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ABSTRACT 
Maintenance management for wind turbines (WT) aims on the 

one hand at reducing the overall maintenance cost and on the 

other hand at improving the availability. 

Although modern onshore WT attain high technical availability 

of up to 98 %, the evaluation of maintenance work in previous 

projects shows, that high WT availability requires additional 

maintenance work and costs. There is a considerable scope for 

optimizing reliability and maintenance procedures. A 

possibility therefore is to systematically make use of available 

knowledge and past experience. At this point, information 

coming from databases, statistical methods as well as sound 

statements are essential. The consideration of several 

conditions e.g. weather conditions, power forecasts, stock 

keeping etc. are essential for optimal maintenance decisions. 

However, due to this enormous amount of information 

sophisticated tools are needed. The contribution will present 

the possible application of high-performance computing 

methodologies, which may help wind farm operators (WFO) 

examining optimal maintenance strategies. The so called Multi-

Agent-System (MAS) which is a new discipline in the world of 

Artificial Intelligence (AI) and the Data Mining (DM), which is 

a high-performance computing methodology used to observe 

and deduce hidden knowledge and logical dependencies of a 

great amount of data using several appropriate algorithms, 

should be investigated and a methodology for the use of AI in 

WT maintenance is proposed. 

 

NOMENCLATURE 

λ    failure rate    

 

Sub-, superscripts 

t   time 

tp   Preventive replacement time 

F(t) Time to failure probability 

distribution function 

f(t) Time to failure probability density 

function 

Cp   Preventive replacement unit cost 

Cc     Corrective replacement cost unit 

N(tp)   Expected number of failures within                              
  the considered interval (0, tp) 

TEC(tp)  Total expected cost per unit time 

 

Abbreviations 

MAS  Multi-Agent-System 

WT   Wind Turbine   
PM   Preventive Maintenance 

CM   Corrective Maintenance 
WFO  Wind Farm Operator 

WF   Wind Farm 

AI   Artificial Intelligence 

DM   Data Mining 
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ABMS Agent-Based-Modeling and 

Simulation 

PR    Preventive replacement  
CR   Corrective replacement  
CIR   Constant Interval Replacement  

ABR  Age Based Replacement 

FTA   Fault Tree Analysis 

ANN  Artificial Neural Networks 

CBM  Condition-Based Maintenance 

SCADA  Supervisory Control and Data 

Acquisition 
 
 

INTRODUCTION 
The efficiency of WTs has been substantially improved in the 

past two decades in both technical and economic view. The 

continuous development of wind power use permits purposeful 

advancements of the system technology in order to increase 

both efficiency and performance of the turbines. Nevertheless, 

earlier intensive and broad analyses in research projects [1], [2] 

show that the efficiency of modern WTs and their equipment 

units are not obligatory positively proportional to their 

reliability. However, today's organization of operating 

supervision and maintenance makes it still difficult to use the 

various experiences from the operating and historic data 

purposefully for future improvements of maintenance activities. 

 

Up to now maintenance planning is usually still accomplished 

individually and intuitively by the WFO, although a multiplicity 

of different aspects (e.g. energy yield, availability, weather 

condition, personnel employment, material costs etc.) with 

partly complex and opposite effects on availability and costs 

should be taken into account (Fig. 1) [3]. At present the WFO 

can’t consider these different interests of the various aspects to 

the necessary extent for making sound decisions. There is 

obviously a lack of tools that could handle and manage all those 

aspects simultaneously. 
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Figure 1: Competitive interests in the maintenance process  

 

In the past, only little focus was put in the use of methods and 

models of AI within the area of maintenance planning. The so 

called Multi-Agent-System (MAS), also known as Agent-

Based-Modeling and Simulation (ABMS) can model the 

competitive aspects in such a way that the (intelligent) Agents 

negotiate quasi among themselves, which interests to be 

considered in decision-making [4]. An intelligent Agent is a 

computer system capable of flexible action in some dynamic 

environment, whereby it is meant by flexible the characteristics 

reactive, proactive and social. Social ability in Agents is the 

ability to interact with other Agents (and possibly humans) via 

some kind of Agent-communication languages. Thereby each 

already mentioned competitive aspect is represented by one or 

several Agents. These Agents are programmed to cooperate 

with each other in order to determine an optimal total 

conception. As a result of the Agents communication either a 

particular or several optimal alternative solutions can be 

suggested resulting in a list of requirements of effective 

Preventive Maintenance (PM).   

