
Template-Driven Analog Layout Generators

for Improved Technology Independence

Benjamin Prautsch*, Uwe Hatnik*, Uwe Eichler*, Jens Lienig†

*Fraunhofer IIS/EAS, Institute for Integrated Circuits, Division Engineering of Adaptive Systems, Dresden, Germany

{Benjamin.Prautsch, Uwe.Hatnik, Uwe.Eichler}@eas.iis.fraunhofer.de
†Dresden University of Technology, Dresden, Germany; jens@ieee.org

Abstract

Analog generators, especially those used for automatic layout creation, are powerful tools to support the still largely

manual analog design flow. The effort for generator development, however, is often found to be a bottleneck. Further,

verification of generators is usually based on many cycles of generation, each requiring subsequent verification. This is

often expensive in terms of computation effort. Up-to-date generators only allow to detect failures using post-layout

checks such as DRC and LVS because they describe the designer’s intent implicitly as a sequence of (layout manipulation)

commands which cannot be verified directly. Also, sequential code often prevents the description of interdependent layout

structures or forces the programmer to include extra code, which can again cause errors. In order to overcome these issues,

we introduce a new approach to implement layout generators. In a first step, the layout is described as an abstract template.

A second automatic step checks this template for structural errors and schedules the required procedural commands. As

the result, layout generators are more compact, easy-to-read, and errors can be detected by formal checks of the template

description. The new approach was applied to two technology nodes, 180 nm and 22 nm.

1 INTRODUCTION

Analog design automation is not yet common in industry,

although a lot of research effort has been spent over the

past decades. Most recent innovations are optimization-

based layout-aware sizing tools [1, 2, 3] which incorporate

generation of layout components [4, 5] in a top-down fash-

ion. These approaches usually employ templates which

represent component placement of the target layout in an

explicit and abstract way [6]. Such templates are either pre-

defined [7], extracted from existing designs [8], or gener-

ated dynamically [9]. Further, even fully-automated ap-

proaches not utilizing templates are possible [10]. Routers

are used by such tools to physically connect placed com-

ponents in the layout. These routers can be based on tem-

plates again [11] or they employ optimization. Based on

the generated routing, parasitic effects can be considered

during optimization. Thereby, constraints are used both for

placement and routing to control the automatic processes

[12, 13, 14, 15].

Besides optimization and templates, another approach uti-

lizing procedural commands is followed, namely the gen-

erator-based approach [16, 17, 18, 19, 20, 21]. Generators

are suitable for bottom-up creation of layouts. They de-

scribe layout details while containing expert design

knowledge implicitly [22]. Generators can also be com-

bined with top-down algorithms as e.g. for automatic

placement of generated components [23]. Due to implicit

code, experienced programmers spend significant effort on

generator programming and verification. Although com-

prehensive tools exist that accelerate development of gen-

erator code and help debugging [24], generator correctness

and independence of the process technology still cannot be

guaranteed. An approach to explicitly capture the design

intent through the generator code should be considered in-

stead. Such an approach is a step to bridge the gap between

implicit generators and explicit–thus algorithmically ac-

cessible–templates.

1.1 State of the Art of Generators

Types and complexity of generators are diverse. We define

a generator as a piece of procedural code which executes

commands sequentially (hereinafter called procedural;

also see [22]). This code is executed in a framework envi-

ronment such as [17, 18, 19, 20, 25] which provides the

generator programming interface (generator API). Based

Figure 1 Comparison of previous procedural generators (left), pro-

cedural generators that capture explicit relations (middle), and the

proposed template-driven generators with separate processing step
(right). Procedural generators create layouts right away while abstract

commands of template-driven generators can be handled by further

algorithmic steps such as adaptation, scheduling, and checking.

on the generator code, schematics and/or layouts are gen-

erated (this paper is focused on layout generation). Param-

eters allow adaptation of dimensions but also topologies

through the procedural code. Further, generators can be ex-

ecuted for multiple technologies. The extent of how many

technologies are supported, strongly depends on the gener-

ator API. Often, parameters are used in the procedural

code in order to map technology data. These parameters

store static technology data only. Technology interfaces al-

low more independence of process technologies as they can

handle complicated context-dependent design rules of ad-

vanced nodes [26]. Such design rules show rule values de-

pending on an increasing count of measures of the layout

context as minimum feature size decreases (see design

rules of the FreePDK as an example [27]). An overview of

generator and template approaches is given in Table 1.

