
A publication by Fraunhofer IESE

Product Line Implementation Technologies

Component Technology View

Authors:
Stefan Kettemann,
Dirk Muthig
and Michalis Anastasopoulos

Funded by Stiftung Rheinland-Pfalz für 
Innovation, Project #15202-386261/51: 
“Entwicklung und Erprobung eines Meth-
odenleitfadens für Software-Produktlinien-
Implementierungstechnologien“

IESE-Report No. 015.03/E
Version 1.0
March 20, 2003

Fraunhofer Institut
Experimentelles

IESE

Software Engineering





Fraunhofer IESE is an institute of the 
Fraunhofer Gesellschaft.
The institute transfers innovative software 
development techniques, methods and 
tools into industrial practice, assists com-
panies in building software competencies 
customized to their needs, and helps them 
to establish a competetive market position.

Fraunhofer IESE is directed by
Prof. Dr. Dieter Rombach
Sauerwiesen 6
D-67661 Kaiserslautern





vCopyright  Fraunhofer IESE 2003

Executive Summary

Nearly all software organizations today develop and maintain more than a single 
product. This holds for organizations that develop tailored systems individually 
for single customers, as well as for organizations that develop products for a 
mass market. The products developed by an organization typically are similar 
applications in the same application domain. Hence, these products share some 
common characteristics and thus can be viewed as a software product line. 

To implement a product line approach in practice, special technologies are 
required that effectively support the identification of reusable artifacts, as well 
as explicit means for capturing and controlling commonalities and variabilities. 
The focus of the PoLITe project are product line technologies at the implementa-
tion level. PoLITe defines three categories of implementation technologies 
[MAL+02], namely configuration management, component technologies, and 
generative features of programming languages (including generators). This 
report summarizes the product line implementation aspects in the component 
technology dimension. 

The report first presents the term “component technologies” and its role in the 
PoLITe context, surveys the actual distribution of component technologies in 
practice. It then establishes a component model that facilitates the seamless 
integration of component technologies in a model-driven implementation pro-
cess. This implementation approach is subsequently embedded in a product line 
implementation process. Finally, the application of the principles is illustrated by 
a case study using J2EE/Enterprise Java Beans as component technology.

Keywords: software product lines, product line implementation technologies, variability 
mechanisms, component-based development



vi Copyright  Fraunhofer IESE 2003



viiCopyright  Fraunhofer IESE 2003

TABLE OF CONTENTS

1 Introduction 1
1.1 Product Line Implementation 1
1.2 Component Technology Dimension 3
1.3 Outline 4

2 Component Technologies 5
2.1 Core Concepts 5
2.2 Automation 7
2.3 State-Of-The-Practice 8
2.3.1 Component Object Model (COM) 8
2.3.2 .NET 10
2.3.3 Enterprise Java Beans (EJB) 12
2.3.4 CORBA Component Model (CCM) 15
2.4 Technology Selection 16

3 Component Model 17
3.1 Traditional Implementation Process 17
3.2 Benefits using a Component Architecture 18
3.3 Model Driven Architecture 19
3.4 Model Driven Component Implementation 21
3.5 Foundation for Model Transformations 24
3.5.1 Summary of the OMG’s framework for MDA 24
3.6 Defining a UML profile 27

4 Component Implementation Process 33
4.1 Model Driven Implementation Process and Infrastructure 33
4.1.1 Model Driven Implementation - Infrastructure Usage 33
4.1.2 Creating the Infrastructure 35
4.2 Separation Of Concerns 36
4.3 Evaluating the Improvements 37
4.3.1 Automation stands for Efficiency & Quality 37
4.3.2 Consistency & Traceability 38
4.3.3 Reducing Reengineering Activities 38
4.3.4 Integration & Software-Lifecycle Coverage 38
4.4 Realization of Refinement & Translation Patterns 39

5 Realization of Software Product Lines 41
5.1 Principles of Software Product Lines 41
5.2 Design Mechanisms for Variability 42
5.2.1 Traditional Approaches 43
5.2.2 Recent Approaches 46
5.3 Component Implementation in a Product Line Context 47

6 Case Study 49
6.1 Comments on Business Modeling with KobrA 49
6.2 Introduction to the Library System Case Study 50
6.2.1 Library System Specification 50
6.2.2 Library System Realization 51



viiiCopyright  Fraunhofer IESE 2003

6.3 Business Model of the LoanManager Component 51
6.3.1 LoanManager Specification 52
6.3.2 LoanManager Realization 52
6.4 Refining the LoanManager Component 53
6.4.1 Analyzing the Refinements 53
6.4.2 Formalizing Refinements with Refinement Patterns 56
6.5 Translating the LoanManager Component 58
6.5.1 Analyzing the Translation 58
6.5.2 Formalizing Translation with Translation Patterns 59
6.5.3 Automatic Generation of Source Code Artifacts 61

7 Summary and Outlook 63
7.1 Summary 63
7.2 Outlook 64

8 References 65



1

Introduction

Copyright  Fraunhofer IESE 2003

1 Introduction

Nearly all software organizations today develop and maintain more than a single 
product. This holds for organizations that develop tailored systems individually 
for single customers, as well as for organizations that develop products for a 
mass market. Even for organizations that believe to develop a single product 
only, surveys have uncovered that also these organizations spend most of their 
resources on tailoring their systems to the needs of individual customers or 
enhancing systems by features that are newly required by customers [KHS98], 
and thus also these organizations must maintain and evolve a set of customer-
specific variants. 

The products developed by an organization typically are similar applications in 
the same application domain. Hence, these products share some common char-
acteristics and thus can be viewed as a software product line. Typically, the com-
plexity and size of these software products, today, rapidly increases and custom-
ers are requesting more and more quality products tailored to their individual 
needs. Due to these increasing challenges, also the requirements on the devel-
opment skills of an organizations increase. Hence, there is a need for organiza-
tions to learn how to manage a product line. 

Software product lines are a reuse approach; the reuse approach that promises 
to master all of the described challenges [ABB+02]. To implement a product line 
approach in practice, special technologies are required that effectively support 
the identification of reusable artifacts, as well as explicit means for capturing 
and controlling commonalities and variabilities. The focus of the PoLITe project 
are product line technologies at the implementation level.

1.1 Product Line Implementation

In traditional software development approaches implementation typically means 
producing source code [Cop99]. The implementation activities refine a system’s 
architecture down to a level that can be interpreted by a machine. Hence, the 
information captured by implementation artifacts is at the lowest level of 
abstraction compared to the content of all other development artifacts. The 
implementation artifacts (i.e., the source code) can be transformed automati-
cally into an executable form. The implementation process is, at a general level, 



2

Introduction

Copyright  Fraunhofer IESE 2003

depicted in Figure 1 (using the IDEF0 notation). It covers all implementation-
related activities in the general product line life-cycle and integrates them into a 
single implementation process. Hence, this process only implicitly distinguishes 
between implementation-for-reuse and implementation-with-reuse. In the 
PoLITe project, we discuss implementation technologies in the context of this 
process because it allows both aspects of an implementation technology to be 
discussed together independent of life-cycle issues.

The PoLITe project defines three categories of implementation technologies 
[MAL+02], namely configuration management, component technologies, and 
generative features of programming languages (including generators). The three 

Figure 1:
Software implementa-
tion

Implementation

Translation
executable
software

machine 
(compiler, linker, …)

source code

implementation
technologies

programmer

architecture

[generator]

Implementation

Translation
executable
software

machine 
(compiler, linker, …)

source code

implementation
technologies

programmer

architecture

[generator]

Figure 2:Technology 
dimensions enabling the 
automation of imple-
mentation approaches

Component 
Technologies
(see chapter 3)

Configuration
Management

(see chapter 2)

Programming Languages, 
Generative Techniques

(see chapter 4)

Component 
Technologies
(see chapter 3)

Configuration
Management

(see chapter 2)

Programming Languages, 
Generative Techniques

(see chapter 4)



3

Introduction

Copyright  Fraunhofer IESE 2003

dimensions are depicted in Figure 2. Initially, each dimension is investigated sep-
arately. 

This report summarizes the product line implementation aspects in the compo-
nent technology dimension. 

1.2 Component Technology Dimension

This report purely presents an approach to manage currently available imple-
mentation technologies from a component technology point-of-view. Note that 
the other two dimensions, configuration management and programming lan-
guage technologies, are investigated and described in reports of their own 
[LM03], [PM02]. 

The underlying theme is to find an efficient bridge between product line archi-
tectures and its generic implementation. To understand the situation we first 
look at the way single systems are implemented. In single-system cases, soft-
ware is created on a one-by-one basis without any pro-active reuse activities. 
That is, the models describing a required system are realized straight-forward. 

In a product line context, the series of products delivered by an organization is 
seen as a series of products that are variations of the same infrastructure. From 
this viewpoint, models describe not only a single system but a set of similar sys-
tems in the same application domain. Hence, the models capture generic as well 
as variable features of the product family. 

This is where the component paradigm comes in - by encapsulating genericity 
and variability in separate components it facilitates to establish the required 
product line infrastructure. Building a specific member of the product line is 
then simply done by plugging in or plugging out the variable components that 
are required (or not required) for a specific product.

Product line approaches that apply these principles have primarily been concen-
trated on the activities producing models covering the right scope of genericity, 
that is, on activities early in the software engineering lifecycle [ABB+02]. The 
component technology dimension that is being surveyed in this report focuses 
on the phases later in the lifecycle where models are transferred into implemen-
tations using concrete component technologies. In this context, the report’s 
contribution is a model-driven implementation approach that is designed for a 
high automation rate. Finally, the presented optimization in the automation of 
development activities brings the report in line with the PoLITe focus on 
improvements in process-automation [MAL+02].



4

Introduction

Copyright  Fraunhofer IESE 2003

1.3 Outline

This report summarizes product line implementation technologies from a com-
ponent technology point-of-view. The remainder of the report is organized in 
the following way:

Chapter 2 defines the term “component”, surveys the actual distribution of 
component technologies in practice, and selects a component technology that is 
used in the case study: J2EE / Enterprise Java Beans (EJB).

Chapter 3 introduces a component model on the architectural level. This facili-
tates smooth transitions when proceeding from the architecture to the concrete 
component technology level during implementation. The conceptual correspon-
dence to Model Driven Architecture (MDA) and its automation principles is also 
presented. 

Chapter 4 presents the details of a semi-automated implementation process, i.e. 
involved models, artifacts and workflows. The presented work differs slightly 
from the approach suggested by the Object Management Group (OMG) 
[OMG01-A]. For example, so called refinements are introduced in order to 
explicitly comprehend and record engineering activities on the technological 
level. 

Chapter 5 integrates the suggested approach into the overall realization of 
product lines.

Chapter 6 illustrates and validates the presented concepts in a case study.

Chapter 7 summarizes the report and gives an outlook on future research activ-
ities to further improve the current state-of-the-practice.



5

Component Technologies

Copyright  Fraunhofer IESE 2003

2 Component Technologies

In this chapter we survey the following questions:

• What are the core concepts and -problems of components in industrial prac-
tice ?

• State-of-the-practice: What are the characteristics of conrete component-
technologies, especially in conjunction with the core concepts ?

2.1 Core Concepts

A commonly accepted definition for components is:

“A software component is a unit of composition with contractually specified 
interfaces and explicit context only. A software component can be deployed 
independently and is subject to composition by third parties“ ([Coi96]).

Collecting and refining the features of components we can summarize them as 
follows (See [Cle01], p. 350-404; , [Szy98], pp. 29) which is also depicted in Fig-
ure 3:

• Composition
• Interfaces
• Interconnection
• Communication Mechanisms
• Context Dependencies
• Visually Configuring & Composing
• Deployment



6

Component Technologies

Copyright  Fraunhofer IESE 2003

Figure 3:
Component Core 
Concepts

Composition

Component Composition is dealing with the inner structure of a component. 
Typically a component can consist of other components. This principle, called 
containment, can be recursively applied top-down which leads to containment 
trees.

Interfaces

Interfaces describe the interaction between a component and other software 
elements (e.g. other components). Syntactically component interfaces are 
described by an Interface Description Language (IDL). Normally there is a distinc-
tion between Export and Import interfaces. Export interfaces operate as callees 
providing services to callers (other software elements), whereas Import inter-
faces operate as callers themselves, i.e. they call services of other software ele-
ments.

Interconnections

Interconnections define which components communicate with each other. A so-
called MIL (Module Interconnection Language) describes such interconnections 
(elements: components, interfaces, connectors). Special cases in this area are: 

• Interface Adapters (when interfaces do not match exactly)
• Asynchronous Connections

Component A

Composition

Communication 
Mechanisms

Context Component
Context U

Context V

Bank

Component B

Component A

Component …

Component

Interfaces

Interconnections Bank CustomerOperations on interfaces of 
Bank

Results

-direct calls

- ---

-Internet

mechanisms



7

Component Technologies

Copyright  Fraunhofer IESE 2003

• Push and Pull Connections

Communication Mechanisms

Communication mechanisms constitute the technical backbone for components 
to communicate with each other. Java for example offers a mechanism called 
RMI (Remote Method Invocation) which enables the communication between 
remote software elements. Communication mechanisms play a crucial role for 
component technologies because they also define the restrictions for application 
integration. This becomes even more obvious if we understand that the internet 
has initiated a huge demand for application integration. Hence we can observe 
how it pushes new communication technologies like .Net or SOAP (Simple 
Object Access Protocol), all of them having the ultimate goal to integrate differ-
ent applications in a highly heterogenous environment. 