The project MAS-ZIH ‘Use of Multi-Agent-Systems as Support 

for Reliability-Based Maintenance’, which is it funded by the 

German Federal Ministry of Environment, Nature Conservation 

and Nuclear Safety, is going to investigate the possibility of 

using AI in WT maintenance. The project duration is three 

years, starting last October 2011. Therefore, the findings 

presented here, represent the first steps in the field and will give 

an overview about the methodology and expected results.  

 

1. METHODOLOGY OF ARTIFICIAL 
INTELLIGENCE 

 

The reliability-oriented maintenance of WTs relies particularly 

on the management and the evaluation of operating and 

maintenance data [2]. However, today's organization of data 

acquisition and data management by the WFO doesn’t permit 

the easily use of experiences [8]. Additionally WFOs/service 

companies are missing tools and necessary information (e.g. 

failure statistics, weather forecasts, staff disposition, etc.), 

instructions and recommendations needed for their maintenance 

decisions. 

 

1.1 ARTIFICIAL INTELLIGENCE 
 

By estimation of failure probabilities, remaining useful life and 

early recognizing of possible damages and errors as well as by 

using wind and power forecasts, maintenance tasks and 

procuring of spare parts could be better planned and unexpected 

stops could also be avoided. For an efficient maintenance 

planning the economic boundary conditions e.g. spare part and 

personnel costs or the temporal development of the fluctuating 

electricity tariff at the electricity market are to be considered. 

For the support of a foresighted maintenance strategy a MAS is 

to be developed, which uses the reliability characteristics and 

the cost information from WFO and weighs the competitive 

interests of the different aspects for the studied case and then 

suggests favored maintenance measures for the decision-maker. 

 

A schematic representation of the research within the work is 

shown in fig. 2; where different Agents manage different tasks. 

http://de.wikipedia.org/wiki/Supervisory_Control_and_Data_Acquisition
http://de.wikipedia.org/wiki/Supervisory_Control_and_Data_Acquisition
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Some of them have the task to analyze the failure rates, while 

others regard weather and power forecasting, the third category 

considers the question of cost of the whole maintenance 

process. A main goal thereby is to submit the WFO with an 

arranged list of requirements and proposals, on how the next 

maintenance should look like. 

 

 
 Figure 2: Use of MAS for improving the maintenance decisions 

 

1.2 HYBRID APPROACH OF MAS AND DATA 
MINING 

 

This approach consists of using the advantages of both 

technologies MAS and DM. Before modeling the MAS-Model, 

some knowledge will be deduced by applying the DM for the 

historic data of the WFO. This allows the Agents having some 

initial states, needed for making sound simulation. 

 

Data Mining 

To understand the dependencies of historic PM and repair, 

professional DM Tools are used for this task. Such 

dependencies could identify the components that failed mostly 

and simultaneously with a given analyzed subcomponent or 

also possible cluster populations regarding the behavior of the 

subassemblies concerning the factors that play a dominant role 

on the failure of the analyzed component e.g. failure causes or 

downtimes etc. Fig. 3 shows an example for an extract of the 

Tree view that analyzes the behavior and dependencies of the 

subassembly ‘electric converter’ for a WT type in the coast 

region of Germany. The figure shows that when this 

subassembly failed because of an ‘Unscheduled repair after 

malfunction’, and when the ‘electric generator’ was also 

affected at the same time and the whole downtime takes less 

than four hours, then the cause of this failure is usually 

‘malfunction of control system’ otherwise it was ‘other causes’ 

and so on. 

 

MAS 

The approach of the dynamic modeling and simulation using 

MAS can make an important contribution in the area of 

maintenance of WT. In the past the analysis systems have 

integrated the reliability and maintenance aspects more and 

more in their evaluation. Several proven techniques already 

obtain considerably successes i.e. [13]. The existing methods 

for the modeling of availability/reliability can be divided into 

two groups: static and dynamic methods. [9]. 

 

 
 
Figure 3: Extract of the Tree view ‘electric converter’ 

 

Static methods require less information about the system 

characteristics than dynamic methods. A logical consequence of 

this decreased information requirement is their application in 

the early phases of a project. Although this knowledge base can 

be quite limited, static methods achieve good estimations for 

expected future availability and reliability of the object 

regarded [9]. In addition they are generally more intuitive and 

simpler in their application and attain faster results than their 

dynamic counterparts. The main impairment is their inability to 

treat time-based changes. Since the temporal sequences cannot 

be represented with static methods, they are generally less 

suitable for the modeling of maintenance activities, where 

maintenance planning and maintenance strategies are based 

mainly on time management [9]. 