1.2 Our Contribution

In contrast to implicit and procedural generators (which

can also extract explicit layout relations as an additional

result [26]), we propose an approach which allows layout

description in an abstract way and processing of this de-

scription in an intermediate step prior to procedural layout

generation (see Figure 1). Our approach adopts the idea of

the recent MESH approach [28]. Based on an explicit in-

terface, all structural information is stored prior to genera-

tor run in a dedicated object. While with MESH only array-

arranged layouts can be described, our paper addresses the

description of arbitrary layouts. Since the structural defini-

tion of the target layout is stored prior to execution, check-

ing, ordering, and adaptation of the commands necessary

for layout creation becomes possible. Therefore, also de-

tails of the layout description can be changed automatically

which would otherwise violate design rules of the particu-

lar process technology the generator is run for. As an ex-

ample, seemingly simple design rules such as maximum

width or minimum area may force the structure of the lay-

out to be changed accordingly (e.g. wires are sliced or

shapes are added). Such adaptation, however, cannot be

foreseen for each and every case in the generator code im-

plicitly. Furthermore, updating all generators once design

rules get more advanced is not efficient and error-prone.

Thus, the generator code should be organized such that ad-

aptation of layout details is possible automatically without

changing the generator template. Adaptation of layout ele-

ments may require adaptation of related elements which

needs to be handled, too.

Therefore, we propose to include the following new steps

into generators which are also the contributions of this pa-

per:

 Substitution of procedural generator code by a

structural description. This way, the generator is

turned into a template-driven description which

implements relations of layout elements prior to

layout creation.

 Implementation of rule checking to check all lay-

out elements described and running strategies for

layout adaptation if a design rule is violated.

 Scheduling of layout generation commands to cre-

ate layout structures in a meaningful order and to

satisfy context-dependent design rules.

2 PROBLEM DESCRIPTION

Former analog layout generators implement the layout

description in a way that the final structure is already pre-

defined. Depending on parameters, multiple structures

(e.g. transistor with different gate count) are often imple-

mented in a single generator. Further, generator descrip-

tions are implemented procedurally, meaning that all com-

mands and related layout generation are executed line by

line. In case commands are based on layout data, which is

not yet available (e.g. length of a wire along instances

TABLE 1 OVERVIEW OF BOTH GENERATOR AND TEMPLATE AP-

PROACHES

Reference Sche-

matic/

Layout

Technology

Handling

Uses

Graph

Uses

Templates

Comment

LDS [6] -/x Parameters x x Script to define

templates

IPRAIL [8] -/x Parameters x x Structural tem-

plates for technol-

ogy migration

(g)PCDS

[17, 33]

x/- Parameters - - High-level

schematic

description

IPGen

OneStone

[18]

x/x Parameters - - Generator

environment

BAG [19] x/x Interface

(uses

pyCells)

- x,

based on

helper

classes

Procedural tem-

plates and

simulation

SWARM

[23]

-/x Parameters - - Adaptive

floorplanning by

algorithms

pyCells

[25]

-/x Interface - - Generator

environment

IIP [20]

and TAL

[26]

(our gen-

erator

frame-

work)

x/x Interface x x

(intro-

duced by

this work)

IIP is the

environment, the

new method was

added to

Figure 2 Scheme of a procedural generator without captured intent
(running from left to right). Since commands run sequentially, effects

on previous commands cannot be treated (unconsidered dependen-

cies). Additionally (not treated in this paper), conditional statements

and loops increase code complexity and worsen testability.

which were not yet placed), additional generator code is

often included to pre-calculate layout positions. Such extra

code for forecasting is error-prone, especially if context-

dependent design rules of advanced processes must be ful-

filled. Moreover, any dependency between commands is

implemented implicitly, i.e. without being explicitly de-

scribed e.g. using layout constraints [12] or abstract rela-

tions [26].

Therefore, as complexity and dependency of design

rules increase in ever more advanced processes, an increas-

ing count of layout structures generated through prior com-

mands can get invalid. This principle is illustrated in Fig-

ure 2.

Finally, with new technologies new design rules will

have to be considered during layout generation. They affect

layout details of vias, wires, and other shapes as well as

placement of instances and devices. As the result, in con-

trast to, for instance, simple spacing rules where only di-

mensions are adapted, advanced rules can require struc-

tural adaptation. Since, however, former generators imple-

ment detailed geometries without considering all individ-

ual types of design rules, such generators cannot ensure in-

dependence of technology if rule types change signifi-

cantly. Therefore, every single generator must be adapted

to meet new rule types.