Context dependencies

A given component always makes assumptions about the context it will be used 
in. These assumptions are dependencies which decrease the range of systems 
that can use the component. Therefore dependencies should be minimized 
because fewer dependencies mean a wider range of systems that can use the 
component. Typical examples for such assumptions are: 

• usage of global variables (e.g. logfiles)
• interface types which restrict the interface to work only for one type
• assumption about communication mechnism (e.g. RMI)

In order to define the context in which it can be used, a component should con-
tain a self-contained context-description.

Visual Composition & Configuration

Components and their hitherto described core-concepts represent a new high-
level view on software artifacts. In order to enable a component-oriented devel-
opment it is required that component technology vendors support the visual 
composition & configuration (connections) of components.

2.2 Automation

So far, we have collected the constituting elements of component-technologies. 
However, we have not shown yet what the benefits of component-technologies 
are. Like in any production process also in software development a new technol-
ogy should improve productivity and quality. Both goals are usually accom-



8

Component Technologies

Copyright  Fraunhofer IESE 2003

plished by an increase in automation. Surveying this question in the context of 
component technologies we realize that there are several mechanisms of auto-
mation:

Each component technology brings along its own communication mechanism 
(see also next chapter).This relieves the developer from implementing mecha-
nisms of his own. Tools for enabling the visual composition & configuration 
of software components provide an effective human-oriented handling and also 
the generation of code from the visual representation. All the surveyed com-
ponent technologies provide additional services which increase productivity 
and quality of the programmers work. Examples of such services are: naming 
services, persistency, transaction management, security, concurrency.

2.3 State-Of-The-Practice

Referring to the component core-concepts that we have described above, we 
will now survey the following component technologies:

• COM, DCOM,
• .NET
• Enterprise Java Beans - EJBs
• CORBA Component Model - CCM

In addition to the component core-concepts we provide a section “General Pur-
pose Features” which gives an overview over those concepts which do not 
directly relate to components (see [GT00], pp. 10-13).

2.3.1 Component Object Model (COM)

COM/DCOM is Microsofts standard for component-models. It is an evolved 
standard which is reflected in different names for the different versions. The ini-
tial version COM (Component Object Model) adresses the early version which 
can only be applied in a non-distributed environment. DCOM (Distributed 
Component Object Model) is a later enhanced version which supports distrib-
uted environments. Although initially implemented only for Microsoft platforms 
(Win95/98, WindowsNT, Win2000) it is now also available on other platform 
like Solaris, OS/390 and Mac OS, thus enabling to use it in heterogenous envi-
ronments. As described in [EE1998], p. 19-26, COM’s philosophy is that compo-
nents are parts of software in binary form which shall facilitate integration and 
reuse of software. Hence COM defines a binary standard for component-
interoperability.

Composition



9

Component Technologies

Copyright  Fraunhofer IESE 2003

COM provides two alternatives for Composition - Containment and Aggrega-
tion.

Interfaces

A central concept of COM-components is that their behaviour is defined in an 
interface which resembles a typed contract between the component and a 
potential client. There can be multiple interfaces for one COM-component. The 
implementation of an interface is not done on component level but rather on 
class level, i.e. a so called COM class which resides in the COM component 
implements the interface. COM allows to extend a component with new inter-
faces (existing interfaces have to be kept untouched) which provides a kind of 
versioning. Interface descriptions are written in MIDL (Microsoft Interface Defini-
tion Language)

Interconnection

Eventhandling in COM is done via so-called connection points: the sender 
defines outgoing interfaces, the receiver defines an eventsink. 

Communication Mechanisms

COM provides a communication mechanism of its own using a COM-server in 
the background which processes the communication between two components 
which reside on the same machine. This means that COM-communication is 
restricted to a non-distributed environment. DCOM is showing a clear extension 
here, allowing the communication between COM components in a distributed 
environment (i.e. separate machines connected via a network). 

Context & Dependencies

However, the most relevant context-dependency is hidden here : a COM-com-
ponent assumes that it communicates with another COM-component. This 
means that communication to non-COM components is not supported. (see 
[Wes02], p.6).

Visual Configuration & Composition

Visual Programming is only provided for ActiveX Controls (which are based on 
COM), but not for COM-components.

Deployment

Installation is done by registering DLL- or EXE-files into the windows registry. 
There are no further preconditions for their activation. 



10

Component Technologies

Copyright  Fraunhofer IESE 2003

General Purpose Features

COM is defining a binary standard which is furthermore independent of the pro-
gramming language. For example it doesn’t make a difference if components 
are developed with Visual C++ or Visual Basic. Usually, COM-components are 
realized via classes (Component structure). Persistency has to be implemented 
by the developer, it is eased by using services from a mechanism called Struc-
tured Storage. Transactions are possible either using Structured Storage or 
Microsoft Transaction Server (MTS). Mechanisms for security, concurrency, 
memory management and exception handling are available. The Microsoft 
Foundations Classes (MFC) and the Active X Template Library (ATL) are the two 
most popular frameworks for developing COM-components. Dynamic Loading 
is done with Dynamic Link Libraries (DLLs). 

2.3.2 .NET

In .NET Microsoft has removed many of the weak points in the COM/DCOM 
architecture. Therefore it can be seen as the consequential advancement of 
COM. Interoperability between different technologies is maybe the most impor-
tant innovation:

The Internet and new hardware-platforms (e.g. PDA’s) generate a huge demand 
for interoperability between different platforms and applications. COM doesn’t 
address this communication problem as it only supports communication 
between components of the same technology - COM. .NET is filling this gap, 
adressing explicitly internet-interoperability and platform independency (see 
[Wes02], p.13): 

• .NET has to provide a platform for the use and offer of component-services in 
the Internet. 

• . NET has to support standards in order to provide interoperability with Inter-
net software services based on other platforms.

• . Net has to be leightweight enough to be deployed on a variety of platforms.

The key concepts for providing application-interoperability over the Internet are 
(XML-) Webservices & SOAP. A Webservice is a website offering an XML-
based API. The API defines all functions the service consists of. However, it does 
not specify the implementation, i.e. how the functions are realized. A caller 
sends requests to the service via XML-packages (specifying methodname & 
parameters), which are responded in the same way, i.e. with XML-packages (see 
Figure ). Thus platform-independency is established - it doesn’t matter for caller 
or service, which platform is actually used internally. In addition, an XML-based 



11

Component Technologies

Copyright  Fraunhofer IESE 2003

standard describing Webservice-calls is required. The quasi-standard here is 
SOAP - Simple Object Access Protocol.

Figure 4:
Interoperability of 
Internet compo-
nents cooperating as 
Webservices

We can summarize that Webservices are an internet-compatible concept for 
components. The implementation of a given Webservice-API can be done with 
any .NET-language (e.g. VB, C#) by implementing respective classes and meth-
ods. In addition to the webservice concept which allows remote interoperability, 
.NET also provides a binary component-concept which defines how components 
are physically deployed on a given hardware. These physical runtime entities are 
called assemblies (see - general purpose features).

Composition

Interfaces

In .NET the each Webservice is specified by XML-based APIs. They represent 
interfaces (see also communication mechanisms).

Interconnection

Communication Mechanisms

With SOAP communication is possible between components built from different 
component technologies (see the introduction to .NET above).

Context & Dependencies

Webservice A

Client 1

Webservice B

Webservice C

XML / SOAP
XML / SOAP

XML / SOAP

HTML

Client 2
XML / SOAP



12

Component Technologies

Copyright  Fraunhofer IESE 2003

While DCOM restricted caller & service to use the same technology (DCOM), 
with Webservices & SOAP, .NET has removed this dependency.

Visual Configuration & Composition

Deployment

The deployment-entities in .NET are called assemblies. They are obtained by 
compiling the source code to executable binary files. For deployment these 
binary components are held in one-project-specific folder. Additionally each 
assembly contains a so-called Manifest which holds the whole metainformation 
(types, interfaces) of the assembly. This means that in . NET installed code and 
the required metainformation constitute one entity. This deployment principle 
leads to more robust installations compared to COM where the metainforma-
tion was held in one place, the registry. The latter one lead to a lot of problems 
as it happened quite often that different installations mutually overwrote their 
respective metainformation. 

2.3.3 Enterprise Java Beans (EJB)

The EJB-technology is developed by SUN Microsystems. In contrast to COM 
which is a proprietary technology (Microsoft), a lot of industrial partners like 
IBM, Oracle, Bea were involved in the specification process of EJBs. Therefore, 
the EJB specification has the character of a quasi standard.

An Enterprise Java Bean is a component which can be deployed wherever an EJB 
Server is installed. A bean does not communicate directly with other compo-
nents, but is always running wrapped in a special environment, called EJB-con-
tainer. The container provides additional services like the bean’s invocation, per-
sistency and security (see Figure 5). 



13

Component Technologies

Copyright  Fraunhofer IESE 2003

Figure 5:
EJBs, EJB-Container 
& EJB-Server

Furthermore the specification EJB 2.0 distinguishes three kinds of beans: 

• Entity Beans are persistent in the database (e.g. customer information),
• Session Beans are not persistent - their maximum lifetime is the lifetime of a 

session (e.g. shopping basket),
• Message Driven Beans provide in their interfaces asynchronous messages 

instead of synchronous methods - they are used for the implementation of 
message-oriented services.

Composition

EJB does not provide mechanisms for composition, yet it is possible for an 
instance to reference other instances via Remote Interface.

Interfaces

EJBs require two interfaces. The home interface defines lifecycle-methods (e.g. 
create, destroy) whereas the remote interface specifies the businesslogic behav-
iour. 

Interconnection

Communication Mechanisms

For a remote EJB-client the EJB system consists only of the bean’s remote and 
home interface, everything else is invisible. The EJB-server has to support this cli-
ent view. This means that he can use any protocol for distributed object services 

EJB

EJB-Container

EJB-Server

EJB-Client - Persistence Management

- TransactionManagement

- Security Management



14

Component Technologies

Copyright  Fraunhofer IESE 2003

like CORBA IIOP or Java RMI, but this must map to the Java RMI-IIOP program-
ming model [Mon01].

Context & Dependencies

Context-descriptions are done in the so-called Component Contract of the EJB-
Container.

Visual Configuration & Composition

As component attributes and events are not explicitly handled, they cannot be 
handled via Visual Programming.

Deployment

For each Bean a so-called deployment descriptor contains relevant metainforma-
tion which specifies the Beans behaviour concerning persistency, transaction 
support and security. 

General Purpose Features

EJBs (as well as java) are translated into a portable bytecode that represents the 
binary standard. The component model is not (!) independent from the pro-
gramming language, as at the moment the implementation can be done only in 
java. Encapsulation is handled via interfaces so that there is no direct access to 
inner component-data. The mechanisms for identity are naming conventions on 
component level, whereas on instance level there is no explicit identity (like in 
COM there is only implicit identity in the sense that it can be checked if two ref-
erences refer to the same object). There is no mechanism for versioning EJB’s. 
Scalability is explicitly taken care of in the EJB-architecture so that availability can 
be maintained even with an increase in components and clients. Although EJB 
does not provide an explicit mechanism for data transfer, it may be imple-
mented via RMI (Remote Method Invocation). EJB-components are implemented 
via classes. Persistency & transaction support is integral part of the EJB architec-
ture. EJB provides mechanisms for security, concurrency, memory management 
and exception handling. Frameworks: For the development of EJBs the package 
“javax.ejb“ is required. In addition the used IDE may require proprietary exten-
sions. Dynamic Loading: Currently it is not possible to extend a running EJB 
application server with EJB-components. EJBs are distributed as EJB.jar-files, 
their installation is mostly done via startscripts. The activation process requires 
separate preparation steps.

Despite the fact that EJB is still a young and evolving technology, it has already 
gained a good resonance in the market and is estimated to play a kex role in the 
future component market.



15

Component Technologies

Copyright  Fraunhofer IESE 2003

2.3.4 CORBA Component Model (CCM)

CORBA can be characterized as an open standard that is defined by the OMG 
(Object Management Group), a consortium of numerous members from indus-
try. Like in EJB, CORBA’s component model is using containers where compo-
nents are embedded. Each component and its container has to conform to one 
out of 4 predefined component-types: service, session, process and entity. The 
containers provide their components with services like persistence or transaction 
support (container managed persistence / transactions), see[SP01].

Composition

Composition is done with the relationship service.

Interfaces

IDL (Interface Definition Language) is used for the Interface descriptions.

Interconnection

Communication Mechanisms

CORBA was designed to enable open interconnection of a wide variety of lan-
guages, implementations and platforms. Thus CORBA-components do not inter-
operate on binary level, but use a high-level protocol, IIOP (Internet interORB 
protocol). 

Context & Dependencies

Visual Configuration & Composition

So far, CORBA doesn’t support visual programming.

General Purpose Features

Platform independency is one of the key-features in CORBA’s architecture. 
There are numerous languages in which CORBA-components can be imple-
mented. Encapsulation is provided via interfacing like in COM & EJB. Mecha-
nisms for identity are also integrated. Services for administration of component-
versions are under specification. With the publisher-subscribe model and the 
event service CORBA provides powerful concepts for eventhandling. Mecha-
nisms for datatransfer are available since version 3.0. The mappings from 
CORBA-IDLs to a specific language is handled differently by the different ven-
dors. CORBA defines mechanisms for persistency but they are rarely supported 
by vendors. Flat and nested transactions are supported. Mechanisms for secu-
rity, concurrency, memory management and exception handling are provided. 