 

Quite contrary to the static methods the strength of the dynamic 

methods lies in their ability to combine the temporal effects and 

the system developments. This characteristic makes the 

representation for system aging as well as the maintenance 

scheduling possible. Well-known examples of these dynamic 

methods are Markov Chains and Dynamic Fault Tree Analysis 

(FTA), which were already used successfully in the past [10]. 

Nevertheless these two techniques have large deficits, e.g. the 

Markov chains suffer an inevitable „condition explosion“, if 

they are used at large-scale systems and with mass data [11], 

while FTA already reach their borders, if the system models 

contain complex feedback loops [12]. 

 

Many investigations have been done in the area of dynamic 

methods using AI for optimizing the maintenance. Z. Tian, Y. 

Ding and F. Ding [13] review the current research status of 

maintenance of wind turbine systems, discus the application of 

Artificial Neural Networks (ANN) based health prediction tools 

in that field, and develop a Condition-Based Maintenance 

(CBM) approach for wind power generation systems to address 

maintenance planning issues. 

 

E. Byon [14] examines the optimal repair strategies for wind 

turbines operated under stochastic weather conditions and 

lengthy lead times with the objective to minimize the expected 

average cost over an infinite horizon. He formulated the 
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problem as an observed Markov decision process for these 

goals. 

 

MAS is seen as more applicable dynamic method for combining 

time-based changes and system developments [21]. Moreover, 

in order to get the Agent to do the task, one must somehow 

communicate the desired task to this Agent. This implies that 

the task to be carried out must be specified by us in some way. 

An obvious question is how to specify these tasks: how to tell 

the Agent what to do. One way to specify the task would be 

simply to write a program for the Agent to execute (an Object 

as usual known in the object-oriented programing). The 

obvious advantage of this approach is that one is left with no 

uncertainty about what the Agent will do. It will do exactly 

what one told it to, and no more; one can say that the Object 

does it for free and it cannot refuse a method invocation. But 

the very obvious disadvantage is that one has to think about 

exactly how the task will be carried out himself, and if 

unforeseen circumstances arise, the Agent executing the task 

will be unable to respond accordingly. More usually, one wants 

to tell the Agent what to do without telling it how to do it. One 

way of doing this is to define tasks indirectly, via some kind of 

performances measure. There are several ways in which such a 

performance measures can be defined. The first is to associate 

utilities with states of the environment. Whereby a utility is a 

numeric value representing how ‘good’ a state is: the higher the 

utility, the better. The task of the Agent is then to bring about 

states that maximize utility - one does not specify to the Agent 

how this is to be done. In this approach, a task specification 

would simply be a function u which associates a real value to 

runs (Simulation runs) themselves [21]: 

                

𝑢:  𝑅 → ℝ 
 

One can say that, contrary to Objects, Agents do it because they 

want to; of course as soon as the service requester is authorized, 

the Agent has enough resources available, and the action is 

convenient for the Agent. 

 

The Agents functioning could be also divided into deliberative 

and reactive [21]. Many researchers have argued that neither a 

completely deliberative (symbolic world model, long-term 

goals, reasoning capabilities, Planning) nor a completely 

reactive approach (situation-action rules, behavior-based 

architectures) are suitable for building Agents. Reactive Agents 

can also hardly communicate and collaborate (only through 

actions that modify the common environment. They have 

suggested using hybrid systems, which attempt to marry 

classical and alternative approaches. An obvious approach is to 

build an Agent out of two (or more) subsystems: a deliberative 

one, containing a symbolic world model, which develops plans 

and makes decisions in the way proposed by symbolic AI, and a 

reactive one, which is capable of reacting quickly to events 

without complex reasoning (see fig. 4). 
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Figure 4: An effective architecture for the Agent 

 

MAS is seen as an adequate technology for seeking out 

unknown and unexpected behavior of complex systems as well 

as for filtering the most important knowledge, those the WFO 

needs later for his maintenance planning [21]. Figure 5 

illustrates a MAS platform with several modules. The Agents 

representing many objects (components, subassemblies, 

weather, spare parts stock keeping etc.) interact and 

communicate with each other, in order to find the optimal 

„solution” for a given problem. The communication between 

Agents includes coordination (e.g. divide a task between a 

group of Agents, distributed planning etc.), cooperation (e.g. 

share intermediate results, share resources, distributed problem 

solving etc.), negotiation (e.g. find the Agent that can provide a 

service with the best conditions etc.) and forming coalitions 

(trust other Agents, increase utilities…). 