Summarizing, an approach is required which is able to (1)

consider dependencies of commands and (2) allow struc-

tural adaptation of layout details while the generator still

creates the target structure according to the same underly-

ing template description. This means that all elements of

the generator description affected by structure-changing

design rules must react automatically based on strategies.

Such strategies can be implemented once and globally.

3 TEMPLATE-DRIVEN LAYOUT

GENERATORS

As mentioned before, procedural layout generators lack

flexibility in the description of layout structures because

the layout is already predefined very detailed. Addition-

ally, since generators work procedurally in the sense that

each command runs line by line (with simultaneous layout

generation), generators do not “remember” the commands

run before. In other words: the description is implicit and

there is no algorithmic access to the structure described by

the generator code. Unfortunately, subsequent commands

in the command series can cause design rule violations alt-

hough former commands on their own had run correctly.

The following subsections discuss the problem of proce-

dural generators based on an example followed by our new

approach to overcome these limitations.

3.1 Backlashes of Context-Dependent De-

sign Rules

In [26] and [30] context-dependent design rules can be han-

dled for single placement tasks. If subsequent commands,

however, change the layout context the former placement

depended on, generated layouts can still violate context-

dependent design rules. An example we observed in array

structures is sketched in Figure 3. Multiple devices are to

be placed and connected. The final lengths of all wires is

unknown until the layout structure is completed. The rea-

son is that the individual number of horizontal wires at the

bottom including their individual context-dependent spac-

ing rule has to be evaluated first. Later, the vertical wires

are extended. Since the shape of the vertical wires is

changed (new context as the size was increased; see [27])

but their distance was calculated based on a different for-

mer layout context, design rule violation can occur.

3.2 Template-Driven Layout Commands

The basic idea of templates is to define layouts in an

abstract way. Based on structural commands which define

placement relations of layout elements (e.g. instances or

wires) as well as their relative alignment including abut-

ment, a graph is built (in this work using [31]). Layout el-

ements are represented by nodes and relations between

them are represented by edges. Edges can represent both

placement relations and further detailed relations for align-

ment or stretching. Figure 4 shows the graphical represen-

tation of the template definition, with arrows indicating

layout relations, which describes the prior array example

(with just a single wire each for the sake of clarity).

At the time the template description is completed, no lay-

out element has been created yet (as it would be the case in

procedural generators). The next step analyzes the template

Figure 4 Graphical representation of the template representing the
array shown in Section 3.1 (simplified). Devices are indicated by let-

ters while wires are indicated by “w” followed by a running number.

Solid arrows represent placement relations while dotted arrows indi-

cate relations for element alignment or stretching.

Figure 3 Sketch of the procedural generation of an array arrange-

ment with context-dependent spacing rules. Intermediately, the

placement of each individual instance (dark grey) and wire (light
grey) is correct (left). When vertical wires are stretched to connect

them to the bottom of the horizontal bus, their former spacing values

must be recalculated due to a new layout context (right). For the sake

of simplicity, wires to devices and vias are not illustrated here.

description, runs generation of instances to gain infor-

mation on instance sizes, may run a strategy for structural

modification, and checks plausibility of the description.

3.3 Command Scheduling

Relations between layout elements defined by the template

are represented by edges of the graph. Capturing layout re-

lations was already introduced for generators in [26] but

there the graph is an additional result of the generator cre-

ated during execution (instead of an intermediate result)

which allows post-processing of the run procedural gener-

ator code [32]. In this work, however, the graph is built

prior to generator execution as an intermediate result. Thus,

analyzing the dependencies of layout elements prior to lay-

out generation gets possible. Such an approach was already

realized in [28], but there, contrary to this work, array-ar-

ranged layouts can be defined only. One new step required

for arbitrary layout definition is command scheduling.

Every layout element’s position is dependent on one or

more other layout elements. This dependency must lead

into a reasonable order of constructive commands to real-

ize proper layout generation. While previous generators

implement this command order implicitly, we can derive

the dependency from the template definition. Figure 5

shows these dependencies (already ordered).

