  and jI  by , .j tH  Interest points in the frame tI  
will be denoted by tx  and in the orthophoto by X .  

In order to estimate the homography from point corres-
pondences contaminated with outliers, robust methods, 
such as Random Sample and Consensus (RANSAC) [4] 
are used. We modify the standard RANSAC-procedure 
with T1,1-test (as described in [12]) in order to speed up the 
processing. 

Finally, two different methods are used in order to 
determine point correspondences. For two consecutive fra-
mes, the assumptions of rather short baseline and little 
change in illumination are reasonable in the majority of 
cases. Therefore, standard KLT-tracking [11] is robust 

enough for tracking tx into the next frames. In order to re-
late interest points between orthophoto and video, scale-, 
rotation-, and/or illumination-invariant feature descriptors 
are computed and compared. Examples of this kind of 
detectors can be found in [1], [10]. In our experiments, we 
achieved best results using interest points detected by the 
SIFT-approach (Scale Invariant Feature Transform) [10]. 
The description of how to augment both speed and quality 
of these rather time-consuming steps will be given in 
Section 3. 

 

2.2 Georeferencing of a Video 

2.2.1 Image-Based Georeferencing 
 
To provide a successful initial registration, we must 

obtain a sufficient number of correspondences. Searching 
for the shortest Euclidean distances of SIFT-features in the 
orthophoto and the video frame does not always lead to a 
correct homography, especially in high-textured areas. In 
these areas, the correct correspondences will not neces-
sarily be given by the shortest Euclidean distance between 
the hypothesized correspondences, but possibly by the 
second- or third-shortest. Therefore, we reverse the pro-
cedure and use the initialization of the homography 1H  in 
order to obtain enough correspondences. The initial 
homography is estimated using interest points localized by 
the SIFT-algorithm, by using GPS/INS as described in 
Subsection 2.2.2, or by manually selected correspon-
dences. The probability of obtaining the correct corres-
pondence 1 1H→x X  inside a small circular area, 50 to 
100 pixels in diameter, around each 1x  increases consi-
derably while the searching time decreases. This process is 
called guided matching [5]. After guided matching, the 1x  
are tracked from frame to frame by KLT-tracking and the 
homography between frame tI  and the orthophoto is 
computed incrementally: 

 
 , 1 1.t t t tH H H− −=  (1) 

 
This is a common approach to perform image 

mosaicking. We call it intrasensorial registration. Unfortu-
nately, this process usually leads to severe aberrations 
because of the following reasons: 

• Failing of the local homography: Tracking may 
fail because of the video quality or because the 
points detected in the first frame are lost after 
several frames. In this case, we talk about failing 
of the local homography , 1t tH − -estimation. 

• Failing of the global homography: Due to 
accumulation of errors in the calculation of tH  
by (1), the result becomes unreliable for some t . 
As an example, consider a mosaic from rotating 
cameras: In this case, the application of a 



 

 

homography is justified. Still the stripe gets broa-
der from frame to frame and, as the camera meets 
the initial position again, severe registration 
errors are observed. Here we say that the 
estimation of the global homography tH  failed. 

• Failing of the initialization: The identity obtained 
in (1) has a disadvantage: if 1H was not obtained 
correctly due to unknown reasons, then tH  will 
also be wrong even if all homographies 

, 1t tH − were obtained correctly. Here we say that 
the initialization failed. 

To cope with the problems mentioned above, the sys-
tem must become aware of them. In the first case, either 
RANSAC will yield a small number of inliers or the 
inliers, even though sufficient in number, will not be 
favorably distributed within the frame. For a point, we 
compute the reprojection error and compare it with a fixed 
threshold s , which was chosen to be 1 to 2 pixels in most 
experiments. If the number of inliers (points with registra-
tion error below s ) is low or if there is no inlier in any 
quarter of the frame, we reject the homography , 1t tH − . By 
the second condition, a good distribution of the points in 
the image is achieved.  Then we check the global 
homography tH  by computing registration errors in the 
orthophoto and frame tI  (second case). Here we use 
similar criteria for rejecting tH . In order to cope with the 
problem of bad initialization, we simply reject tH in 
periodic lags (every 15 to 20 frames in our experiments). 
If either , 1t tH − or tH was rejected, we extract new interest 
points in the current frame and use the last reliable value 

1tH −  as an initialization for tH . Then, as described above, 
we use descriptor-based matching, RANSAC with T1,1-test, 
and guided matching. This is called intersensorial 
registration. The entire process is illustrated in Figure 1. 

 

2.2.2 GPS/INS-Supported Georeferencing 
Algebraic parameterization of the homography is 

attractive, since the corresponding mapping , 1 1t t t tH − −=x x  
(see Subsection 2.2.1) is linear in the transformation para-
meters, leading to direct estimations via singular value de-
composition. However, for the incorporation of GPS/INS 
data, a 3D geometric parameterization of the mapping is 
required. 