 

Coalition is somehow a special case of cooperation and 

collaboration, but stays anyway different and difficult to realize 

because of the fact of considering all possible aspects that could 

help managing and creating optimal coalitions. Agents want to 

know earlier how much every coalition could earn, and how 

this could maximize its utility. This makes the task more 

complex in the way that, everyone (Agent) wants also the same 

and has similar goals. So it becomes hard to convince an Agent 

with a utility u1 to join a coalition with another one with a 

utility u2; given u1 > u2. An example of these coalition issues 

could be the contact of availability arrangement between a WT 

(willing maximizing its operating time availability) and WF 

(willing minimizing electricity cost transport by temporary 

marginally lower tariff); the revenue that the WF earns is not 

obligatory credited to an individual WT, but the whole WF 

itself. Other examples of such situations, where strength 

cooperation between Agents is needed, are the optimal 

replacement interval for a certain component or the best 

scenario of the team employment for tasks shared at different 

wind farms. Therefore MAS regards several concepts in its 

analysis. It assigns Agents to analyze the so called Look-back 

database, in order to examine the past experiences; other 

Agents are assigned to explore the Look-Ahead database for 

information and forecasts (e.g. the electricity tariffs of the next 
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hour or days or also the power and weather forecasts as well as 

information concerning the stock keeping or to Team 

disposition). 

 

2. MAS MODULES 
 

An entire model based on the idea of categorizing the 

maintenance activities and the failed maintenance tasks in 

quality levels (Perfect, Imperfect, Minimal, Worse and Worst) 

introduced by [15] (see also [16] and [17]) is developed, where 

a Perfect maintenance task is a total replacement of wear out 

components or subassemblies, the Imperfect maintenance tasks 

are e.g. greasing, oiling, adjusting etc., and the Minimal 

maintenance task is reuse of old existing spare parts in another 

WT. Quality levels worse and worst maintenance are related to 

maintenance and repair induced failures. These maintenance 

activity levels have an obvious impact not only on the health 

and useful life of the components and subassemblies but also 

on future maintenance strategies. The whole model is created 

by taking into account the several factors i.e. financial, weather 

conditions and staff disposition (see fig. 5). It consists of five 

closely interconnected modules, which are the modules for: 

Failure-Rates, Production, Logistic, Weather and Cost. This 

separation provides the option of using different simulation 

methods as well as an easy extension. 

 

 
 
Figure 5: MAS Modules  

 

The systems and their subassemblies will be represented by 

appropriate Agents, which have their own parameters and 

methods that enable them to act and react with their 

environment. Each one of those systems will represent an 

environment of its subassemblies (e.g. Generator-environment). 

All systems of the WT are in turn part of their own environment 

named WT-Types-environment. The WTs at last are housed in 

the Farm-environment (see fig. 6). This interconnected scheme 

makes the communication for homogeneous Agents inside an 

environment easier; the Agent is therefore more autonomous 

and self-directed, more flexible and possesses the ability to 

learn and to adapt its behaviors based on experience. Autonomy 

is a very important difference between Agents and traditional 

programs; Ability to pursue goals in an autonomous way, 

without direct continuous interaction or commands from the 

user e.g.; given a vague/imprecise goal, the Agent must 

determine the best way to attain it. Agents decide for 

themselves whether or not to perform an action on request from 

another Agent, in contrast when a method is invoked on an 

Object, it is always executed. 

 

 
 
Figure 6: Interconnected Environment architecture  

 

2.1. FAILURE-RATES MODULE 
 

Based on the idea of characterizing the maintenance activities 

with quality levels, the Failure-Rate module triggers the 

interruptions in the Production module by message passing and 

calculates therefore the PM and repair costs for the actual 

activity. The failure rates are calculated and updated after each 

maintenance activity using a developed algorithm, thus it 

provides the Agents with the necessary updated input 

parameters over the failure behavior and failure frequency of 

the WT and their subcomponents continuously. For this first 

step, sources and information of the WMEP¹ failure database 

are explored and analyzed on their applicability for a showcase.  