Command ordering is based on iteratively eliminating the

graph’s nodes. At each iteration, the single node which has

no dependency to other remaining nodes (node with no out-

going edge) is eliminated. The eliminated nodes are added

to a list which is then used to define the command order

once every node was eliminated. In case a node cannot be

eliminated, the template contains a logical error, such as

missing element relation (graph with unconnected node) or

contradicting placement (e.g. an element being both left

and right of another element).

Figure 6 illustrates the procedural path found through the

template defined. Since w0 and w1 depend on w2 (see Fig-

ure 4), a part of the sequence is executed again. For this,

nodes with the minimum number of outgoing edges and

with the maximum number of incoming edges (out of all

nodes where all nodes have outgoing edges) are stored for

re-scheduling. Please note that such iteration is hard to im-

plement into implicit generators.

3.4 Consideration of Design Rules

Another effect which worsens technology dependence is

seen when design rules contradict either other design con-

straints or the implicit and structural layout definition. Ex-

amples are:

 maximum width rule vs. minimum width due to

current requirements,

 fixed gate orientation vs. flexible transistor place-

ment,

 layout shape coloring (different “colors” of the

same layer must alternate to avoid color conflicts

[29]) vs. predefined arrangement of layout shapes,

 number of via cuts vs. shape and size,

 minimum area is violated and extra shapes are re-

quired (extra shapes may cause further conflicts),

 additional gate dummy poly affecting transistor

placement and spacing.

Since the examples mentioned above would be again con-

sidered implicitly in recent generators, extra generator

code is required in each generator to realize this structural

adaptation. Depending on the effort spent to implement this

implicit generator code and depending on verification,

such rule violation might be avoided. However, it cannot

be guaranteed, the complexity of every generator will in-

crease significantly, and testability becomes worse.

From a general point of view, handling design rule viola-

tions first causes an action and second related layout ad-

justment of further layout elements might be required.

We extended the programming interface of our IIP Frame-

work [20] in order to allow dynamic changes of layout de-

tails generated. This interface utilizes the former TAL ap-

proach (TAL: Technology Abstraction Layer) [26] for ac-

cessing technology data in a generic way. Our new tem-

plate-driven approach now adds flexibility to the layout el-

ements which are placed. Depending on design rules, ab-

Figure 5 Illustration of the scheduled order of layout creation based

on the explicit relations of the template shown in Figure 4. Arrows
represent relations while vertical lines indicate layout elements ac-

cording to their identifier on top. Based on the template, the resulting

order of layout commands is determined. Solid and dotted arrows
can be handled procedurally as they can be scheduled, while dashed

arrows cause rerunning of commands.

Figure 6 Graphical representation of the template with the related
order of element placement indicated by arrows (cf. Figure 4 and Fig-

ure 5). The solid arrow represents the procedural order of layout cre-

ation while the dashed arrow represents the subsequent rerun step
which re-executes parts of the layout placement. Rerunning is re-

quired in order to handle the dependencies both between w2 to w0

and w2 to w1.

stract layout elements can adapt themselves based on strat-

egies globally available to all generators. This adaptation

includes adding of layout elements and/or adaptation of di-

mensions.

Figure 7 shows an example where a maximum width rule

constraint contradicts another constraint for the minimum

amount of current (and thus minimum width) in wire w2.

The abstract layout description constrains the horizontal

metal to be on the particular layer defined. A technology-

independent and globally available strategy was imple-

mented into the abstract wire segment class which allows

automatic wire slicing to fulfill both the constraint on wire

width and the effective width to pass a current while the

basic layout template is fulfilled, too. According to the

structural change of the wire, each connected via defined

by the underlying template reacts and will result in the cre-

ation of multiple vias.

As a summary, variability required in layout generation to

improve technology independence has multiple appear-

ances:

(1) Simple variability of dimensions with no further

effect (e.g. size of a transistor),

(2) Variability of dimensions with further effect on

other layout elements (e.g. size of a transistor or

layout shapes triggering advanced design rules),

(3) Variability of structures affecting other elements,

e.g. wire slicing, transistor rotation, obligatory

dummy poly gates, discrete gate spacing, layout

shape order due to coloring, or forbidden layout

shapes. Such changes are directly triggered by

rules. More complex rules such as antenna rules

or density rules are not considered in this work,

but we expect that related analyses and strategies

could be implemented, too.

