Muscoskeletal robots and wearable devices on the basis of cable-driven actuators

Musculoskeletal robots and wearable devices on the basis of cable-driven actuators

Martin Haegele, Christophe Maufroy, Werner Kraus Fraunhofer IPA Head of Department "Robotics and Assistive Systems" Tel.: +49 711 970 1203, {mmh, cmm, wek}@ipa.fhg.de

© Fraunhofer IPA

Outline

- Motivation for alternative designs for robot manipulation
- Alternative transmission designs: from DoHelix via ISELLA to Myorobotics
- The Myorobotics Tool-Kit and product visions
- Wearable cable driven robots
- Current R&D at Fraunhofer IPA
- Conclusion

Robots today: main configurations and properties

Criterion	Industrial robots					Arm modules	Advanced small robots	
Kinematics	SCARA	Gantry		Articulate robot arm		Joint modules	Light- weight arm	Safe robot
Pay load [kg]	<10	<50	<500	<10	<200	~5 for typical 6DOF config.	7	4
Degrees of freedom, DOF	4-5	3-6		5-6	6	Scalable, typic. 2-7 DOF	7	6
Repeatability [mm]	0,01	0,1	0,3	0,02	0,05	0,1 in typic. 6DOF config.	0,05	0,05
Sensor guidance	✓	✓		✓			✓	
Reach; workspace radius [m]	<1	variable		2,5	>3	1,5 in typic. 6 DOF config.	1,2	0,8
Unit cost[T€]	25	50	100	30	60	5/DOF	100	50
Example	Adept Cobra 800	Reis RL		ABB IRB140		Schunk ERB 0 Powerball	KUKA LBR4+	KUKA KR5Si

Source: EFFIROB Study 2011 (IPA)

Data and cost are taken from available material (2011) and may not correspond to depicted product examples.

Slide 3 © Fraunhofer IPA

Robot dynamics and accuracy

Robot **dynamics** in Cartesian space:

- damping (KR60)
- first eigen-frequency
- stiffness (KR125)

Measured in typical plane of robot's workspace measured from its first axis (source ISG Stuttgart).

4 © Fraunhofer IPA **Fraunhofer**

Major cost item: transmission module

Example: 7-axis KUKA iiwa, programmable compliance arm

5 © Fraunhofer IPA

Motivation for alternative designs for manipulators

Pull:

- Modularity for customizable kinematic designs
- Softness/compliance and intrinsic safety
- Cost

Push:

- New materials, manufacturing processes
- Application niches with need for new solutions.
- → Need for alternative kinematic and transmission designs for manipulators

Fraunhofer

Example bionic handling assistant: Integration of structure, actuation, and manufacturing

Source: Fraunhofer, Festo, mdr

7 © Fraunhofer IPA

Example cable driven parallel robots: Modularity, dynamics and low-cost

winch end-effector cable

Hybrid position-force control:

- Simulation of spring-mass-damper system
- Admittance control law

$$\ddot{s} = \frac{1}{m_1} (F(t) - d_1 \dot{s} - c_1 s)$$

Force F(t) measured by cable force sensors

Cable driven serial joints: The Do-Helix principle

From Do-Helix via Quadhelix to Isella

ISELLA: full scale robot arm

Improvements

- Use of QuadHelix-Drives
- Dead load to payload 1:1
- Load-designed components

Advantages

- Only 1 drive per degree of freedom
- 4 DoF arm with 4 motors
- 3 DoF gripper with 3 motors

2 DoF Module

2 modules with gripper – front view

2 DoF rotation axis - detailed view

11

© Fraunhofer IPA

ISELLA: full scale robot arm

1 drive per degree of freedom 4 Drives → 4 DoF Weight arm: ~ 8,5 kg Weight gripper: ~ 2,5 kg

Payload: ~9 kg

Realized: Full arm including gripper

Challenges

Complex hardware and software

■ Custom-made, hardly available

BioBiped

ECCERobot

13 © Fraunhofer IPA

The Myorobotics project

- Complex hardware and software
 - modular hardware
 - modular communication infrastucture
 - user-friendly software suite
- Custom-made, hardly available
 - rapid prototyping
 - · cost-efficient production
 - open-source

MYOROBOTICS

Framework for musculoskeletal robot development

EU FP7 Project – 4 Partners, http://www.mvorobotics.eu/

14

Design Primitive Library (DPL)

DPL - MYO-Muscle

DPL - MYO-Joints

DPL – MYO-Ganglion

© Fraunhofer IPA

Fraunhofer

- Local processing and communication unit
 - 32-bit floating point controller
 - 140MHz clock
 - FlexRay, CAN, SPI

Communications: 2 Mbit/s motor drivers SPI

> CAN 1 Mbits/s sensors

FlexRay 10 Mbits/s MYO-Ganglion, Computer

Control modes: muscle: position, drive current, force torque, position, velocity joint:

(work in progress)

+ local control loops (such as reflexes) Picture courtesy of BRL

DPL – Integration and demonstrators

First small series of hardware (status mid-March 2014)

19 © Fraunhofer IPA

Product visions

Compliance (Safety, energy efficiency) Versatility
(customization/reconfiguration)

Cost-effectiveness (initial & recommission)

Robot assistant

Wearable devices

Examples of Wearable Robots (based on cables)

(Koba Lab)

Muscle Suit Soft Exosuit (Harvard Biodesign Laboratory)

Ergoskeleton

Cable-Driven Exoskeleton (Strong Arm Vest) (University of Delaware)

© Fraunhofer IPA

Requirements and structure of body worn lifting aid

Transition to expand lifting aid

Current development at IPA: Body worn lifting aid

Cable-driven exoskeleton

Advantages of cable-driven actuators:

- Light-weight force transmission
- Adaptable (modular, scalable etc.)
- Motor can be placed close to the human body

■ Disadvantages:

- Unilateral force transmission
- Cable wear, especially dynamic load due bending at pulley

■ Trends:

 Cable-actuators, textiles as alternatives to stiff, robot-resembling exoskeletons

25

FIRST INTERNATIONAL SYMPOSIUM ON »SOFT ROBOTICS« IN GERMANY