 

Generally PM merges all maintenance activities which are not 

induced by a system failure. Two major criteria impact the 

failure rate; the mode of maintenance task (PM or corrective 

maintenance CM) and its associated maintenance interval 

impacts but also the level of quality (the so called effectiveness 

of maintenance task). Therefore the state after a maintenance 

action was performed on a component is supposed to be one of 

the following five levels: perfect, imperfect, minimal, worse or 

worst [15] see fig. 7. 

By the Perfect maintenance (PM or repair) the system state is 

restored to be ”as good as new”, and by the Imperfect 

maintenance (PM or repair) a maintenance action that restores 

the system to a state somewhere between ”as good as new” and 

”as bad as old”. Both Perfect and Imperfect maintenance will 

lead to decreasing of the failure rate. 
 

¹WMEP, the scientific measurement and evaluation program (WMEP), was 
conducted by the institute ISET from 1989 to 2006. During these 17 years 

193.000 monthly reports of operation and 64.000 maintenance & repair reports 

from 1,500 WTs were collected and analyzed [5]. The database of this program 
contains a quantity of detailed information about reliability and availability of 

WTs and subassemblies, the PM and repair costs, the failure causes, the failure 

effect and the removal of the malfunction. This provides one of the most 
comprehensive studies of the long-term behavior of WTs worldwide. 
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Figure 7: Maintenance Quality levels 

 

While by the Minimal maintenance (PM or repair) the system 

state is ”as bad as old” which therefore lead to no change of the 

failure rate. By the Worse (System is in operating state worse 

than just prior to the maintenance action) and Worst (System 

breaks down right after maintenance action) maintenance (PM 

or repair) the failure rates obviously increase after the 

maintenance action. 

A novelty was introduced by D. Lin and M. Zuo. [22] through 

categorizing the failure mechanisms into two concepts; 

maintainable failure mechanisms and non-maintainable failure 

mechanisms. PM (including tasks like e.g. Cleaning, Adjusting, 

Creasing, Oiling, and Inspection…) will affect maintainable 

failure mechanisms exclusively, whereas non-maintainable 

Failure mechanisms remain unaltered. Although many works 

consider the dependence between maintainable and non-

maintainable failure mechanisms [16], but for the simplicity of 

the modeling it’s more realistic to assume that both are 

independent. 

Therefore, the system failure rate λFailure(t) of the system 

(subcomponent) will take the form: 

 

𝜆𝐹𝑎𝑖𝑙𝑢𝑟𝑒(𝑡) =  𝜆𝑚𝑎𝑖𝑛𝑡(𝑡) + 𝜆𝑛𝑜𝑛_𝑚𝑎𝑖𝑛𝑡(𝑡) 
 

Furthermore, one of the important issues in optimal 

maintenance planning is the determination of a PM policy. Thus 

a PM policy specifies how PM activities should be scheduled. 

Generally PM policies can be divided into two main categories: 

periodic and sequential. Periodic PM ensures that a system 

(subcomponent) is maintained at integer multiples of some 

fixed time intervals and undergoes only minimal repair at 

failures between these PMs. Those minimal repairs only restore 

the function of the system (subcomponent) when it is failed, but 

do not change the general health condition of the system 

(subcomponent). The definition of sequential PM is quit the 

same as periodic PM with the only exception, that the system 

(subcomponent) is maintained at a sequence of time intervals 

which (may) have unequal lengths. Generally periodic PM is 

more convenient to schedule and easy to manage, whereas 

sequential PM is more realistic when the system 

(subcomponent) requires more frequent maintenance as it ages 

[22]. Each PM category has a different impact on the system 

(subcomponent) failure rate. 

 

The literature research shows that there are many works dealing 

with the impact of PM on the failure rate, but three approaches 

of them have been studied extensively; a Hazard Failure Rate 

model by Lie and Chun [23] and Nakagawa [24], [25], an Age 

Reduction model and a Hybrid model by Lin. et. al. [22]. 