4 EXPERIMENTAL RESULTS

4.1 Generator Implementation

A simplified code example of a template-driven gener-

ator is given in Figure 8. First, all abstract layout elements

are created (instances, wires, and vias) and then, relations

between these abstract elements are set. Afterwards, the de-

fined structure is checked for plausibility and finally the

consolidated command order is executed (if no logical er-

ror is identified before).

Depending on the technology, the resulting structure is

adapted prior to execution. In the example given, the max-

imum width rule and the width requirement of the wires

contradict each other. The implemented strategy of slicing

the wires overcomes this problem (see graph in Figure 9).

This strategy is not defined in the template but it is defined

in the generator environment which handles the template.

Therefore, the layout description is both short and robust

and does not require implicit consideration of the technol-

ogy. In case new design rule violations are found in new

process technologies or in case new contradictions are

found, further strategies can be added to the generator en-

vironment and no template must be updated.

4.2 Application to both 180 nm Bulk and

22 nm FD-SOI

The given example was run for both 180 nm and 22 nm in

order to show the flexibility not only on the structural level

of the graph representation. While for the first process tech-

nology fixed design rules are sufficient with no structural

Figure 7 Principle of the dynamic adaptation of the template struc-

ture of which the related graphs are depicted (relations are depicted

as lines). The basic abstract layout structure described by the template
(left) is changed structurally due to design rules (right). Layout ele-

ments (here: wires and vias) are dynamically added or adapted

(marked by dashed boxes).

(a) (b)

Figure 9 Graphs generated through the same template-driven gen-

erator description (with the shape of nodes being congruent to the

elements). While (a) does not require structural adaptation due to de-
sign rules, (b) is adapted due to design rules constraining the maxi-

mum wire width; the basic layout structure is thereby retained.

CREATE TEMPLATE CONTAINER
s = LayoutStructure("ArrayArrangement")

CREATE instances, wires and vias based on (simplified) parameters
for instName in "ABCDEFGHI":
 s.add(AbstrInst(instData, width=i_width, height=i_height))

for wireName, direction in ("w0", "ver"), ("w1", "ver"), ("w2", "hor"):
 # wire will be stretched later according to relations defined
 s.add(AbstrWire(wireName, width=w_width, height=w_height,
 lay=w_lay, direction=direction))
for viaName in "V0", "V1":
 s.add(AbstrVia(viaName, minCuts=no_cuts))

PLACE wire A, D, G, and w0
s.set("w0", "rightOf", ("A", "D", "G"))
s.set("D", "below", "A")
s.set("G", "below", "D")

add layout RELATIONS with user-defined offset "par_overlapTop"
even not yet placed wire w2 can be used as reference
s.defineRelation(editableValue="w0.upper", relation="=",
 constraintValue="A.upper", deltaY=par_overlapTop)
s.defineRelation(editableValue="w0.lower", relation="=",
 constraintValue="w2.lower")

[... further commands for B, C, E, F, H, I, w0, w1 ...]

PLACE vias between wires (via layers are automatically evaluated)
s.setViaBetweenWires("V0", wireVer="w0", wireHor="w2")
s.setViaBetweenWires("V1", wireVer="w1", wireHor="w2")

#
CHECK and ADAPT structure
s.checkPlausibility()

EXECUTE procedural commands
s.executeGenerator()

Figure 8 Fragment of the simplified template-driven generator code.

First, the structure is defined (template). Afterwards, the required

commands are checked, adapted, scheduled, and finally run.

adaptation, the latter requires consideration of both con-

text-dependent design rules and maximum width rules. The

layout examples generated by the template-driven genera-

tor are depicted in Figure 10.

5 CONCLUSION AND OUTLOOK

Procedural generators with an implicit programming ap-

proach are hard to develop, they lack flexibility in case ad-

vanced design rules require structural layout adaptation,

and their verification is time-consuming and incomplete.

Our new template-driven approach improves development

efficiency as well as layout correctness of generators. The

explicit and non-procedural layout description eases gen-

erator development while logical errors of the generator de-

scription are automatically identified. Furthermore, since

based on the template a graph representation is created as

intermediate step, layout strategies such as wire slicing can

automatically optimize details of the underlying template

description. This way, we overcome time-consuming gen-

erator updates as no generator code must be changed and

we ensure quality of the generated layout.

With our new approach we will accelerate generator devel-

opment, especially for complex analog components. Next

steps will concern further strategies of layout adaptation to

improve technology independence. Furthermore, the new

concept will be extended in order to allow interfacing be-

tween top-down automation and bottom-up generators.