A starting point is the Faugeras decomposition [3] of 
the homography matrix for the image-to-image mapping 
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of a point x , where K  is the homogeneous camera calib-
ration matrix, , 1t tR − the relative rotation between two con-
secutive frames, tt  the translation, and ( 1 1,t td− −n ) the 
world plane π, represented by its normal vector and its 
distance to the origin of the coordinate system. 

The GPS/INS observations for the projection centers 
1t−C  and tC  and the sensor orientations 1tR −  and tR  are 

given in a world or object coordinate system. They can be 
introduced by the additional constraints 
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for the parameters and the observations. Note that obser-
vations of different types are involved. Therefore, one has 
to consider the covariances of the observations for proper 
relative weighting of the image and GPS/INS observations 
in the parameter estimation process. In situations with 
little image information available, the GPS/INS informa-
tion weights more for the determination of the parameters 
sought. 

The geometric 3D parameterization (2) allows the 
determination of the sensor trajectory and the sensor 
orientation on the basis of image information [15]. 
Furthermore, it enables the additional use of GPS/INS data 
in the analysis. By observing that the normal vector n is a 
global parameter, one can introduce further stability by 
using the prior information , 1 1t t t tR − −=n n  in a filtering 
process. 

For the georeferencing task, the image-to-world homo-
graphy is immediately given by consideration of the pro-
jection matrix t t tP K R= −  C , which projects an object 
point X into the image plane via t tP=x X and includes 
the GPS/INS observations explicitly. If we assume a hori-

 

Figure 1 : Flow-chart of the mosaicking and video-to-
orthophoto registration process 



 

 

zontal plane and set the z-coordinates of the camera 
centers to be the altitude above ground, then object points 
have zero height. Therefore, the third column of the 
projection matrix can be dropped, yielding the 
homography matrix.  

 

2.2.3 Self-Diagnostics 
For autonomous systems, performing self-diagnostics 

is essential. For a successful system, the current state of 
the process, the reliability and the precision of the results 
have to be monitored. System failures are possible due to 
random errors, e.g., observational errors, or gross errors 
(outliers) – possibly because of unfounded model assump-
tions. One has to recognize these failures and treat them 
accordingly, for instance, by establishing a new anchorage 
of the video subsequence to the orthophoto. 

Model violations can be detected by considering 
alternative multi-view relations for consecutive video 
frames or between the current video frame and the ortho-
photo. A common approach is the evaluation of the Geo-
metric Robust Information Criterion (GRIC) introduced in 
[17]. By doing so, one is able to decide whether a 2D or a 
3D relation is more appropriate and to react accordingly. 

While outliers can be eliminated by RANSAC or its 
derivatives, random errors remain and affect the precision 
of the estimates. The desired and required precision of the 
transformation parameters p, where p is a vector con-
taining the entries of H, can be specified by a criterion ma-
trix G. We require that any result of the function f(p) be 
more precise when determined with the empirical covari-
ance matrix C than with the criterion matrix G [17]. This 
leads to the requirement T TC G≥e e e e with the Jacobian 

/T f= ∂ ∂e p . Thus, the maximal eigenvalue λ  of the ge-
neralized eigenvalue problem C Gλ=e e  needs to be less 
than one. 
 

2.3 Object Motion Analysis 
In surveillance and reconnaissance applications, 

moving objects tend to be of special interest: motion 
detection during disaster rescue actions can mean there are 
survivors and motion during military operations may 
signify possible threats. In both cases, motion indicates 
situations that are worth closer examination. 

The procedures for motion detection can be classified 
into object-based and signal-based methods. In the first 
group, a procedure will recognize the shape of an object, 
e.g., based on its signature, follow its outline in the images 
and determine its track. This is the most suitable method 
when dealing with applications in spectral ranges in which 
objects can be discriminated from the background, e.g., 
persons in front of building walls. Video recordings with 
daylight cameras rarely yield such results. Signal-based 
methods determine differences in intensity values. Some 

methods search for shifted connected regions from frame 
to frame. Special evaluation processes of optical flow are 
used here; they yield estimated shift vectors as output. 
Another possible signal-based method is to search for 
noticeable regions in difference images from consecutive 
video frames. 

In this paper, we deal solely with methods of the latter 
group, since object-based solutions do not promise much 
success in the visible spectral range. However, signal-
based solutions with estimated shift vectors turn out to be 
much too computationally intensive for real-time 
applications (e.g., global estimation of the optical flow, [6] 
or [11]). Furthermore, only moving sensor platforms are 
considered here. Therefore, the motion of the sensor itself 
requires continuous registration of consecutive frames. 
This task need not be solved separately, since homogra-
phies from the registration process described in Subsection 
2.2 can be used here.  