16

Component Technologies

Copyright  Fraunhofer IESE 2003

Frameworks are available from different vendors. CORBA allows dynamic load-
ing. The physical distribution form depends on the programming language, for 
example java bytecode-files are used. Components are installed by registration 
in the implementation repository. Activation requires starting of a background 
process (daemon).

2.4 Technology Selection

In an industrial project, a specific technology has to be chosen for the imple-
mentation. The selection has to take into account requirements that are crucial 
for the to-be-implemented system. For example, a banking system requires that 
the component technology provides a thorough support for transaction man-
agement, security and authentication. Our purpose in this survey - illustration 
and validation of the presented implementation approach - does not predefine 
certain technical requirements. It is sufficient that the technology follows a com-
ponent-oriented paradigm. Randomly we chose EJB for our case-studies, see 
Chapter 6.



17

Component Model

Copyright  Fraunhofer IESE 2003

3 Component Model

In the last chapter we had a thorough look at the constituting elements of com-
ponent technologies. In this chapter we present a component model that forms 
the integrating basis in a component-based software development process. The 
integration of principles derived from Model Driven Architecture (MDA) allows 
to automate considerable parts of the implementation process.

Starting point of our survey is the analysis of the traditional implementation pro-
cess and its shortcomings.

3.1 Traditional Implementation Process

In a traditional implementation process (see Figure 6) a programmer would 
directly implement the source code from a technology-independent architec-
ture.

Figure 6:
Traditional Imple-
mentation Process

Unfortunately this approach bears several disadvantages:

• Paradigm Gap : Current architectures being used do not capture compo-
nents (this is because approaches for modeling components on an abstract 
level are relatively new, e.g. [ABB+02]). This means that suddenly - on the 
implementation level - a component-concept has to be introduced. This para-

Source Code Binary-Code

Binary

Implementation

Representation

Level of Abstraction

Requirements

Analysis

Architecture

Source Code

Implementation



18

Component Model

Copyright  Fraunhofer IESE 2003

digm shift from e.g. an object oriented model into a component-oriented 
one is likely to produce problems such as inconsistencies and errors.

• Poor Reuse & Flexibility : If the architecture does not cover components 
(see above) the only available component-artifacts will be the technology-
dependent component implementation. This will make it quite hard to adopt 
the component implementation to another component technology. As a 
component implementation contains the specifica of technology A it cannot 
be transformed directly to technology B, rather the (full) implementation pro-
cess has to executed again.

• Missing Automation (poor efficiency and quality) : The implementation 
process itself is 100% individual intellectual work where the quality of the 
implementation totally depends on the individual developers capabilities and 
intuition. We will show that there is quite a big amount of activities that 
could be automated resulting in a higher productivity and quality.

These disadvantages can be overcome with the help of a component architec-
ture and a systematic way of doing the implementation step. (discussed in the 
next two chapters).

3.2 Benefits using a Component Architecture

A component architecture that explicitly adresses components helps overcoming 
two of the mentioned problems - namely the paradigm gap and poor reuse (see 
Figure 7). Using a component architecture a paradigm gap just doesn’t exist 
because component architecture and component implementation speak the 
same language - both are talking in “components”. This facilitates the imple-
mentation with a concrete component technology. And since the component 
architecture is a high level artifact which abstracts from technology it can be 
reused for the implementation with any component technology.



19

Component Model

Copyright  Fraunhofer IESE 2003

Figure 7:
Implementation 
using a component 
architecture

But what is a component architecture and how does it look like ?

Cheesman and Daniels provide a definition which complies with most of the ele-
ments we have elaborated so far (see [CD00], p.13 ):

“.. a Component Architecture is a set of applicationlevel software compo-
nents, their structural relationships, and their behavioural dependencies.“ 

In our context a component architecture is a component-oriented model of a 
business application. The model aspect requires a meta model that reflects the 
characteristics of the above definition. Such meta models are just being devel-
oped. In this report we are applying the KobrA-method as one possible meta 
model ([ABB+02]). The advantage of this method is that it is built up on top of 
UML introducing only a few extensions ( for example the notion of a component 
as modeling entity).

The description of the KobrA method is out of scope in this report, for details 
please refer to [ABB+02]. The model examples used in the case study should be 
suited to make someone familiar with the method’s principles.

3.3 Model Driven Architecture

The Model Driven Architecture - MDA - is an initiative of the OMG. Its goal is to 
create a higher return of investment for the development of IT applications by 
reusing Business Models over changing platforms and automating a consider-
able amount of current implementation efforts. This is reasonable because busi-

Im
plem

entation

Representation

Le
ve

l o
f 

A
b

st
ra

ct
io

n
Architecture (not component-oriented)

Component 
Implementation 
(Source Code)

Traditional Implementation Component oriented Implementation 

Im
plem

entation

Component Architecture

Component 
Implementation 
(Source Code)

(-) Paradigm Gap
(-) Poor Reuse

(+) Component Paradigm
(+) Reuse

Representation
Le

ve
l o

f 
A

b
st

ra
ct

io
n



20

Component Model

Copyright  Fraunhofer IESE 2003

ness models tend to change far less often than technology/platform does. 
Therefore MDA focuses on models placing them at the center of development 
and treat them as the key IT investments.

Separating Business Logic from Technology

In order to facilitate the migration to any upcoming technology the Business 
Model needs to be totally independent from any technology. In the terms of the 
OMG these models are called Platform Independent Models - PIMs. Using 
technology-specific transformations the PIMs are transformed into Platform 
Specific Models - PSMs. Figure 8 shows how different platform specific mod-
els are derived from one platform indepenedent model. Finally the artifacts on 
code level are produced from the specific PSM (see also [OMG01-B] ). The clear 
separation from each other allows that the PIM be reused and adapted to any 
technology. Furthermore the adaption to each technology can be highly auto-
mated by Transformations. Reuse and automation can improve drastically the 
productivty & quality of software development & maintenance. Thus the invest-
ment in establishing PIMs promises high RoIs.

Figure 8:
PIMs and PSMs in 
the MDA approach

MDA recommends the UML as meta model to be used for the business model-
ing. Additionally the OMG is specifying standards for industry-specific UML pro-
files. The goal here is to provide standardized UML extensions that cover the 
specific characteristics of a business area so that the MDA approach can be real-
ized for each industry and its specific needs. For example UML profiles are being 
defined for the following areas: Manufacturing, Finance, Space, E-Commerce, 
Transportation, Telecom, Healthcare and more.

Business Model

PSM 1 (e.g. COM)

Transformation 
for Platform 1

PIM

PSM PSM 2 (e.g. EJB)

Source Code

Config Files

Application

Artifacts

Reuse PIM for new Platform

Transformation 
for Platform 2

… (others)

Source Code

Config Files

… (others)

produce

transform



21

Component Model

Copyright  Fraunhofer IESE 2003

3.4 Model Driven Component Implementation

Our approach follows the MDA principles by focusing on a technology indepen-
dent business model and transforming it as automized as possible into a tech-
nology dependent model that is the basis for the implementation artifacts on 
code level. In the context of component technologies however, we favorize a 
component-oriented business model. The component architecture and com-
ponent implementation architecture in our approach (Figure 9) correspond 
to the PIM and PSM of the MDA. Substantially we integrate component-orien-
tation into the MDA approach as this provides a more seamless implementation 
process in the context of component technologies.

Figure 9:
Separating business 
logic from technol-
ogy

The component architecture captures the business logic of a specific domain, 
e.g. a banking system. This engineering activity is technology-independent and 
focuses on specifying and modeling the businesslogic. It is not the focus of this 
survey so we will not describe further details here, for a detailed description 
please refer to [ABB+02], and [CD00].

The component implementation architecture adds technology-specific details to 
the component architecture. This step is a kind of refinement / specialization 
towards the concrete technology-infrastructure and it is probable that we 
require additional modeling elements in order to express this refinement.

Automating the implementation process

At the moment MDA remains vague in some aspects especially when it comes 
to the details of concrete transformations. Actually this is one of the key issues 
of this survey - finding out how exactly these transformations look like and how 
they can be automated in a component-oriented implementation process.

In this survey we build upon the work of Bunse who analyzed the automation of 
object oriented implementation processes (see [Bun01]). He found that the tra-

Component Architecture Component Implementation 
Architecture

Component

Transformation

Component Technology

(e.g. COM)

Businesslogic

(technology-independent)



22

Component Model

Copyright  Fraunhofer IESE 2003

ditional implementation step should be replaced by two subsequent steps 
refinement & Translation (Figure 10).

Figure 10:
Refinement and 
Translation Patterns

Refinement transforms a high-level design model (abstraction) into a low-level 
implementation model (realization) which is closer to the implementation. In 
general it can be viewed as the relationship between two descriptions at a dif-
ferent level of detail, i.e. the abstraction contains less information than the real-
ization. Translation transforms the implementation level model into source 
code. In contrast to refinement translation describes a relation between two 
descriptions at the same level of detail, but using different notations.

Both steps can be (semi-)automated using transformation rules called refine-
ment and translation patterns.

Refinement & Translation in a Component Context

We postulated before that the implementation of software components should 
be based on a component architecture (Chapter 3.2), i.e. a business model that 
is instantiated from a component meta model. Executing refinements & transla-
tions on such a component architecture leads us to the implementation process 
depicted in Figure 11.

UML
Model

Source Code
(e.g. VB)

Binary-Code

Binary

Refinement

Translation

Representation

Level of Abstraction

Requirements

Analysis

Design (Object-Oriented Model in UML)

Implementation Level
Model (UML)

Source Code



23

Component Model

Copyright  Fraunhofer IESE 2003

Figure 11:
Component-ori-
ented implementa-
tion process with 
refinement & trans-
lation patterns

This simplified view of the process and its artifacts will be detailed in Chapter 4 
and the case study (Chapter 6). At this point we only want to summarize impor-
tant results from these chapters: compared to the traditional one (Chapter 3.1) 
a component-oriented implementation process using refinement & translation 
patterns has the following benefits :

• Consistency : the component paradigm is applied throughout all levels of 
abstraction.

• Reuse Components in different systems : developing software compo-
nents is quite different from software systems as the focus is on the develop-
ment of independent components that can be reused in other systems / con-
texts. This represents already a first step into the direction of system families / 
product lines that are built up from a pool of reusable components. 

• Productivity & Quality: increases through the automation of the refine-
ment- & translation steps.

Component refinement as it is described in this survey differs from the refine-
ment discussed by Bunse. The two main differences are that refinement here

• (1) is technology-specific (which is not the case in Bunse’s work)
• (2) is not a pure transformation step but contains technical decisions that 

have to be made, e.g. decisions concerning persistency and transaction sup-
port and

• (3) tends to consist of sequences rather than single independent refinements.

(UML)
Model

Source Code
(e.g. java)

Binary-Code

Binary

Refinement

Translation

Requirements

Analysis

Component Architecture

Component Implementation 
Architecture (e.g. for EJB)

Source Code



24

Component Model

Copyright  Fraunhofer IESE 2003

3.5 Foundation for Model Transformations

The (semi-) automatic transformation between models due to the MDA 
approach requires a sound theoretical basis. Therefore we present the key con-
cepts that the OMG developed and recommends for the implementation of the 
MDA approach.

3.5.1 Summary of the OMG’s framework for MDA

The framework that the OMG developed for the realization of the MDA is quite 
huge. Therefore we can give only a rough description of the involved concepts. 
The presentation specializes the OMG’s work in so far as it puts a specific focus 
on components.

Meta Models

As we mentioned before, when modeling an application we are using the for-
mal modeling elements of a meta-model. For example class-boxes are a typical 
modeling element provided by an object meta model like UML. 

Component Meta Model

The role of a component meta model is to provide the formal notation and its 
elements which are required for modeling a component architecture. That is it 
provides formal elements to describe

• the parts a component may be constituted from,
• the different types it can be of,
• the structural and behavioral relationships between components.

Transformations

For achieving a systematic and efficient transformation there are some prelimi-
nary considerations, see also Figure 12:

The transformation will rely on transformation rules based on the formal ele-
ments provided by the meta model. This means we need meta models for both 
models: an component meta model defining the formal elements an abstract 
component architecture is built from plus an component implementation 
meta model defining the formal elements an component implementation 
architecture is constituted from. The dotted lines indicate that the meta model is 
not an input to the model instantiation but rather a constraint which defines 
which modeling elements are to be used. Reverse transformations from imple-



25

Component Model

Copyright  Fraunhofer IESE 2003

mentation architecture towards abstract architecture may be required, for 
example because of maintenance activities.

Figure 12:
Meta Models and 
Transformation 
Rules

The transformation rules can be made consistent if both meta models are 
derived from a general concept for meta models. This may seem a bit exagger-
ated at first glance but we will show in the next section that such a meta meta 
model is not only existing - the OMG’s Meta Object Facility (MOF) - but that it 
was introduced for exactly this purpose: to facilitate the transformation of mod-
els based on different metamodels into each other. The benefit of such a meta-
model is that tools can be developed that can automatically transform models 
into each other.

MOF - Meta Object Facility

The Meta Object Facility defines the core constructs that constitute a meta-
model, i.e. a metamodel is modeled by using the MOF core constructs.