 

Hazard Rate PM Model  

The hazard rate function after the i
th

 PM becomes:  

 

 𝑎𝑖𝜆𝑖−1(𝑡);  𝑓𝑜𝑟 𝑡 ∈ (𝑜; 𝑡𝑖+1 − 𝑡𝑖) 
 

when it was:  

 

  𝜆𝑖−1(𝑡);  𝑓𝑜𝑟 𝑡 ∈ (𝑜; 𝑡𝑖 − 𝑡𝑖−1)  
 

where ai > 1 is the adjustment factor for the hazard rate 

function due to the i
th

 PM. In addition, Nakagawa [25] also 

assumes that the hazard rate function is zero for a new piece of 

equipment. Based on these model assumptions, one can say that 

the hazard rate PM model represents the situation wherein the 

equipment's hazard rate function is an increasing function of 

time when there are no PM interventions, each PM resets the 

hazard rate function value to zero, and the rate of increase of 

the hazard rate function gets higher after each additional PM 

[22]. 

 

Age Reduction PM Model  

The effective age after the i
th

 PM reduces to biEi if the 

equipment's effective age was Ei just prior to this PM, where  

bi < 1 is the improvement factor in the effective age of the 

equipment due to the i
th

 PM; it is an indicator of the achieved 

quality level of PM activity. The effective age of equipment is 

the same as its actual age before the first PM is performed. 

The equipment's health condition right after the first PM is 

represented by its hazard rate function value which is equal to 

the same value as that when the equipment's actual age was 

b1t1. If we use λ0(t) to represent the failure rate function prior to 

the first PM for t ∈  (0; t1), then 

 

𝜆1(𝑡) =  𝜆0(𝑏1𝑡1 + 𝑡);  𝑓𝑜𝑟 𝑡 ∈  (0; 𝑡2  −  𝑡1) 
 

represents the failure rate function of the equipment in the time 

interval of (t1; t2). The hazard rate function of the equipment is 

then a function of its effective age and each PM reduces the 

effective age of the equipment to a certain extent and could be 

generally described as: 

 

𝜆𝑖(𝑡) =  𝜆𝑖−1(𝑏𝑖𝑡𝑖 + 𝑡);  𝑓𝑜𝑟 𝑡 ∈ (𝑜; 𝑡𝑖+1 − 𝑡𝑖) 
 

Hybrid Model  

The hybrid model proposed by Lin et al. [22] is used to model 

the effect of a PM activity on the failure rate function of 

maintainable failure modes. However, PM does not change the 

hazard rate function of non-maintainable failure modes. PM is 

performed at a sequence of intervals. The objective is to 

determine the optimal PM schedules to minimize the mean cost 
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rate. This hybrid model incorporate the advantages of the age 

reduction and hazard rate PM models. Generally the hybrid 

model ensures that the effects of a PM task are modeled by two 

major aspects: 

1. Long-term effect when the component is set into 

operation again (ai) 

2. Immediate impact after the PM is accomplished (bi). 

The failure rate after the i
th

 preventive maintenance 

activity becomes: 

 

                  𝜆𝑖(𝑡𝑖 + 𝑡) =  𝑎𝑖𝜆𝑖−1(𝑏𝑖𝑡𝑖 + 𝑡);  𝑓𝑜𝑟 𝑡 > 0 

 

Where ti is the time when the i
th

 PM is performed and t ∈  (0; 

ti+1 − ti). See fig. 8 for the comparison of the three PM models. 

 

λ(
t)

                                              t

Hybrid PM
Model

Failure Rate 
PM Model

Age Reduction 

PM Model

Before PM

After PM

t1 t2

Age 
Reduction First PM 

Time

λ0 (b1t1 +Δt)

a1λ0(b1t1+Δt)/ Δt

Δt

 
Figure 8: Comparison of the reported PM models 

 

2.2. PRODUCTION MODULE  
 

The Production module supplies the Agents with crucial 

information regarding the energy output and negotiates the best 

times of a maintenance measure based on power forecasts and 

SCADA data. The reliability-relevant SCADA operational data 

are first prepared and analyzed on their applicability in an 

earlier step. Subsequently, the power forecasts, already 

developed at Fraunhofer IWES and used by several WFOs and 

Transmission System Operators in Germany, are sighted, 

selected and forwarded as input parameters for the appropriate 

Agents. It provides the Logistic module with the needed 

information.  

 

2.3. WEATHER MODULE 
 

The development of the Weather module has the purpose to 

introduce weather conditions on basis of weather forecasts into 

maintenance planning. After identifying and evaluating existing 

meteorological aspects and their influence as well as relevant 

parameter for the maintenance, the results of the weather 

forecasts, bought from an accredited German institute for 

weather prognostics,   are made available as input data for the 

appropriate Agents.  