Two procedures will be examined more closely, MoDe 
(Motion Detection) [2] and Time-Recursive High-Pass 
Filtering [19]. In MoDe, frames t nI −  and t nI +  are regi-
stered onto the frame tI  and difference images t nD −  and 

t nD +  are computed. A difference image is evaluated at 
every single pixel according to:  
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The choice of the parametervalue n determines the quality 
of the result. The optimal choice depends on the velocity 
of an object passing through the observed scene. During 
Time-Recursive High-Pass Filtering, n frames 

1 2, ,...,t t t nI I I− − −  are registered onto the frame It by means 
of homographies , 1 ,,...,t t t t nH H− − . The difference image is 
computed according to: 
 

 ( )
n
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1D = I w H I ,
n
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where wm regulates the weight of the frames and ( )H I is 
an image obtained after every pixel of I was resampled by 
H. Due to sensor motion, it makes sense in our case to set 
4 6n≤ ≤ . For small and large m, it turned out to be useful 
to choose wm smaller than for medium m. The separation 
of the object from its background is in both cases the result 
of either a threshold decision or a segmentation of stable 
regions according to the procedure of Maximally Stable 
Extremal Regions (MSER) [13]. MoDe has the advantage 
of yielding acceptable contours. A disadvantage is that ob-
jects with different velocities are scanned in identical time 
intervals. The Time-Recursive High-Pass Filtering method 
is a better choice because of its comprehensive inclusion 
of motion history – a benefit to be paid for with more 
extensive computational work and half-outlines in the 
form of sickles. These fragmented contours need to be 



 

 

closed using a chain of morphological operations. To 
avoid high computational costs, we scaled down the 
difference images before segmentation. 

To eliminate detected image areas that have not 
changed due to object motion, motion has to be verified. 
This can be carried out by tracking the segmented regions 
in intensity images or by evaluating the tracks determined 
using model knowledge. Verification processes will be left 
out of consideration here since we focus on geometric 
issues.  

 

2.4 Video Frame Annotation 
Annotation means enrichment of video frame content 

with data that is not visually perceivable and can be 
considered as augmented reality. Motion detected by the 
analysis of a video is represented on a map, and spatially 
relevant information from different sources is shown in the 
video. The procedure comprises the transformation of the 
image coordinates into world coordinates and vice versa. 
The homography Ht, computed in order to register the 
frame It onto an orthophoto, is now used as transformation 
matrix. For annotation of georeferenced data into the 
video, we use the inverse mapping with the inverse 
homography 1

tH − . 
 

3 Concept for Real-Time Processing 
Our method can be applied online using parallelization 

provided by modern computer architectures with multicore 
CPU and graphics hardware. The mosaicking process as 
well as motion detection are already suited for real-time 
applications. We discuss the most time-consuming part of 
the algorithm: the registration of a video frame to the 
orthophoto. The runtime of SIFT to localize interest points 
in the video frame and to compute the corresponding 
descriptors is at least 1 second for 720 × 576-resolution 
videos with several thousand interest points per frame. The 
matching of the descriptors takes additional time. On 
current hardware, the sequential approach does not permit 
online application. Fortunately, the following conceptual 
considerations and hardware accelerations can be used to 
overcome this problem: 

Since there is no need to manipulate the orthophoto 
while the UAV is flying, the SIFT-features in the ortho-
photo can be precomputed for a section covering the ex-
pected operation area. As a result, the computation of 
SIFT-features in the orthophoto does not take any time 
during the registration process at all. Furthermore, ortho-
photos taken under different climatic (e.g., snow) or 
temporal (e.g., illumination) conditions can be included. 
Thus the orthophoto best suited to the current conditions 
can be chosen. Moreover, not all interest points in the 
orthophoto need to be considered to match them with the 
points in the current frame. It is sufficient to choose only 

points within a window around the image domain of the 
last frame, reprojected by the last homography into the 
orthophoto.  

In order to filter out outliers, robust methods, such as 
RANSAC, must be used. During intersensorial matching, 
the outlier rate may be up to 90%. The use of the T1,1-test 
accelerates standard RANSAC by the factor 
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where τ  is the quotient of the time needed to calculate a 
homography and the time to evaluate the homography at a 
single point, N  is the number of points in the 
samples, p is the inlier probability and ε  is the probability 
of a point being randomly compatible with a random 
model. For a typical set of values, τ  = 60, N = 2000, p  = 
0.1, ε  = 0.001, using the T1,1-test accelerates the 
computations by a factor of 3. 