The Meta Object Facility can be applied in a variaty of domains and is repository-
oriented, i.e. it facilitates tool support. These and other advantages make the 
MOF and the MDA initiative face a great support within the scientific commu-
nity. It is expected that future technologies and tool vendors will integrate with 
the related OMG’s specifications. As a characteristic example we can mention 
the Open Information Model extensively used by the Microsoft Repository and 
developed by the Metadata Coalition which according to OMG sources 
[OMG00-B] will merge with the OMG. 

Component Architecture Component Implementation

Architecture

Component

Transformations

Component Implementation 
Meta Model

Component Meta Model Transformation rules

Meta Meta Model



26

Component Model

Copyright  Fraunhofer IESE 2003

UML Profiles

It is quite easy to create MOF-conform meta-models by using the UML profile 
mechanism. The latter is intended for the purpose of defining a tailored set of 
modeling concepts together with rules for their use. An UML profile is created 
as an extension of the standard UML using predefined extension mechanisms 
like stereotypes, constraints, tag definitions and tagged values (see [OMG01-A], 
2-74 to 2-85). As UML is based on MOF a created UML profile is automatically 
conformant to MOF. If the predefined extension mechanisms are not sufficient, 
it is possible to extend the UML metamodel by adding new constructs which 
must be derived from the MOF meta-meta model. This is an optional step to be 
considered during the creation of a UML profile. Both abstract and implementa-
tion metamodels can be described as UML profiles. 

Moreover, using the UML enables the easier description of implementation 
metamodels since the according model elements can be found in the UML 
metamodel. Consider an interface as an example. Describing an interface with 
UML is no problem, since the UML specification covers interfaces while the 
MOF, being more abstract, does not. In Chapter 4 we define a process that 
describes the creation of a UML profile.

XMI - XML Metadata Interchange

The OMG also specifies how MOF-conformant metamodels can be formalized 
using a XML-dialect for Metamodel Interchange (XMI). Based on XMI it is possi-
ble to develop tools that store, exchange, manage and transform meta models. 
A subset of XMI, the so-called XMI diffferences are capable of formally describ-
ing the differences between models and thus facilitate the transformation 
between different models. Using XMI-differences, transformations are per-
formed based on three elementary operations: add, delete, replace. In general a 
transformation can be described as follows:

New Model = Old Model + Differences

In our context the XMI differences will be used to transform abstract models 
into implementation models:

Implementation Model = Abstract Model + Differences

XSLT

All parts of the above equation are XMI documents. However, instead of XMI 
differences XSLT could be used. XMI avoids the use of XSLT transformations 
which are a standard way of transforming XML documents in arbitrary formats 
including XML itself. The disandvantage of XSLT is its relative complexity which 



27

Component Model

Copyright  Fraunhofer IESE 2003

can make writing the code difficult and error-prone. XSLT is necessary in case 
that the XMI descriptions are to be transformed to formats different than XML.

The main difference between the XMI difference and the XSLT approach is that 
the former must be used with a decision model. That means that it must be 
firstly decided what is to be replaced, deleted or added and subsequently these 
decisions must be described as XMI differences. On the contrary with XSLT deci-
sions or rules can be described directly. XSLT is rich enough to allow the descrip-
tion of the transformation logic as a collection of XSLT scripts. Another point to 
consider is the tool support which in case of XSLT appears better. We are not 
aware of any tool that can interpret XMI differences.

Conclusion

Specializing the OMG’s MDA approach for component-oriented implementation 
results in the transformation process depicted in Figure 13.

Figure 13:
Transforming mod-
els using XMI / XSLT

3.6 Defining a UML profile

In this section we propose a process for the UML profile as depicted in Figure 
14.

A UML profile extends the basic UML metamodel using standard extension 
mechanisms defined in the UML specification. According to [Gre01] it can 
include one or more of the following:

Component Architecture Component Implementation 
Architecture

Component

Transformations

Meta Meta Model

(Meta Object Facility, MOF)

Component Implementation 
Meta model

UML-Profile

Component Meta model

UML-Profile

XMI, XSLT

Transformation rules



28

Component Model

Copyright  Fraunhofer IESE 2003

1 Standard extensions beyond those specified by the identified subset of the 
UML metamodel. A standard extension is an instance of the UML Stereotype, 
Tagged Value or Constraint metaclasses.

2 Semantics, beyond those supplied by the specified subset of the UML meta-
model, defined using natural language. 

3 Well-formedness rules, beyond those supplied by the specified subset of 
the UML metamodel, expressed as Constraints written in the Object Con-
straint Language (OCL). 

4 Common model elements, which are pre-defined instances of UML meta-
model elements. The definitions of common model elements may use the 
standard extensions defined by the profile, and are constrained by the formal 
and informal semantics defined by the profile. 

5 UML metamodel extensions created by defining new metaclasses using 
the Meta Object Facility. UML metamodel extensions should be introduced 
only when the standard extension mechanisms can not be used to accom-
plish the desired result, since their use may prevent some tools from reading 
and writing the resulting models.



29

Component Model

Copyright  Fraunhofer IESE 2003

Figure 14:Process of 
UML profile creation

For the creation of architectural profiles we propose the use of the UML Core 
package in combination with the MOF Model package (in case that meta-
model extensions become necessary). For the implementation profiles the NOF 
Core package is more appropriate since its primary goal is to be as close as pos-
sible to the implementation and to that end it provides many useful model ele-
ments. In any case the process will mainly deal with Name spaces which will be 
stepwise refined through the use of the packages just mentioned.

Find the 
Classifiers

Find global typed 
elements Attach PL tags

Elements for 
starting with the 
profile definition 

are listed

Relationships are 
considered - More 

elements have 
appeared

Semantics are 
described

Identify 
start-up elements Consider Relationships Describe semantics

Consider stereotyping 
classifiers and their 

elements

Consider predefining 
common elements Attach constraints

Stereotypes 
are given - 

More 
predefined 

elements are 
created

Predefined 
Common 

Elements are 
captured

Constraints 
attached

Classifiers are 
identified

Global typed 
elements are found

PL tags 
attached

Refine  
Classifiers

Consider tagging each 
element found before

Describe 
well-formedness rules 
(optionally use OCL)

Classifiers are 
refined - Additional 
elements were found

Tags are given
Well-formedness 
rules are created



30

Component Model

Copyright  Fraunhofer IESE 2003

The process starts with the identification of the artifacts that will be modelled in 
the UML profile. These artifacts are model elements of the profile and therefore 
can be treated as instances of the MOF construct ModelElement. A ModelEle-
ment can be one of the following: An Import, a Namespace, a Constraint, a Tag 
or a TypedElement.

After the model elements have been collected we continue the process with the 
collection of the name spaces (Namespace construct). which through hierarchi-
cal refinement leads to the identification of Packages, Associations, Data Types 
and Classes as well as Operations and Exceptions. Data Types can be further 
refined using the hierarchy of the DataType Package of the UML specification.

We deal with the Namespaces first since they can facilitate the identification of 
tags and constraints. The Import construct have not been considered here but it 
should be taken into account when the Profile is to import name spaces from 
another Profile.

As soon as the NameSpaces are collected we define UML Stereotypes for each 
one of them. We can then proceed with the identification of all other ModelEle-
ments. Constraints and Tags should be directly linked to the Name Spaces. 
TypedElements should also be marked with Stereotypes and connected to a 
Classifier Namespace, which represents the type of each TypedElement.

In a product line context instances of model elements may be subject to variabil-
ity. In order to manage the variability information we must firstly specify 
whether an element can be optional and whether it is allowed to contain 
optional parts. To this end we can use two predefined common tags “Optional” 
and “HasVariability”and attach them to each element. If necessary the tagged 
values can be set to fixed values. This may be the case when an element is never 
optional or never contains variability. When the profile is applied the modeller 
will be able to set the according tagged values for all instances of the profile 
model elements.

Since in a product line setting all variability information can be managed with a 
decision model it makes sense to connect each namespace with a decision in the 
decision model. To this end we use two additional predefined common tags 
“Decision” and “Resolution”. The former is ment to connect a namespace to a 
decision and the latter to a resolution of this decision that activates the variation 
point. 

The decision model is responsible for providing information about decision 
dependencies, constraints and possible resolutions. It could be also specified in 
terms of a UML profile, for example as a Namespace with decisions as Classifi-
ers. Nevertheless dealing with this would exceed the limitations of this paper 
and is subject of future research.



31

Component Model

Copyright  Fraunhofer IESE 2003

Custom tags can be also applied as placeholders for configuration management 
information, like version number or special feature tags. More information on 
this can be found in the PoLITe report on configuration management [LM03]. 
Once these tags have been applied in the architectural models they must be 
taken over in the implementation models as well and this is something to con-
sider therefore during the refinement process.

The process ends with the definition of well-formedness rules that usually are 
described with the Object Constraint Language.



32

Component Model

Copyright  Fraunhofer IESE 2003



33

Component Implementation 

Process

Copyright  Fraunhofer IESE 2003

4 Component Implementation Process

In the last chapter we introduced the concept of a model-driven component 
implementation. Now we take a detailed look at the process and its artifacts.

4.1 Model Driven Implementation Process and Infrastructure

Any process, especially an implementation process requires a well-defined infra-
structure that constitues a kind of framework supporting the core activities of 
the process. Therefore the implementation process can also be characterized as 
“infrastructure usage”. It is important that the infrastructure can be adapted 
and changed over time. This is necessary because the implementation process 
may require changes on the infrastructure , e.g. the used technology may 
change. 

For didactical reasons we begin with the infrastructure usage - demonstrating 
which elements are required in the infrastructure that follows.

4.1.1 Model Driven Implementation - Infrastructure Usage

An implementation process that follows this concept consists of the process 
steps & artifacts that are depicted in Figure 15. 

Figure 15:
Model Driven Com-
ponent Implementa-
tion



34

Component Implementation 

Process

Copyright  Fraunhofer IESE 2003

1 Creating The Business Model: Following a component paradigm the busi-
ness model is created from domain knowledge using a component-oriented 
meta model, e.g. the KobrA method. Being instantiated from a component-
oriented meta model, the business model constitutes a component architec-
ture. The meta model has to be set up in the infrastructure creation (next 
chapter). The creation of the business model is not part of the implementa-
tion step, but it is depicted here as it provides the crucial input to it.

2 Refinement: Implementing a business model in a specific technology implies 
the execution of a series of technology-specific decisions. E.g. in EJB a 
component can be implemented as session-, message- or as entity-bean - this 
requires first a decision which alternative is chosen. In our approach refine-
ments are instantiated from patterns that are part of the infrastructure. A 
refinement pattern is a template for a set of related technological decisions. 
For example a business component is refined by assigning the pattern “EJB 
SessionBean“ to it and specifying related decision values like whether the 
bean’s sessiontype should be “stateful“ or “stateless“. The result is the 
Refinement Information that is stored in relation to the component so that 
it can be modified and tracked separately. It consists mainly of three informa-
tions: (a) the pattern that is used for refinement, (b) a set of related decision-
values (e.g. sessiontype = “stateless“) and (c) inherent elements of the tech-
nology’s meta model (e.g. Remote Interface). In this survey the latter are also 
refferred to as “technology-units”, see below and Chapter 6.5.1. There is 
no way to fully automate refinement - the decision making is pure intellec-
tual work specific for each individual component. The implementation 
model is derived from the business model and the refinement information. 
Chapter 6.4 shows an example, namely an EJB-implementation model in 
UML.

3 Translation: maps technology units (e.g. a Bean-class) into source code arti-
facts (e.g. a java file). Analogous to refinement, translations are modeled via 
patterns. In contrast to the component-wise refinement decisions the transla-
tion informations that we have found in the case study are not component 
specific and can be applied generally. However, it may be required in some 
cases that translation decisions have to be defined component-wise. Based 
on the implementation model and the translation patterns traditional soft-
ware artifacts (e.g. java source code) can be generated automatically.

This illustration of the implementation pocess still needs to be refined. This is 
done in Chapter 4.2, putting a special focus on separation of concerns.

Refinement & translation patterns are described in more detail in Chapter 6.4 
and Chapter 6.5 (see also Chapter 3.4).



35

Component Implementation 

Process

Copyright  Fraunhofer IESE 2003

Algorithm Implementation

In a pure model-driven approach even the algorithms used in the methods are 
modeled as part of the Business Model. In UML this is possible with activity dia-
grams that are translated into the target programming language via Translation 
Patterns. From a pragmatical point of view however, this may be not efficient. 
Keeping in mind that describing and coding algorithms is a highly intellectual 
work, it may turn out that coding directly in the target language is more effi-
cient than creating a UML description and defining the respective Translation 
Patterns. Therefore our approach does not oblige to provide models for the 
algorithms. In contrast, it allows that there is no model for the algorithms and 
that they are coded directly in the target programming language. These algo-
rithm artifacts should be kept separate from (but related to) the other artifacts 
(e.g. the implementation model). Source code generation just merges these dif-
ferent artifacts together.

4.1.2 Creating the Infrastructure

In the illustration of the implementation process we already derived and men-
tioned the constituting elements that an infrastructure has to provide in order to 
support a model-driven component implementation. Figure 16 depicts the sin-
gle activities & artifacts for the creation of such an infrastructure.