ACKNOWLEDGEMENTS

The presented work was partly supported by the European

Union and the Free State of Saxony within the project

PRIME (Ref. No. 16ESE0110S).

 REFERENCES

[1] N. Jangkrajarng, L. Zhang, S. Bhattacharya, N. Kohagen and C.-J. R. Shi,

"Template-based parasitic-aware optimization and retargeting of analog and RF

integrated circuit layouts," IEEE/ACM Int. Conf. on Computer-Aided Design, 2006.

ICCAD'06., pp. 342–348, Nov. 2006.

[2] N. Lourenço, R. Martins und N. Horta, „Layout-aware sizing of analog ICs using

floorplan amp; routing estimates for parasitic extraction,“ 2015 Design, Automation

Test in Europe Conf. Exhibition (DATE), pp. 1156–1161, Mar. 2015.

[3] R. A. Rutenbar, "What’s Up With Analog CAD…?," Okt 2016. [Online]. Available:

http://rutenbar.cs.illinois.edu/wp-content/uploads/2017/01/rutenbar-tcace16.pdf.

[Accessed Jul. 20, 2018].

[4] E. Yilmaz and G. Dündar, "Analog layout generator for CMOS circuits," IEEE

Trans. on Computer-Aided Design of Integrated Circuits and Systems, pp. 32–45,

Jan. 2009.

[5] R. Martins, N. Lourenço and N. Horta, "LAYGEN II—automatic layout generation

of analog integrated circuits," IEEE Trans. on Computer-Aided Design of Integrated

Circuits and Systems, vol. 32, no. 11, pp. 1641–1654, Nov. 2013.

[6] A. Unutulmaz, G. Dündar and F. V. Fernández, "LDS - a description script for

layout templates," 2011 20th European Conf. on Circuit Theory and Design

(ECCTD), pp. 857–860, Aug. 2011.

[7] R. Castro-Lopez, O. Guerra, E. Roca and F. V. Fernandez, "An integrated layout-

synthesis approach for analog ICs," IEEE Trans. on Computer-Aided Design of

Integrated Circuits and Systems, vol. 27, pp. 1179–1189, Jul. 2008.

[8] N. Jangkrajarng, S. Bhattacharya, R. Hartono and C.-J. R. Shi, "IPRAIL—

intellectual property reuse-based analog IC layout automation," Integration, the

VLSI Journal, vol. 36, pp. 237–262, Nov. 2003.

[9] R. Martins, A. Canelas, N. Lourenço and N. Horta, "On-the-fly exploration of

placement templates for analog IC layout-aware sizing methodologies," 2016 13th

Int. Conf. on Synthesis, Modeling, Analysis and Simulation Methods and

Applications to Circuit Design (SMACD), pp. 1–4, Jun. 2016.

[10] H. Habal and H. Graeb, "Constraint-based layout-driven sizing of analog circuits,"

IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol.

30, no. 8, pp. 1089–1102, Aug. 2011.

[11] A. Unutulmaz, G. Dündar and F. V. Fernández, "A template router," 2011 20th

European Conf. on Circuit Theory and Design (ECCTD), pp. 334–337, Aug. 2011.

[12] A. Krinke, G. Jerke and J. Lienig, "Constraint propagation methods for robust IC

design," ZuE 2015; 8. GMM/ITG/GI-Symp. Reliability by Design, pp. 1–8, Sep.

2015.

[13] A. Nassaj, J. Lienig and G. Jerke, "A new methodology for constraint-driven layout

design of analog circuits," Proc. 16th IEEE Int. Conf. on Electronics, Circuits and

Systems, pp. 996–999, 2009.

[14] G. Jerke und J. Lienig, „Constraint-driven design — the next step towards analog

design automation,“ Proc. of the Int. Symp. on Physical Design (ISPD'09),

pp. 75–82, Mar. 2009.

[15] J. Lienig, Layoutsynthese elektronischer Schaltungen, Springer, 2016.

[16] T. Reich, U. Eichler, K.-H. Rooch and R. Buhl, "Design of a 12-bit cyclic RSD

ADC sensor interface IC using the intelligent analog IP library," ANALOG 2013 -

Entwicklung von Analogschaltungen mit CAE-Methoden, Mar. 2013.

[17] D. Marolt, M. Greif, J. Scheible and G. Jerke, "PCDS: a new approach for the

development of circuit generators in analog IC design," 22nd Austrian Workshop on

Microelectronics (Austrochip), pp. 1–6, Oct. 2014.