To avoid interruptions of the mosaicking process 
during the calculation of the intersensorial registration, 
this process runs on a separate processor core. When the 
registration to the orthophoto is finished, the mosaicking is 
interrupted to correct the mosaic-to-orthophoto mapping. 
As shown in [16], the computation of the interest points 
and descriptors can be done on the GPU of a modern 
graphics card at a rate of 10 fps in the situation mentioned 
above. By running the mosaicking on one CPU-core, the 
SIFT-computation on the GPU, and the registration to the 
orthophoto on another CPU-core (Figure 2), it can be 
expected that the mosaic is supported every 3 to 10 
frames.  
 

 
Figure 2: Once initiated, only the mosaicking process runs 
on the main CPU. All other computations are carried out 
independently on other CPUs and the GPU. 



 

 

4 Experimental Tests 
To provide experimental validation of the approach, 

we used two data sets. The first one was taken by a mini-
UAV and shows the village of Bonnland. The second was 
taken in Karlsruhe by a camera mounted on a Cessna 172. 
The results of the georeferencing, motion analysis, and 
video frame annotation are shown using these videos. 

4.1 Georeferenced Mosaics 
The results of the registration of the first test sequence 

“Bonnland”, recorded by a small camera mounted on a 
mini-UAV, are shown in Figure 3. The mosaic consists of 
200 frames and was successfully registered to an ortho-
photo and projected to a map (Figure 4). The combined 
approach of KLT-tracking and descriptor-based matching 
was also successful in the case of a frame corrupted by 
radio interference, as shown in Figure 5.  

 
 

 
Figure 3 : Registration of a video taken during a flight 
over the village Bonnland. 

 
 

 
Figure 4 : Projection of the mosaic to a map of Bonnland. 

 

 
Figure 5 : Registration of a corrupted frame (left) to the 
orthophoto (right). 

For the recording of the second sequence, “Karlsruhe, 
industrial harbor”, a Cessna was used, which did not offer 
the possibility to capture the video in nadir view. The 
results of registration suffer from the different view as-
pects (roofs of buildings are seen in the orthophoto, walls 
in the video) and the resulting model violation. 
Nevertheless, it was possible to successfully register some 
100 frames taken beyond the urban area. The algorithm is 
robust with respect to scale changes, as depicted in Figure 
6. 
 

     

    
Figure 6 : Registration of two different video frames to an 
orthophoto of Karlsruhe. As can be seen here, registration 
was successful, even after zooming the camera. 

4.2 Object Motion Analysis 
During experiments, Time-Recursive High-Pass Fil-

tering was applied on the test sequence "Bonnland". 
Vehicles passing through the scene were thus recognized 
as moving objects (Figure 7) after a time period that was 
necessary to build up a motion history. There were not 



 

 

more than 2 seconds available to track the objects and they 
sufficed to obtain an estimated absolute velocity and hea-
ding (Figure 8). Vertical building surfaces exposed due to 
aspect changes were wrongly detected as movements. 
They were successfully eliminated by means of motion 
analysis. 
 

      
Figure 7 : Detected moving objects are marked with boun-
ding boxes. Due to violation of the 2D-model assumption, 
the tower of the church was wrongly detected (right). 

 

Figure 8 : The tracks of the moving cars are marked on the 
map. Measured velocity and heading are displayed as well. 

4.3 Video Frame Annotation 
To simulate mapping of georeferenced data, we took 

UTM coordinates of noticeable objects (e.g., duct covers), 
transformed them into some video frames and marked the 
position. This simple mapping enables performance 
evaluation by estimating the geometric errors that we can 
expect in case of annotation. In 58% of all samples, the 
distance between real and annotated position was smaller 
than 1.5 meters; in 25%, greater than 2.0 meters (Figure 
9). 

  

        
Figure 9 : Annotation of a duct cover in Bonnland 
(displayed detail of Figure 7). The result of a good and 
average registration is shown.  

5 Conclusions and Outlook 
We have introduced here a system for registration of 

UAV-videos to an orthophoto. We showed that it is 
possible, by use of a georeferenced orthophoto, to 
annotate situation information in video as well as to map 
selected objects in the video to maps. Thus, prompt 
reaction to information gained during a UAV-mission is 
supported. By combining a mosaicking procedure and 
slower registration to the orthophoto, real-time capability 
is acquired along with simultaneous good georeferencing 
quality. To enable this, observation of registration quality 
is included to support intrasensorial registration only 
when needed. In contrast to [9], no warping of the 
orthophoto or video frame is needed. Our experiments 
demonstrated that the resulting mapping was adequate for 
the tasks at hand. This is true even for the search of 
difficult frame-to-orthophoto mappings, yielding inlier 
rates of only 10% for the correspondences. 

In the future, our method has to be transferred to the 
architecture depicted above. The actual run-time per-
formance has to be evaluated on a broader set of video se-
quences. 

To enhance the robustness of the intersensorial regi-
stration, advancements of the SIFT-algorithm by 
including color information will be a topic of our future 
work. 
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