2.4. COST MODULE 
 

Costs play a vital role in the maintenance organization; with the 

help of the Cost module it is to be demonstrated, how costs can 

be considered, affected and reduced during the reliability-

oriented maintenance. Based on some basic maintenance Policy 

models dealing with cost issues e.g. ‘Total Replacement 

Models’, ‘Partial Replacement Models’ , ‘Replacement Models 

with Imperfect Maintenance’ or ‘Inspection Models’ [18], 

which give an estimation of the optimal interval point to make a 

replacement with minimal costs. This estimation takes into 

account the labor costs, components costs and material costs 

etc., all relevant cost parameters will be prepared as inputs for 

the appropriate Agents, who will cooperate to get the optimal 

policy model and therefore the best replacement time. For 

example by Total Replacement Models there are usually two 

types of replacement option: 

 Preventive replacement (PR), which follows a 

predetermined preventive maintenance policy.  

 Corrective replacement (CR); following the equipment 

failure. 

 

Generally Total Replacement Models consider the following 

policies: 

 Constant Interval Replacement (CIR), where the 

replacement is done after a certain constant time interval. 

 Age Based Replacement (ABR), where the replacement is 

done when the equipment reach a certain operating 

predetermined time-age. 

 

Constant Interval Replacement - CIR 

Usually the replacement in this model is done after the failure 

(CR) or after a certain constant time interval tp (PR). The aim of 

this model is how to determine the optimal time interval 

between two preventive replacements (see fig. 9) by using the 

optimization criteria that minimize the total expected cost per 

unit time. 

 

CR tp CR CRPR PR

t = 0

 
Figure 9: Component Maintenance lifetime 

 

When a failure occurs, it will take place within the time interval 

(o, tp), therefore the total expected cost per unit time TEC(tp) 

for this interval tp  is defined as [18]: 

 

Equation 1: 

𝑇𝐸𝐶(𝑡𝑝) =
𝑇𝐸𝐶(0, 𝑡𝑝)

𝐿𝑒𝑛𝑔𝑡ℎ(𝑜, 𝑡𝑝)
=  
𝐶𝑝 + 𝐶𝑐   ∗  𝑁(𝑡𝑝)

𝑡𝑝
 

 

The expected number of failures for the time interval tp will be 

[26]: 
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𝑁(𝑡𝑝) = ∫ 𝜆(𝑡)𝑑𝑡 
𝑡 

0

= ∫
𝑓(𝑡)

1 − 𝐹(𝑡)

𝑡 

𝑜

𝑑𝑡  

 

 

where λ(t) is the failure rate. 

 

Following this policy, the amount of failures is considerable, 

that means that many PRs could be done when the operating 

time of the equipment is bellow tp, which consequently makes 

this policy less efficient. 

 

Age Based Replacement - ABR 

In this case, the PR is done after the component reach a certain 

operating time-age (tp). In case of component failure a CR is 

done and the next PR is scheduled after a predefined time tp 

(see fig. 10). The optimum of this policy is here again by 

minimizing the function TEC(tp) (equation 3). 

 

CR

tp

CR CRPR PR

t = 0

PR

tptp

 
Figure 10: Age Based Replacement Maintenance policy 

 

In case the component reaches the PR time tp, this will happen 

with a probability of R(tp), or fail before that time with a 

probability equal to F(tp). The expected length of the cycle is 

therefore equal to tp times the probability of the cycle R(tp), in 

addition ti the expected length of the failure cycle times the 

probability of the failure F(tp). The length of the failure cycle 

can be estimated by calculating the expected value of the 

failure distribution M(tp) (equation 2), where f(t) is the time to 

failure probability density function [18]. 

 

Equation 2:  

𝑀(𝑡𝑝) = ∫
𝑡 ∗ 𝑓(𝑡)

𝐹(𝑡𝑝)

𝑡 

−∞ 

𝑑𝑡  

 

Equation 3:  

𝑇𝐸𝐶(𝑡𝑝) =  
𝐶𝑝𝑅(𝑡𝑝) +  𝐶𝑐   𝐹(𝑡𝑝)

𝑡𝑝𝑅(𝑡𝑝) +𝑀(𝑡𝑝)𝐹(𝑡𝑝)
 

 

The figure 11 illustrates the benefit of using CIR and ABR. 