[18] A. Graupner, R. Jancke and R. Wittmann, "Generator based approach for analog

circuit and layout design and optimization," 2011 Design, Automation & Test in

Europe (DATE), pp. 1–6, Mar. 2011.

[19] J. Crossley, et al., "BAG: a designer-oriented integrated framework for the

development of AMS circuit generators," 2013 IEEE/ACM Int. Conf. on Computer-

Aided Design (ICCAD), pp. 74–81, Nov. 2013.

[20] B. Prautsch, U. Eichler, S. Rao, B. Zeugmann, A. Puppala, T. Reich and J. Lienig,

"IIP framework: a tool for reuse-centric analog circuit design," 13th Int. Conf. on

Synthesis, Modeling, Analysis and Simulation Methods and Applications to Circuit

Design (SMACD 2016), pp. 1–4, Jun. 2016.

[21] S. Youssef, D. Dupuis, R. Iskander and M. M. Louërat, "Automatic stress effects

computation based on a layout generation tool for analog IC," 2010 IEEE Int.

Behavioral Modeling and Simulation Workshop, pp. 7–12, Sep. 2010.

[22] J. Scheible and J. Lienig, "Automation of analog IC layout – challenges and

solutions," Proc. of Int. Symp. on Physical Design (ISPD'15), pp. 33–40, Mar. 2015.

[23] D. Marolt, J. Scheible, G. Jerke and V. Marolt, "Analog layout automation via self-

organization: enhancing the novel SWARM approach," 2016 IEEE 7th Latin

American Symp. on Circuits Systems (LASCAS), pp. 55–58, Feb. 2016.

[24] Cadence, "Cadence PCell Designer For Cadence Virtuoso Users," [Online].

Available: https://www.cadence.com/content/dam/cadence-

www/global/en_US/documents/services/cadence-vcad-pcell-ds.pdf. [Accessed Jul.

20, 2018].

[25] S. Alassi and B. Winter, "Pycells for an open semiconductor industry," Proc. of the

8th Eur. Conf. on Python in Science (EUROSCIPY 2015), pp. 3–7, Jul. 2015.

[26] B. Prautsch, U. Eichler, T. Reich, A. Puppala and J. Lienig, "Abstract technology

handling for generator-based analog circuit design," GMM-Fachbericht 83,

Reliability by Design (ZuE 2015), VDE Verlag, pp. 56–61, Sep. 2015.

[27] North Carolina State University, "FreePDK - NCSU Electronic Design Automation

(EDA) Wiki," [Online]. Available: https://www.eda.ncsu.edu/wiki/FreePDK.

[Accessed Jul. 20, 2018].

[28] B. Prautsch, U. Eichler, T. Reich and J. Lienig, "MESH: explicit and flexible

generation of analog arrays," 14 th Int. Conf. on Synthesis, Modeling, Analysis and

Simulation Methods and Applications to Circuit Design (SMACD), pp. 1–4, Jun.

2017.

[29] Cadence, "A Call to Action: How 20nm Will Change," 2013. [Online]. Available:

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.366.8961&rep=rep1&typ

e=pdf. [Accessed Jul. 20, 2018].

[30] Synopsys, "Synopsys PyCell Studio," [Online]. Available:

https://www.synopsys.com/cgi-bin/pycellstudio/req1.cgi. [Accessed Jul. 20, 2018].

[31] NetworkX, "NetworkX," NetworkX developers, 2018. [Online]. Available:

https://networkx.github.io/. [Accessed Jul. 20, 2018].

[32] B. Prautsch, U. Eichler, T. Reich and J. Lienig, "Explicit feature and edge insertion

for improved analog layout generators in advanced semiconductor technologies,"

Analog 2016: Beiträge der 15. ITG/GMM-Fachtagung, pp. 22–27, Sep. 2016.

[33] M. Greif, D. Marolt and J. Scheible, "gPCDS: An interactive tool for creating

schematic module generators in analog IC design," 2016 12th Conf. on Ph.D.

Research in Microelectronics and Electronics (PRIME), pp. 1–4, Jun. 2016.

(a) (b)

Figure 10 Layout examples generated through the new template-

driven generator approach. The layout description of both layouts is

identical but results in different structures for (a) 180 nm and

(b) 22 nm (via cuts are not visible due to their small size).