Figure 16:
Create Infrastructure 
for Model Driven 
Component Imple-
mentation

1 Select Meta Model for Component Architecture: The meta model is the 
basis for the instantiation of the business model. In our component-oriented 



36

Component Implementation 

Process

Copyright  Fraunhofer IESE 2003

approach it has to provide constituting elements that capture components 
and their relations to each other (see also Chapter 3.4). For the case study we 
selected the KobrA-method ([ABB+02]). Following a pure MDA-approach the 
meta-model would be specified as an UML-profile.

2 Select Meta Model for Component Technology: Similarly the meta model 
for the component technology has to be selected, and again following a pure 
MDA approach it would be specified as UML profile. In the case study we 
selected the EJB-technolgy which includes the decision for its meta model.

3 Specifiy Patterns: Based on the meta models (steps 1 + 2) refinement and 
translation patterns can be defined. Refinement Patterns describe the tran-
sition from business model entities (e.g. components) to implementation 
model entities (e.g. Session Beans). For example a pattern “EJBSessionBean“ 
defines that a business component is refined into an EJB SessionBean. In the 
implementation process this pattern is used and instantiated for a specific 
component refinement. Translation Patterns define transtitions from tech-
nology units into source-code artifacts. 

4.2 Separation Of Concerns

It is well recognized that separation of concerns in the engineering of software 
leads to major improvements. Figure 17 depicts the separation principles that 
we introduce into our approach. The advantages are explained in the following. 
Please note that we are not referring to separation of concerns as it is discussed 
in the context of Aspect Oriented Programming (although there may be rela-
tions).

Figure 17:
Separating Business 
Model, Refinements 
& Translations A (Comp.)

f()

A (Comp.)

f()

B

Pattern: “EJB sesssion”

d1: sessiontype = stateless

d2: transactiontype = Bean

Refinement

+

B x R x T

Space Models

EJB Implementation 
Model (UML)

Code-artifacts

- Bean.java

- Remote Interface.java

- Home Interface.java

- Deployment Descr.

Translation

B x R

A (Comp.)

f()

Business Model

Business Model

A.Refinement

resolution

resolution

Business Model A.Refinement

e.g. pattern 
describes details 
for genetration of 
a Bean class.

Translation Patterns

Views

+

+

Pattern: “EJB sesssion”

d1: sessiontype = stateless

d2: transactiontype = Bean



37

Component Implementation 

Process

Copyright  Fraunhofer IESE 2003

Normalization

Keeping the three core-artifacts of our implementation approach separate from 
each other has the consequence that all change-activities during implementa-
tion can be applied, tracked and modified on distinguished artifacts: 

• Business Model : affected when e.g. new methods are introduced.
• Refinement : affected when e.g. technological decisions change.
• Translation : affected when e.g. programming guidelines change.

Figure 17 emphasizes the mathematical rationale for this separation : business 
model, refinements and translations belong to different model-spaces that are 
orthogonal to each other. 

The benefits of this separation correspond to those that are achieved by normal-
izing a database model, one of the most important being the reduction of con-
sistency problems between the elements.

Model View Controller

Yet another important conclusion is that sourcecode artifacts and implementa-
tion models are nothing but views on the orthogonalized model. This idea 
follows the Model View Controller concept. It points out the main problem of 
traditional source code: source code mixes all three model spaces: business 
model, refinements & translations. And it is exactly this mixing that makes it so 
hard to tackle problems like consistency. Using a consistent model with normal-
ized model elements can overcome these problems. 

4.3 Evaluating the Improvements

A process alone isn’t a guarantor for efficiency or quality improvement. Too 
many process steps could even worsen efficiency. Therefore we want to line out 
the most important improvements that are visible in the current state of analysis.

4.3.1 Automation stands for Efficiency & Quality

One outstanding result from the case study is that the amount of information 
increases dramatically as we move from realization to refinement and from 
refinement to translation (see case study). Even more important is the fact that 
the essential refinement or translation information constitutes a relatively small 
part, most of this information increase is therefore overhead that can be gen-
erated automatically. This is definitely a rich source for efficiency & quality 
improvement. Actually we experienced during our case study that creating 



38

Component Implementation 

Process

Copyright  Fraunhofer IESE 2003

redundant overhead information manually (using the traditional implementation 
approach, e.g. editing deployment descriptors) is very error-prone.

In order to tap this potential for efficiency & quality improvement, tools are 
required that automatically generate the overhead information. Although imma-
ture, there are already products on the market that support the MDA approach 
with automated steps from model to implementation. Assuming that the tools 
in this area will finally reach a level that they substitute the traditonal hand-
crafted implementation process, another major improvement can be achieved 
concerning consistency & traceability.

4.3.2 Consistency & Traceability

The problem with the software artifacts in a traditional process is that they need 
to be continously synchronized, otherwise they lose consistency over time - 
which is nearly always the case. For example a UML model was once the basis 
for implementation and later the implementation was changed in a business 
aspect. To achieve consistency the UML model needs to be updated with this 
change information.

An implementation approach like the one we presented in Chapter 4.2 actually 
needs no synchronization at all because it operates on a normalized model 
where the constituting elements like the Business Model are directly updated 
with each change. This drastically reduces the consistency and traceability prob-
lems that are present in the traditional implementation approach.

4.3.3 Reducing Reengineering Activities

TraditionaIly reengineering has to deal with legacy systems where the existence 
of architectural documentation is the exception. One important reengineering 
task is therefore the recovery of such architectural documentation. Although 
there are sophisticated methods supporting this activity, this task is still pretty 
tedious and intellectual understanding is still heaviliy required. A model-driven 
approach focuses on the creation of architectural documentation in the form of 
models. This leverages reengineering because existing models reduce the effort 
for recovery activities.

4.3.4 Integration & Software-Lifecycle Coverage

The case study indicates that our component-oriented approach can facilitate 
the integration of component technologies like EJB, .NET and CORBA. This is 
especially important because these state-of-the-art technologies do not provide 
seamless integration in the lifecycle by themselves. The presented model-driven 



39

Component Implementation 

Process

Copyright  Fraunhofer IESE 2003

approach facilitates the integration of component technologies and conse-
quently manages to cover a big part of the software lifecycle (Figure 18).

Figure 18:
Lifecycle coverage of 
component-ori-
ented methods & 
technologies

4.4 Realization of Refinement & Translation Patterns

Refinement and translation patterns form the crucial part of the presented 
approach. Therefore we developed designs for the realization of refinement & 
translation patterns that were derived directly from the experiences with the 
presented case study. The purpose is to demonstrate the convenience with 
which the theory can be implemented and applied in practice. For further details 
please refer to Chapter 6.4 and Chapter 6.5.

Komponent Model   Analysis   Design   Implement.   Deployment   Maintenance

.NET

EJB

CORBA

Model Driven 
Approach

X

X

X

XX X X

X

X

X

X



40

Component Implementation 

Process

Copyright  Fraunhofer IESE 2003



41

Realization of Software Product 

Lines

Copyright  Fraunhofer IESE 2003

5 Realization of Software Product Lines

5.1 Principles of Software Product Lines

The software market - just like other markets - has a great demand for variety in 
products. The entirety of product-variants of one software is also referred to as 
software system family or software product line.

Manufacturing was the first discipline that provided an answer how to effi-
ciently build varying products. Instead of building single system family members, 
interchangeable parts were assembled to products ([CE00], p. 3). 

Actually the same principle can be transferred to software products, which is 
depicted in Figure 19. Reusable parts are identified & selected from a pool of 
reusable assets - the asset base - and integrated into single products, see also 
[ABB+02], p. 242-243. This step (instatiation) is thoroughly discussed in the 
PoLITe Report on Configuration Management [LM03]. 

Figure 19:
Software Product-
line & Products

Please note that the productline approach is not restricted to implementation 
artifacts, but also includes analysis and design artifacts ([ABB+02], pp. 242). 
However, in this document we focus on implementation artifacts. Furthermore it 
should be clear that the assets under focus in this document are mainly compo-
nents.

…

Application nApplication 2Application 1

- Identification

- Selection

- Integration

Product Line

Products

Asset Base

(reusable Assets)

Instantiation

Commonalities &

Variabilities



42

Realization of Software Product 

Lines

Copyright  Fraunhofer IESE 2003

The main motivation for product lines is the reuse of software-assets as it has a 
significant positive impact on the development costs, effort and quality ([AM01], 
p. 1).

Commonalities and Variabilities

Reuse implies that the asset base contains artifacts which can be reused in more 
than only one single product. This means that the asset base contains common 
parts which do not change between product line members and variable parts 
that feature different functionalities from member to member. Variability can be 
realized on run-time or development time. Product line engineering is con-
cerned with development time variabilities ([ABB+02], p. 244).

Our focus in the subsequent part is on design techniques that can be applied for 
modelling product line variabilities (commonality does not require special design 
techniques). All presented techniques can be applied to components and work 
on an architectural level which means that they are independent from the later 
to be used implementation technology or programming language. However, 
there are differences in how good a given implementation technology or lan-
guage may support these design techniques.

5.2 Design Mechanisms for Variability 

Figure 20 depicts important techniques for modeling variability.

Figure 20:
Design Mechanisms 
for Variability

Parameterization

A first approach to supporting commonalities and variabilities at the design lev-
els refers to parameterization. The underlying idea is to make a component flex-

Separation

Recent ApproachesTraditional Approaches

Modeling Variability

- Aggregation

- Association

- Generalization / Specialization

- Interfaces

Parameterization

- Design Patterns

- Aspect Orientation

- Collaboration-based Design



43

Realization of Software Product 

Lines

Copyright  Fraunhofer IESE 2003

ible so that it can be tailored according to the context it is put in. To this end the 
component is equiped with parameters that specify its behaviour. The common 
parts of the component are not parameterized while the varying parts are. 

However, parameterization has its limits when the elements of the component 
that vary, increase. This is because of the complexity the component must incor-
porate in order to manage the set of parameters and the value ranges. In such 
cases it makes sense to split things out. Separation is hence the second category 
we observe. 

Separation

The underlying principle behind separation is divide & conquer which is a time-
honoured strategy for handling complexity in science and engineering. It divides 
a complex problem into parts that can be "conquered" separately. Thus projects 
can be tackled which otherwise would be beyond the capacity of the human 
intellect. This becomes even more apparent in a software product line where 
high complexity and many different concerns are the result of the variabilities 
among product line members. Separation of concerns at the design level is pri-
marly achieved by decomposition. Separate parts are designed that provide the 
solutions to parts of the complex problem. Thinking in product line terms one 
would decompose a complex component so that the common parts are kept 
together while the varying or variant parts are addressed by different compo-
nents.

In the next chapter we cover traditional mechanisms that are based on the con-
cept of separating concerns while the last chapter makes a short trip to recently 
developed, rather evolutionary approaches like aspect-orientation and collabo-
ration based design.

The following approaches have been addressed extensively by the scientific 
community but mostly in combination with a concrete implementation technol-
ogy. The PoLITe Report on Programming Languages covers them in more detail 
[PM02].

5.2.1 Traditional Approaches

Aggregation

Aggregation specifies that a component comprises other components. It is used 
when we wish to address rather a whole than its parts. This concept supports 
variability by delegation which means that the whole delegates special requests 
to the parts which provide the requested service. For example a browser may be 



44

Realization of Software Product 

Lines

Copyright  Fraunhofer IESE 2003

requested to print the current frame. The browser will not implement this by 
itself. Rather it will comprise some kind of printerfacility object will delegate the 
printrequest to this facility object. 

Aggregation can be physical or logical. In the case of physical aggregation 
(also called composite aggregation) the container is solely responsible for the 
parts. The lifetime of the container is connected to the lifetime of the parts. That 
means that the container is responsible for creating runtime instances of the 
parts and eventually for providing the parts with services they need. Moreover at 
runtime the container is the only composite component that is allowed to con-
tain instances of the specific parts. 

A graphical component may for example contain several graphical sub-compo-
nents. In this case the containment is physical. Another well known example at a 
higher lever of abstraction represents application servers which provide a runt-
ime environment for components. The core of this environment is a container 
that hosts runtime instances of components and provides them with technical 
services like transactions. In this case the common non-functional support imple-
mented by the container is separated from the various functional interfaces 
implemented by the components.

With logical aggregation the aggregate component contains references to the 
parts. In this case the lifetime of the aggregate is connected to the lifetime of 
the reference and not of the part itself. For example a text editor component 
may be said to contain a spell checker while actually it contains only the refer-
ence to it since the spell checker code lies in a separate library which may be 
physically remote to the container and independent from it.

References: [AG01], pp. 111, 114.

Association

As mentioned before aggregation is always combined with delegation when a 
container forwards requests to its parts. Nevertheless delegation can be also 
used without aggregation. In this case there is no notion of containment but the 
notion of an association between components.

Associations come also into play when there is no need for delegating requests 
but when two components simply depend on each other (i.e clientship, creation 
relationship). In these cases the user of a service typically holds a reference to 
the component providing the service. It becomes clear that the concepts of logi-
cal aggregation and association are similar and therefore they are often treated 
as equal.



45

Realization of Software Product 

Lines

Copyright  Fraunhofer IESE 2003

Generalization / Specialization

Generalization expresses that a type (class or interface) is more encompassing 
than another type. Specialization is the opposite of generalization. For example 
"car" and "bycicle" are specializations of the more general concept "vehicle". 
Generalization / Specialization handle variability in the following way: The gen-
eralized object type (supertype) contains the common features, i.e. which are 
common to all  specialized object types (subtypes). A specialization (subtype) 
then contains the common features plus additional features which represent the 
variability and which are specific for the subtype. The generalization "vehicle" 
would have features like max. speed, break, weight. Additional to the common 
"vehicle"-features, "car" would contain variabilities like tank, gas pedal, wiper.