While by CIR the replacement must already be done after a 

given period tp1 (which is the minimum of the function curve 

TEC(tp) for CIR ), the ABR policy enlarges the replacement 

time until an ulterior date tp2, using the life cycle of the 

component in a better way. 

 

TE
C(

t p
)

                                                                                         tp 

tp1 tp2

CIR 

ABR 

 
Figure 11: TEC(tp) plot for CIR and ABR policies 

 

2.5. LOGISTIC MODULE 
 

The consideration of logistics and resources factors is 

indispensable for the optimization of maintenance strategies for 

WTs/WF. The Logistic module will be interconnected with the 

Production module in order to manage the whole maintenance 

scheduling.  

Carrying out maintenance activities requires the utilization of 

different types of resources; spare parts and materials, help-

tools, manpower, instruments, money are examples of those 

resources. The management of these resources simultaneously, 

their planning so that the correct quantity of every resource is 

available in the time and form that is needed, turns most cases 

into an arduous task for which many WFO are not prepared 

[18]. As a consequence, some of WFO will incur a series of 

costs derived from the excessive possession of certain resources 

that are not necessary, whereas at the same time, the lack of 

other essential ones will lead to serious losses in their 

operations and a definitive decrease in the desired quality of 

service. Therefore, the activity of maintenance resources 

management can be seen as a critical activity for the 

maintenance function by the WFO/service companies [18].  

Within this module many input data (e.g. spare parts stock 

keeping, components costs, transport cost etc.) and different 

techniques and methods, of major application, for the 

management of maintenance resources (Maintenance Staff 

Planning and Scheduling, Maintenance Materials Requirements 

Planning...) will be available for the appropriate Agents, 

helping them suggesting optimal decisions in order to decrease 

the logistic burden and Life Cycle Costs. Some of the problems 

to deal with could be classified as follow: 

 How to determine the maintenance workflow. Classified 

by skills? 

 How to determine the ideal number of maintenance teams 

schedules? 
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 What is the quantity of normal hours extra hours, and 

hours to be contracted with external service companies, 

that will be necessary? 

 

Examples of the Agents optimal propositions, dealing with 

logistic module could be the decision whether to make a short, 

medium or long term scheduling maintenance activities for 

some components or WTs. 

Next figure (see fig. 12) illustrates again the interactions of all 

above modules inside MAS. Those interactions are in the reality 

a kind of communication between Agents of all modules. This 

communication is varying between sharing information, 

negotiation and forming coalitions, making the decision-

making more strength. 

 

  Wind turbine

P

t

Data 
Mining

Data 
Mining

W
S

t

c€
/K

W
h

t

InOperation

λ

Scheduled 
Inpection

Logistics module

Costs module

Failure-Rates module

W
ea

th
er

 
m

o
d

u
le

P
ro

d
u

ct
io

n
m

o
d

u
le

Energy Exchange 
Forecast

Weather Forecast

Energy demand Failure database

Resource 
Management

Stock 
keeping

Transport 
Availability

InFailure 

Time window

Power generation 
Forecast

SCADA

InRepair

Total Replacement

Replacement with ImPerf. 
Maint.Partial Replacement 

Inspection 
CBM

TBM

Agent NegotiationInformation

FBM

In PM

Component 
costs

Coalition

λ

t

 
Figure 12: interactions of all modules within MAS 

 

CONCLUSION 
The advantages of using AI have been described in the 

contribution. Sophisticated Tools using AI are able to improve 

operating maintenance activities and help the WFO managing 

their task planning, taking into account several surrounding 

conditions in the analysis. For doing so a methodology has to 

be developed which was briefly described in this paper. The 

following points should be kept in mind when investigating the 

use of AI in WT maintenance: 

 

 Using a common failure database enables sophisticated 

approaches by analyzing the history of the subassemblies 

in order to deduce and to forecast the failure behavior of 

different subassemblies e.g. by using AI. 

 DM and MAS are promising technologies in the field of 

maintenance of WT, but using them separately has some 

impairments. The use of a hybrid methodology to 

analyze dependencies between failure rates, weather 

conditions, logistics etc. is proposed. 

 Using several cost optimization methods/algorithms will 

help by making the optimal decision in both reducing 

costs and improving availability. 

 A balance between economic, reliability, availability and 

organization issues needs to be achieved by the model 

developed. 
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