On implementation level there are different methods how generalization & spe-
cialization can be realized:

Inheritance

Inheritance is a concrete way how specialization can be implemented in some 
object-oriented languages. It should not be mixed with the concept generaliza-
tion, as the latter could be implemented in many other ways. When using inher-
itance it is important to distinguish between interface-inheritance and imple-
mentation-inheritance (see section Interfaces). For example most component 
technologies offer interface inheritance, where only the behaviour (specified 
by the interface) is inherited (see [CD00], p. 154), not the implementation. In 
contrast many object-oriented languages (e.g. C++) offer an implementation-
inheritance where not only the interface but also the concrete implementation 
is inherited. This kind of inheritance wires interface and implementation 
together which makes it difficult to replace the implementation.

Polymorphism 

Polymorphism means that there is something in common to several related 
forms. The different techniques how polymorphism can be supported are rather 
implementation-specific so we will not discuss them here (e.g. inheritance, over-
loading, class templates).

References: [Martin95], p.76-97, [Coplien98], p.133-134.

Interfaces

Interfaces are an essential concept of components which can be used for sepa-
rating concerns. They separate a component into functional facets. 

Interfaces have several benefits, one of which is that they explicitly separate the 
external behaviour provided by the interface from the internal implementation. 



46

Realization of Software Product 

Lines

Copyright  Fraunhofer IESE 2003

Thus, it is possible to replace/vary the internal implementation according to the 
given settings. Another consequence of this separation is that users can concen-
trate on the behaviour and the integration of the component. They need not be 
concerned about the implementation details which are completely hidden.

5.2.2 Recent Approaches

Design Patterns

Design Patterns as described by Gamma [GAL+95] also provide means of 
parameterization and separation and have proven to be beneficial for solving 
recurring design problems. Some of them can certainly be applied for the design 
of variabilities. For example the Bridge Pattern [GAL+95] can be used to model 
variability by separating an interface from its implementation. Or the Broker Pat-
tern [Bus96] can be used to achieve location transparency enabling a compo-
nent to change its physical location without affecting any clients.

Aspect-oriented Design

While the previously described techniques are means for achieving separation of 
concerns, Aspect Orientation directly reflects the ideas behind that. Aspect Ori-
entation is about engineering (cross-cutting) concerns. Aspect-oriented design 
deals with the identification of concerns and with the decision of which con-
cerns to separate or to encapsulate at the design level. The different cross-cut-
ting concerns are mapped to aspects or aspectual components of the system 
under development. They are ment to integrate their functionality into other 
system components when it is required and without the need to change the 
other components. As a result of this general description of concerns at the 
design level, the approach enables several kinds of aspect materializations 
through different frameworks. A typical object-oriented framework for example 
would suggest objects for the implementation of the aspectual components.

Collaboration-based Design

The main idea behind collaboration-based design is that a system functionality is 
realized by a set of components that collaborate. Each component plays a role in 
this collaboration. The roles are like contracts a component must fulfill if it 
wants to participate to the collaboration. This means that a component can 
replace another component of the collaboration as long as it plays the required 
role correctly.



47

Realization of Software Product 

Lines

Copyright  Fraunhofer IESE 2003

5.3 Component Implementation in a Product Line Context

The preceding chapters (3 & 4) show how the implementation process can be 
improved by the consistent application of the component and MDA paradigma 
throughout the whole product lifecycle. So far this approach focuses on single 
systems.

For product lines the focus shifts now from single systems to system families. 
Therefore the presented approach has to be extended so that it integrates the 
implementation of system families. Emphasis here is on “Extension“ which 
means that all principles that we have developed so far (e.g. refinements & 
translations) are still valid for the implementation of system families, it is just 
that product lines bring in an additional dimension that we treat in the following 
as kind of orthogonal to the already existing ones.

There are 2 possibilities how to extend the implementation process:

• Preliminary Model Instantiation 
• Parallel Model Instantiation

Preliminary Model Instantation

This approach favors a total separation of product line related activities from the 
presented implementation acitivities (i.e., refinements & translations). This is 
achieved by instantiating the Business Model for the single system from a 
generic Business Model before any implementation step is executed (see Figure 
21 ). The resulting single system Business Model constitutes the input for the 
implementation process following the presented component & MDA-paradigm. 
With this clear separation the implementation process need not be changed in 
its process steps and artifacts. For each product refinements and translations are 
defined. The final product implementation is obtained via generation.

Concerning the product-line, a “learning-curve“ effect can be applied if other 
products of the product line are implemented after the first product. In this case 
already existing refinement & translation patterns for product 1 can be reused to 
derive analogous patterns for product 2 (see Figure 21).



48

Realization of Software Product 

Lines

Copyright  Fraunhofer IESE 2003

Figure 21:
Preliminary Model 
Instantiation

The Business Model has to be based on a Meta Model that not only covers com-
ponents but also genericity. The latter comes in because the Business Model is 
describing not a single system but a system family . The method presented in 
[ABB+02] inlcudes a Meta Model that integrates component-orientation as well 
as genericity.

Parallel Model Instantiation

Parallel Model Instantiation defers the model instantiation to “later“, i.e. vari-
abilities are not resolved but kept during the implementation process. Typically 
this is done by writing generic code-artifacts that are resolved at the very end 
of the implementation process into product specific code. For further details on 
this topic please refer to the PoLITe Report on Programming Languages [PM02]. 
It describes the techniques for writing & instantiating generic code artifacts.

Generic Businessmodel

Specific Businessmodel (P1)

Instantiation

Product Line

Products -
Businessmodel

Specific Businessmodel (P2)

Refinement Patterns (P2)Refinement Patterns (P1)

Translation Patterns (P1) Translation Patterns (P2)

Implementation 
Process

Product 1 (P1) Product 2 (P2)

Reuse / learn

Reuse / learn

Products -
Implementation Product 1 - Implementation Product 2 - Implementation



49

Case Study

Copyright  Fraunhofer IESE 2003

6 Case Study

In this chapter we examine in detail the component-oriented implementation 
process and its related artifacts by executing a simple case study. The business 
logic is modeled using the KobrA-method - a component meta model suggested 
in [ABB+02]. A special focus is on the refinement & translation activities that 
accompany the implementation process.

6.1 Comments on Business Modeling with KobrA

The KobrA-method is not the topic of this survey. But as it provides the business 
model which is the crucial input for the implementation phase, we consider it 
necessary to mention at least the following steps: 

Specification: The specification focuses on the “outside view“ of components 
and their services. This is achieved by describing each component X in the sys-
tem and the services it provides to the world outside (i.e. other components). 
Internal details are not part of the specification. For example algorithms or addi-
tional datastructures that are used to implement services are not described here.

Realization: the realization adds all internal details to the specification. E.g. 
Classes that are used internally for the realization of the services have to be 
defined here. The component-realization is the last artifact that is technology 
independent. All following steps constitute “implementation steps“ as they are 
executed in the context of a specific technology.

Specification & Realization are subsequent activities of the Business Modelling 
process, i.e. what we depicted as “Create Business Modell” in Figure 15 is actu-
ally subdivided in KobrA in two subsequent steps “Create Specification“ & 
“Create Realization”.

Flattening: Some technologies (e.g. COM) do not support runtime loading of 
fine-grained components efficiently. This means that loading a huge amount of 
fine-grained components has a bad performance. In these cases flattening is 
required, i.e. fine-grained components are combined to more coarse-grained 
components. This reduces the amount of physical components and leads to a 
better performance. Flattening guidelines help to answer the question: “How to 
organize the architectural components in physical entities?”. Physical entities 
can be libraries, executable files, assembly files or the implementation compo-
nents themselves. In this survey flattening was not relevant, as the used EJB 



50

Case Study

Copyright  Fraunhofer IESE 2003

technology doesn’t require it. For more information on flattening please refer to 
[ABB+02].

6.2 Introduction to the Library System Case Study

The example system used in the case study is a Library System that allows a user 
to loan and return Items. In order to keep our focus on the implementation pro-
cess and the related activities we modeled the system as simple and minimal as 
possible. The Library System allows users to loan and return Items.

6.2.1 Library System Specification

The specification (Figure 22) tells us WHAT the component Library System is 
expected to do. Items (e.g. books) can be loaned, an account is used to autho-
rize a user to loan Items at all. Loans capture the Items that are loaned by a cer-
tain account plus the resepctive creation- and returnDates.

The stereotype <<Komponent>> specifies that the Library System component 
models behaviour. I.e. the Library Systems interface offers methods that support 
the typical processes needed in a Library System. On the other hand we have 
(KobrA) entities like Items, Accounts and Loans. The difference is that entities 
capture persistent components, i.e. their focus is more on the storage of the 
component’s attributes rather than behavioural aspects.

Figure 22:
LibrarySystem.Speci-
fication

Account

ID
(from AccountManager)

<<KobrA Entity>>

Item

ID
(from ItemManager)

<<KobrA Entity>>

1

1..n

1

1..n

LibrarySystem

loanItem()
returnItem()
identifyAccount()

(from LibrarySystem)

<<Komponent>>

1
0..n

1
0..n

1

0..n

1

0..n

Loan

creationDate
ReturnDate

(from LoanManager)

<<KobrA Entity>>

1 0..n1 0..n



51

Case Study

Copyright  Fraunhofer IESE 2003

6.2.2 Library System Realization

Whereas the specification focuses on the outer structure of the Library System, 
the Realization focuses on the inner structure, i.e. details concerning the realiza-
tion are added (see Figure 23). At a first glance we can see that inside of the 
Library System additional objects are required. A LoanManager is required for 
handling loaning-activities like the creation (loaning) and removal (returnItem) of 
Loans. An AccountManager is required for handling account-activities like the 
identification of a UserAccount. An ItemManager handles Item-related acitivties 
like checking if an Item is at all in the Library System (getItem).

Figure 23:
LibrarySystem.Real-
ization

6.3 Business Model of the LoanManager Component

The KobrA approach is a fractal approach in the sense that all activities which 
have been executed for the Library System as the top-level component of the 
system are executed just the same for the lower level components of the system. 
In the following we analyze the whole implementation process with Refine-
ments & Translations focusing on one the LoanManager component.

Item

ID
(f rom ItemManager)

<<KobrA Entity>>

Account

ID
(f rom AccountManager)

<<KobrA Entity>>

1..n

1

1..n

1

AccountManager

insert()
remove()

(f rom AccountManager)

<<Komponent>>

1 0..n1 0..n

Loan

creationDate
ReturnDate

(f rom LoanManager)

<<KobrA Entity>>

LibrarySystem

loanItem()
returnItem()
identifyAccount()

(f rom LibrarySystem)

<<Komponent>>
1

1

1

1

LoanManager

loanItem()
returnItem()

(f rom LoanManager)

<<Komponent>>

1 0..n1 0..n

1

1

1

1



52

Case Study

Copyright  Fraunhofer IESE 2003

6.3.1 LoanManager Specification

Figure 24:
LoanManager.Speci-
fication

The specification shows the LoanManager’s services and the Businessobjects he 
is dealing with that are relevant to the outside world, i.e. for collaborating com-
ponents like the library system. Relevant Businessobjects are Items, Accounts 
and Loans. The LoanManager provides the following services (interface):

• setAccount (AccountId): registers a specific account on the LoanManager. 
Following actions like loaning Items are executed for this account.

• loanItem (ItemId): the specified Item is loaned for the Account that has 
been set before

• returnItem (ItemId): the specified Item is returned.

6.3.2 LoanManager Realization

The realization (Figure 25) enriches the model with a new object. The LoanStore 
is introduced for the creation (insert) and removal (remove) of Loans plus the 
information if a requested Item is already loaned (isLoaned). The LoanStore is 
not required for the communication with other components and therefore it is 
not visible in the specification.

Containment

The containment relationship defines the nesting of components within one 
another (see [ABB+02],pp. 119). Thereby it defines which components are pack-
aged into one component. In our case, the LoanManager contains three : Loan-
Manager, LoanStore and Loan. The decision that LoanManager contains Loan 
results from the fact that the LoanManager needs direct access to the Loan 
whereas it is not required directly by other components.

Loan

c reat ionDate
ReturnDate

(fro m  L o a nM a n a g e r)

< < Ko brA  E nt ity> >
LoanM anager

loanItem ()
re turnItem ()

(fro m  L o a n M a n a g e r)

< < K om ponent> >

0..n1 0..n1

A c c ount

ID
(fro m  A cco u n tM a n a g e r)

< < K obrA  E nt ity > >

Item

ID
(f ro m  I te m M a n ag e r)

< < K obrA  E nt ity > >

1

1..n

1

1..n



53

Case Study

Copyright  Fraunhofer IESE 2003

Figure 25:
LoanManager.Real-
ization

6.4 Refining the LoanManager Component

6.4.1 Analyzing the Refinements

In the following we derive the refinement information by comparing the Loan-
Manager’s implementation model with the corresponding business model. The 
purpose is to extract only refinement information that is intellectual work. Any 
other information that can be generated automatically is out of scope. On this 
base we can analyze and comprehend the underlying refinement patterns. 

LoanManager EJB Implementation Model

Figure 26 shows the LoanManager’s implementation model for EJB in UML. It is 
the graphical representation of the implementation (code) which is the result of 
a developer’s intellectual work during the implementation process.

Information Overhead

First thing that strikes our attention is that the information has increased dra-
matically compared to the size of the business model. Another observation that 
cannot be drawn directly from the pictures is that the amount of actual refine-
ments, i.e. the related intellectual technology decisions that led to the imple-

Loan

creationDate
ReturnDate

(from  LoanM anager)

<<KobrA Entity>>

Account

ID
(from  AccountM anager)

<<KobrA Entity>>LoanStore

isLoaned()
insert()
remove()

(from  LoanM anager)

0..n

1

0..n

1

It em

ID
(f rom  I tem Ma nage r)

<<KobrA Entity>>

1

1..n

1

1..n

LoanManager

loanItem()
returnItem()

(from  LoanM anager)

<<Komponent>>

11 11

ItemManager

insert()
remove()
getItem()

(f rom  I tem Ma nage r)

<<Komponent>>

1 0 .. n1 0 .. n

1

1

1

1



54

Case Study

Copyright  Fraunhofer IESE 2003

mentation model constitute only a minor part. This means that the bigger part 
of the information increase is overhead that could be generated automatically.

Figure 26:
LoanManager.Imple-
mentation

.

Refining LoanManager into an EJB SessionBean

The component LoanManager is implemented as a SessionBean. Sessionbeans 
are used for components with a “session“-restricted lifetime. The LoanManager 
is such an object: it is only required if a client wants to loan an Item. As soon as 
the client disconnetcs, the EJB Container may destroy the LoanManager. The 
decision for a sessionbean always leads to three classes (i.e. this part of the pat-
tern can be automated):

• RemoteInterface“LoanManager”, stereotype <<EJBRemoteInterface>>, 
specifies the interface to the outside world.

• SessionBean“LoanManagerEJB“, stereotype <<EJBSession>>, implements 
the operations provided by the interface. 

• HomeInterface”LoanManagerHome”, stereotype <<LoanManager-
Home>>, is an object factory, i.e.it is responsible for the creation and 
desctruction of the sessionbean.

LoanManager

loanItem()
returnItem()

<<EJBRemoteInterface>>

LoanManagerHome

<<EJBCreateMethod>> create()

<<EJBSessionHomeInterf ace>>

Loan
<<EJBRemoteInterf ace>>

LoanHome

<<EJBCreateMethod>> create()
<<EJBFinderMethod>> f indByPrimaryKey ()

<<EJBEntityHomeInterface>>LoanPK

hashCode()
equals ()
toString()

<<EJBPrimaryKey>>

LoanManagerEJB

<<EJBCons tructor>> LoanManagerEJB()
<<EJBCreateMethod>> ejbCreat e()
<<EJBMethod>> ejbRemove()
<<EJBMethod>> ejbAct ivate()
<<EJBMethod>> ejbPassivate()
<<EJBSessionMet hod>> setSess ionContext ()
loanIt em()
returnItem()

<<EJBSession>>

<<EJBRealizeHome>>

<<EJBRealizeRemote>>

<<EJBPrimaryKey>>

LoanStore

isLoaned()
insert()
remove()

11 11 Account
(from AccountManager.Implement...)

<<EJBRemoteInterface>>

Item
(from ItemManager.Implementati...)

<<EJBRemoteInterf ace>>

LoanEJB
EJB_Context : javax.ejb.EntityContext
creationDate
returnDate

<<EJBConstructor>> LoanEJB()
<<EJBCreateMethod>> ejbCreate()
<<EJBCreateMethod>> ejbPostCreate()
<<EJBMethod>> ejbActivate()
<<EJBMethod>> ejbPassivate()
<<EJBEntityMethod>> ejbLoad()
<<EJBEntityMethod>> ejbStore()
<<EJBEntityMethod>> ejbRemove()
<<EJBEntityMethod>> setEntityContext()
<<EJBEntityMethod>> unsetEntityContext()

<<EJBEntity>>

<<EJBRealizeHome>>

<<EJBRealizeRemote>>

0..*

1

0..*

1

1

1

1

1

0..*

1

0..*

1



55

Case Study

Copyright  Fraunhofer IESE 2003

There are two decisions that we have to make when implementing a Session-
Bean. 

1 Sessiontype: two values are possible : stateful or stateless. The sessiontype 
stateful is used when the Bean is designed to service multiple requests / 
transactions so that it has to track a state. As it is not required in our case to 
do a sophisticated tracking, we model it as stateless.

2 Transactiontype: two values are possible: Bean or Container, chosen was 
“Bean”.

Refining Loan into an EJB EntityBean

KobrA Entities, i.e. objects that need to be persistent in the system, are imple-
mented as Entitybeans. In our case the Loanobject is modeled as an Entity Bean. 
An Entity Bean consists of 4 elements(Primary Key depends on decision):

• RemoteInterface “Loan“, stereotype <<EJBRemoteInterface>> 
• EntityBean “LoanEJB”, stereotype <<EJBEntity>>, implementing the Beans 

business methods (in the case of an entity bean there would’nt be much),
• HomeInterface “LoanHome“, stereotype <<EJBRemoteInterface>>
• PrimaryKey “LoanPK”, stereoptype <<EJBPrimaryKey>>

The following decisions have to be resolved when implementing an Entity Bean:

1 Type of Persistence: EJB distinguishes two types of persistence, Container 
Managed Persistence (CMP) and Bean Managed Persistence (BMP). We 
chose CMP as it is the easiest way to make a Bean persistent.

2 Primary Key: it is possible to model the primary key as an object of its own. 
This is only required if the key is a composition of different properties. In our 
case we used a unique property and therefore did not need this extra class.

3 Reentrant/Mulithreading: An Entity that is not supposed to be shared 
between multiple threads is modeled as reentrant = false. A Bean is reentrant 
if one of its instances can be shared between several threads. For our simple 
example we chose false.

Remark: Besides from using EJB-persistence mechanisms we could also decide 
here to use another persistence framework, i.e. a different framework that is 
not provided by EJB.



56

Case Study

Copyright  Fraunhofer IESE 2003

Refining LoanStore into a simple java class

The functionality of Loanstore is only required inside the LoanManager. It is nei-
ther visible in the LoanManagers interface nor does it contain persistent 
attributes. Therefore we implemented it as java class, the simplest refinement 
possible.

There is no further decision required.

6.4.2 Formalizing Refinements with Refinement Patterns

Figure 27 depicts that refinement is the instantiation of a pattern, i.e. a compo-
nent of the business model is refined by assigning a refinement pattern to the 
component and then resolving the respective decisions. These are resolved by 
assigning values to decision variables. As a prerequisite a whole framework of 
refinement patterns is required, each pattern describing a technology refine-
ment and the relevant decisions. This framework is then used during implemen-
tation performing refinements.

Figure 27:
Performing Refine-
ment by instantiat-
ing Refinement 
Patterns.

Please note that the business model is not transformed or thrown away in this 
approach. Refinement is reduced to the minimal delta information that specifies 
how the business model is to be implemented in a specific technology. 

Sessiontype: stateless | stateful

Transactiontype: Bean | Container

Persistencetype: CMP | BMP

Primary Key: guid | PK Class

Reeentrant: True | False

No decisions 

Pattern: Java ClassPattern: EJB Entity Bean Pattern: EJB Session Bean

Infrastructure (framework) with EJB Refinement Patterns 

LoanManager

Loanstore 

Loan 

LoanManager
Business Model 
(UML / XMI)

LoanManager Refinement

LoanStore.ref

Loan.ref

Instantiating Refinement Patterns 

<Pattern value= “EJB Session Bean”>

<refinement_for>LoanManager</refinement_for>

<sessiontype>stateless</sessiontype>

<transactiontype>bean</ transactiontype >

</Pattern>

LoanManager.ref

+

<Pattern value= “EJB Enitity Bean”>

<refinement_for>Loan</ refinement_for>

<persistencetype>cmp</persistencetype>

<primary_key>guid</primary_key>

<reentrant>false</reentrant>

</Pattern>

<Pattern value= “Java Class”>

<refinement_for>LoanStore</refinement_for>

</Pattern>



57

Case Study

Copyright  Fraunhofer IESE 2003

Refinement Sequences

As we have seen, the refinement of the LoanManager component actually con-
sists of a whole set of refinements rather than a single one. One reason for this 
is that the component LoanManager contains three model elements that need 
to be refined, each requiring a specific refinement: LoanManager, LoanStore 
and Loan. Also, the refinement of a model element may require the sequential 
application of patterns. This leads us to refinement sequences.

Refinements are not necessarily independent, rather they can depend on each 
other. E.g. the relationship between two model elements A and B is to be re-
fined. But the relation refinement depends on whether A/B is refined as java 
class or as SessionBean. Therefore the refinements have to be executed in an 
order - the relation refinement can only be done after the refinement of A and 
B.

Another type of dependency exists if the refinement of one model element 
requires the sequential application of several patterns, illustrated in Figure 28. In 
this example the refinement of the LoanManager differs from the preceding 
examples. The difference is that the primary key is not modeled as a single guid-
attribute but as a Primary Key class (PK class). This requires an additional refine-
ment that specifies the composition of the key, in our example the key is com-
posed from the attributes “ItemID“ and “AccountID“.

Figure 28:
Refinement 
Sequences & Depen-
dencies 

The Refinement of the LoanManager Component consequently consists of four 
refinements : LoanManager.ref, LoanStore.ref and Loan.ref.1 and Loan.ref.2, 
the numbers indicating the sequence in which they have to be applied.

LoanManager Component Refinement =

Loanstore.ref

Loan.ref.1
<Pattern value= “EJB Session Bean”>

<refinement_for>LoanManager</ refinement_for >

<sessiontype>stateless</ sessiontype >

<transactiontype>bean</ transactiontype >

</Pattern>

LoanManager.ref

<Pattern value= “EJB Enitity Bean”>

<refinement_for>Loan</ refinement_for >

<persistencetype>cmp</persistencetype>

<primary_key>PK class</primary_key >

<reentrant>false</ reentrant >

</Pattern>

<Pattern value= “Java Class”>

<refinement_for>LoanStore</ refinement_for >

</Pattern>
Loan.ref.2
<Pattern value= “PK Class”>

<refinement_for>Loan.ref.1</ refinement_for>

<composed_key> values=“ItemID”, “AccountID”

</composed_key>

</Pattern>

Dependency

LoanManager.ref

LoanManager.ref

Loan.ref.2(Loan.ref.1)+

+



58

Case Study

Copyright  Fraunhofer IESE 2003

Loan.ref.1 specifies that a Primary Key Class should be used (primary_key 
value=”PK Class”). Loan.ref.2 depends on this first refinement as it specifies the 
attributes that are combined to form the primary key. This is a clear depen-
dency: the Refinement using Pattern “PK Class“ can only be defined after the 
Refinement using Pattern “EJB Entity Bean“ has been specified. 

Selection of technology units

We have already seen a case where decisions actually resemble the selection of 
technology-units. The decision that a Primary key class is to be used is one. 
Another example are Session Beans where instead or in addition of remote 
interfaces so called local interfaces can be implemented (local interfaces can be 
applied in non-remote cases for better performance, see [AT02]). The selection 
of certain technology units is intellectual work (e.g. for performance reasons) 
that needs to be recorded in the refinement information and therefore is also 
part of the refinement pattern. Furthermore technology units are the key units 
for the definition of translation patterns (next chapter). 

The examples that we provided so far are only outlinging the refinement idea . 
However, the simple examples are already evidence for the complexity of the 
topic due to implied refinement sequences and selection of technology units. 

6.5 Translating the LoanManager Component

6.5.1 Analyzing the Translation

We proceed here like we did with the refinement patterns. I.e. first we present 
the codelevel artifacts that are the result of a traditional implementation. Then 
we compare them to the preceding artifacts (meta model of component tech-
nology, business model, refinements) resulting in a set of translation rules that 
describe the translation and can be grouped in a pattern. The translation princi-
ples that we identify in the following (see Table 1) are the same for all source 
code artifacts so that it is sufficient to present only the sourcecode of the 
Remote Interface.



59

Case Study

Copyright  Fraunhofer IESE 2003

Table 1:
Source Code for 
Remote Interface of 
LoanManager Com-
ponent

6.5.2 Formalizing Translation with Translation Patterns

Translation Patterns are meta structures but they differ in two important aspects 
from Refinement Patterns (see also Chapter 3.4):

1 Mapping: Translation transforms the implementation level model into 
source code artifacts, i.e. it describes a mapping between two descriptions at 
the same level of detail, but different notation. In contrast, Refinement adds 
low-level technological information to a high level model. 

2 Unit-wise: There are no decisions that have to be resolved component-wise. 
This means that the Translation Pattern can be applied directly to the Imple-
mentation Model. In contrast, refinements require the component-specific 
assignment of Refinement Patterns and their decision resolving.

The following example shows a possible translation pattern realized as a XML-
file. A full implementation would need some more details to be specified (e.g. 
signature of the methods). Also, a pure MDA approach would prefer XMI 
instead of XML.

/*
 * LoanManagerRemote.java
 *
 * Created on 3. Mai 2002, 10:39
 */

package LoanManager;
import javax.ejb.EJBObject;
import java.rmi.RemoteException;

/*
This interface defines the `Remote' interface for the `LoanManager' EJB.
*/

public interface LoanManagerRemote extends EJBObject  {
    public String loanItem(String id)  throws RemoteException;
    public String returnItem(String id) throws RemoteException;    
}



60

Case Study

Copyright  Fraunhofer IESE 2003

Table 2:
Instantiated Transla-
tion Pattern for the 
Implementation of 
an EJB-Remote Inter-
face.

Applying the Translation Pattern

In practice the translation is executed by a generator that interprets the con-
tained mapping information. The bold-marked information in the pattern is 
derived from the business model. The Pattern is interpreted as follows:

• <header_comment> : specifies that the comment “created on” is to be 
inserted into the source code

• <package> : specifies that the name of the component is used as pacckage 
name.

• <imports>:lists the default packages that are to be imported for EJB Remote 
Interfaces.

• <interface_definition>: lists all information required for the interface defi-
nition.

• <interface_name> : “component_name” specifies that the component’s 
name from the business model is taken as interface name.

• <throws> : defines “RemoteException“ as the default Exception for Remote 
Interfaces.

• <methods> : the “component_methods” from the business model are used.

The demonstrated translation of the LoanManager’s Remote Interface with a 
translation pattern has the following characteristics:

• Transformation of Technology-Units: the pattern contains a mapping 
description for elements of the meta model - in our terminology technology 

<?xml version="1.0" encoding="UTF-8"?>

<translation_pattern value=”remote_interface_to_java”>
     <header_comment>created on</Header>
     <package>component_name</package>
     <imports>
       <import value=”javax.ejb.EJBObject”/>

<import value=”javax.rmi.RemoteException”/>
</imports>
<interface_definition>

<public>public interface</public>
<interface_name>component_name</interface_name>
<throws>throws RemoteException</throws>
<methods>component_methods</methods>

</interface_definition>
</translation_pattern>



61

Case Study

Copyright  Fraunhofer IESE 2003

units. In the example the EJB technology unit “RemoteInterface“ is mapped 
into java code. 

• Generic Pattern with defaults: for the translation of each technology unit 
a generic pattern with “parts” (e.g. <header-comment> or <import>) and 
corresponding default values (e.g. “Created on”, “javax.ejb.EJBObject“) can 
be defined. 

• Component information is retrieved from business model: the informa-
tion that is component-specific, e.g. the interface name, the interface meth-
ods have to be extracted from the business model.

• High Automation Rate : In the example there is no intellectual interference 
required for the translation. Although we cannot exclude cases where such 
an interference is required, the achievable automation rate is promising.

6.5.3 Automatic Generation of Source Code Artifacts

In our approach the component-oriented implementation model that needs to 
be translated into source code artifacts is actually divided / normalized into sev-
eral elements: business Model, refinements (incl. patterns) and translation pat-
terns. Here we outline the automated process that uses these elements and 
generates the respective source code artifacts. 

Figure 29 depicts the relevant steps, using a simple business example - a compo-
nent A that provides only one service f() and that does not contain other compo-
nents or objects. 

Figure 29:
Translation Process

The single activities of the process are:

A (Comp.)

f()

Business Model

Pattern: “EJB Sesssion”
A.Refinement

Identify Technology Units of Refinement

- Remote Interface

- Home Interface

- Bean Class

A.Technology Units

Identify required Translation Patterns

- Pattern for Remote Interface

- Pattern for Home Interface

- Pattern for Bean Class

A. Translation Patterns

Generate Source Code Artifacts
- Code for Remote Interface

- Code for Home Interface

- Code for Bean Class

A.Source Code

Identify Refinement

Identify Refinement Decisions

- sessionstype: “stateless”

- transactiontype: “Bean”

A.Refinement Decisions

1

2

3

5

4



62

Case Study

Copyright  Fraunhofer IESE 2003

1 Identify Refinement: First of all, the refinement that has been specified for 
A is identified. In our example the Pattern is simply “EJB Session“, i.e. A is to 
be implemented as Session Bean.

2 Identify Technology Units in Refinement Pattern: The translation is per-
formed for technology units (elements of the technology meta model), e.g. a 
Remote Interface. This information is provided by refinement. In the example 
the refinement of component A provides the translation with the information 
that three technology units are to be created : (a) Remote Interface, (b) Home 
Interface and (c) Bean Implementation.

3 Identify Required Translation Patterns: The translation of each technol-
ogy unit is defined in a specific translation pattern. For each technology unit 
the corresponding translation pattern has to be identified.

4 Identify Refinement Decisions: the decisions that were made during 
refinement are also required for the code generation. 

5 Generate Source Code Artifacts: The final translation generates the source 
code artifacts, using three separate informations: (a) a specific translation 
pattern for each of the technology units, (b) component information of the 
business model, e.g. interface name and method signatures, (c) refinement 
decisions, e.g. that the Bean’s sessiontype is “stateless“.

Conclusion

There are some important conclusions from this part

• Source code is a view on a normalized model: The process depicted in 
Figure 29 demonstrates once more the fact that source code is a mixture of 
different informations. In our approach we keep them separate in a normal-
ized model and derive the source code as a view on this model.

• Refinement includes decisions regarding the selection of meta model 
elements: refinement implies technology units and therefore should keep 
explicit knowledge about these meta model elements. Although there are 
patterns where the implied technology units are not likely to change, there 
are enough examples showing that this information is component specific, 
depending on the developer’s refinement decisions. This documents that 
they are just a special kind of decisions. For example in the case of container 
managed entity beans the existence of a primary key class depends on the 
decision of the developer and therefore has to be part of the component 
refinement. 



63

Summary and Outlook

Copyright  Fraunhofer IESE 2003

7 Summary and Outlook

This report dealt with one aspect of implementation technologies for software 
product lines: the component technology view.

7.1 Summary

This survey presented an approach for facilitating the implementation of prod-
uct lines using component technologies. It integrates concepts from several 
areas such as model-driven architecture, component-based development, pat-
tern usage and separation of concerns (see Figure 30). 

Figure 30:
Principles & Tech-
niques in the Com-
ponent Context.

The benefits/improvements that can be accomplished with this approach are:

• High Automation Rate: Large parts of the presented implementation pro-
cess are designed for automation.

• Efficiency and Quality: The approach integrates several features that sup-
port efficiency and quality. Firstly, it is designed towards consistency, i.e. the 
design avoids inconsistencies and respective extra synchronization activities. 
Secondly, it facilitates implementation using component technologies. This is 
achieved by basing the whole approach on a component-oriented paradigm 
that covers and integrates the whole lifecycle.

Model Driven 
Component 
Implementation

Component 
Technologies 
(e.g. COM, EJB)

Separation Of 
Concerns

Model Driven Architecture (MDA)

Refinement & 
Translation 
Patterns

.
Component Meta Model



64

Summary and Outlook

Copyright  Fraunhofer IESE 2003

• Explicit Application Engineering Knowledge: With the introduction of 
refinement and translation patterns, relevant application engineering knowl-
edge is explicitly captured and made available, e.g., for maintenance.

7.2 Outlook

As this report only serves as an introduction to component technologies, many 
of the topics mentioned here should be elaborated in more detail. 

Especially the concept of applying refinement and translation patterns in a 
model-driven approach requires further research, regarding issues like:

• Validate the approach using other component technologies, e.g. .NET
• Transfer refinement and translation patterns into practice.
• Analyze the relevance of refinement sequences and develop suitable theory 

to handle them in practice
• Motivate other product line implementation dimensions such as the pro-

gramming language- and configuration management dimension [LM03], 
[PM02]. E.g., it is hard to capture variabilities in cross-cutting concerns via 
components because these concerns are spread over all components in the 
product line. This issue is better addressed by the programming language 
dimension [PM02].



65

References

Copyright  Fraunhofer IESE 2003

8 References

[ABB+02] C. Atkinson, J. Bayer, C. Bunse, E. Kamsties, O. Laitenberger, R. 
Laqua, D. Muthig, B. Paech, J. Wüst, J. Zettel. Component-based 
Product Line Engineering with UML, Addison Wesley, 2002.

[AG01] M. Anastasopoulos, C. Gacek. Implementing Product Line Vari-
abilities, IESE Technical Report, No. 089.00/E, 2000.

[AM01] C. Atkinson, D. Muthig. Enhancing Component Reusability 
through Product Line Technology.

[AT02] S.W. Ambler, T. Jewell. Mastering Enterprise JavaBeans, second 
edition, John Wiley & Sons Inc., 2002.

[Atk97] C. Atkinson. Meta-Modelling for Distributed Object Environments, 
1st International Enterprise Distributed Object Computing Confer-
ence (EDOC ’97), October 24-26, 1997, Gold Coast, Australia.

[Bun01] C. Bunse. Pattern-Based Refinement and Translation of Object Ori-
ented Models to Code, PhD Theses in Experimental Software Engi-
neering, Fraunhofer IRB Verlag, 2001.

[Bus96] F. Buschmann, Pattern-Oriented Software Architecture - A System 
Of Patterns, John Wiley & Sons, 1996.

[CD00] J. Cheesman, J. Daniels. UML Components, Addison Wesley 2000.

[CE00] K. Czarnecki, U. W. Eisenecker. Generative Programming, Addison 
Wesley, 2000.

[Cle01] J. C. Cleaveland. Program Generators with XML and Java, Prentice 
Hall PTR, 2001.

[Coi96] P. Cointe (Ed.). ECOOP ’96: Object-Oriented Programming. Work-
shop held at the 10th European Conference, Linz, Austria, 1996.

[Cop99] J. O. Coplien. Multi-Paradigm Design For C++, Addison Wesley, 
1999.

[EE1998] G. Eddon, H. Eddon. Inside Distributed COM, Microsoft Press, 
1998.

[EF00] A. Eberhart, S. Fischer. Java-Bausteine für E-Commerce Anwend-
ungen, Hanser, 2000.

[GAL+95] E. Gamma et al. Design Patterns - Elements of Reusable Object-
Oriented Software, Addison-Wesley, 1995.

[Gre01] J. Greenfield. UML Profile For EJB, Public Draft, 2001, Rational 
Software Corporation.



66

References

Copyright  Fraunhofer IESE 2003

[GT00] V. Gruhn, A. Thiel. Komponentenmodelle, Addison-Wesley, 2000.

[HKB01] E. Holz, O. Kath, M. Born. Manufacturing Software Components 
from Object-Oriented Design Models, IEEE Report 0-7695-1345-X/
01.

[JBR00] I. Jacobson, G. Booch, J. Rumbaugh. The Unified Software Devel-
opment Process, Addison Wesley, 1999.

[KHS98] E. Kamsties, K. Hörmann, M. Schlich. Requirements Engineering in 
Small and Medium Enterprises: State-of-the-Practice, Problems, 
Solutions, and Technology Transfer, in: Proceedings of the Confer-
ence on European Industrial Requirements Engineering, 1998.

[LM03] R. Laqua, D. Muthig. Product Line Implementation Technologies: 
Configuration Management View, IESE Technical Report, No. 
017.03/E, 2003.

[MAL+02] D. Muthig et. al. Technology Dimensions of Product Line Imple-
mentation Approaches, IESE Technical Report, No. 051.02/E, 
2002.

[MO95] J. Martin, J. Odell. Object-Oriented Methods: A Foundation, Pren-
tice Hall, 1995.

[Mon01] R. Monson-Haefel. Enterprise JavaBeans, O’Reilly, 2001.

[OMG00-A] Meta Object Facility Specification, Version 1.3, Object Manage-
ment Group, 2000.

[OMG00-B] OMG News and Information, Competing Data Warehousing Stan-
dards to Merge in the OMG, http://www.omg.org/news/releases/
pr2000/2000-09-25a.htm, September 2000.

[OMG01-A] OMG Unified Modeling Language Specification, Version 1.4, 
Object Management Group, 2001.

[OMG01-B] Architecture Board ORMSC, Model Driven Architecture(MDA), July 
2001, hhtp:www.omg.org.mda/presentations.htm.

[PM02] T. Patzke and D. Muthig. Product Line Implementation Technolo-
gies: Programming Language View, IESE Technical Report, No. 
057.02/E, 2002.

[SO+01] J. Siegel and OMG Staff Strategy Group. Developing in OMG’s 
Model Driven Architecture, white paper, November, 2001, 
http:www.omg.org.mda/presentations.htm

[SP01] B. Staudacher, R. Pichler. CORBA 3.0 - Komponentenmodell: 
Anwendung und Besonderheiten, pp. 32-39, ObjektSpektrum 1/
2001.

[Szy98] C. Szyperski. Component Software - Beyond Object-Oriented Pro-
gramming, Addison Wesley, 1998.



67

References

Copyright  Fraunhofer IESE 2003

 

[Wes02] R. Westphal .NET kompakt, Spektrum Akademischer Verlag, 
2002.



68

References

Copyright  Fraunhofer IESE 2003



Copyright 2003, Fraunhofer IESE.
All rights reserved. No part of this publication may 
be reproduced, stored in a retrieval system, or trans-
mitted, in any form or by any means including, 
without limitation, photocopying, recording, or 
otherwise, without the prior written permission of 
the publisher. Written permission is not needed if 
this publication is distributed for non-commercial 
purposes.

Document Information

Title: Product Line Implementa-
tion Technologies - Com-
ponent Technology View

Date: March, 20, 2003
Report: IESE-015.03/E
Status: Final
Distribution: Public


